第5章曲线拟合
- 格式:ppt
- 大小:664.50 KB
- 文档页数:27
2023年数学实验(李尚志著)课后习题答案下载数学实验(李尚志著)课后答案下载数学实验是借助数学软件,结合所学的数学知识解决实际问题的一门实践课.本书包括数学软件MATLAB的入门知识,数学建模初步及运用高等数学、线性代数与概率论相关知识的实验内容.亦尝试编写了几个近代数学应用的阅读实验,对利用计算机图示功能解决实际问题安排了相应的实验.实验选材贴近实际,易于上机,并具有一定的趣味性。
数学实验(李尚志著):图书信息点击此处下载数学实验(李尚志著)课后答案数学实验(李尚志著):内容简介书名:数学ISBN: 9787030154620开本:16开定价: 22.00元数学实验(李尚志著):图书目录绪论第1章MATLAB简介与入门1.1简介1.2应用人门1.3MATLAB的语言程序设计简介 1.4特殊量与常用函数1.5图形功能1.6M文件1.7符号运算与应用第2章微分方程建模初步2.1模式与若干准则2.2阅读与理解2.3几个例子2.4阶微分方程定性解的图示第3章平面线性映射的迭代3.1线性函数迭代3.2平面线性映射的'迭代第四章微分方程数值解4.1算法4.2欧拉与龙格-库塔方法4.3模型与实验第5章曲线拟合5.1磨光公式5.2修正与误差5.3进一步讨论的问题第6章图的着色6.1一个时刚安排问题6.2数学思想的导出6.3一般的计数问题6.4进一步探索的问题第7章敏感问题的随机调查 7.1阅读与理解7.2直觉的定义7.3统计思想的一个基本原理 7.4随机应答调查7.5估计的基本性质7.6估计的其他性质第8章数学建模8.1投篮角度问题8.2壳形椅的讨论与绘图8.3独家销售商品广告问题8.4售报策略8.5Galton钉板问题第9章优化问题9.1优化工具箱9.2优化函数的使用9.3污水控制第10章图像增强10.1图像及操作10.2直接灰度调整10.3直方图处理10.4空域滤波增强10.5频域增强第11章数学曲面11.1MATLAB语言的预备知识11.2几种有趣的数学曲面11.3默比乌斯曲面族第12章阅读实验一泛函分析初步12.1一个例予12.2距离空间简介12.3应用12.4线性空间与Hilbert空间12.5例与问题第13章阅读实验二群与应用13.1背景与阅读13.2抽象群13.3应用第14章阅读实验三积分教学中的几点注释 14.1阅读与理解14.2理论阐述第15章建模竞赛真题15.1非典数学模型的建立与分析15.2西大直街交通最优联动控制15.3股票全流通方案数学模型的创新设计附录A数学实验课实验教学大纲。
曲线拟合实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。
曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。
曲线拟合的方法很多,本节只介绍曲线直线化。
一、曲线直线化的意义曲线直线化是曲线拟合的重要手段之一。
对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。
二、常用的非线性函数1.指数函数(exponential function)Y=aebX(12.29)对式(12.29)两边取对数,得lnY=lna+bX(12.30)b>0时,Y随X增大而增大;b<0时,Y随X增大而减少。
见图12.4(a)、(b)。
当以lnY和X绘制的散点图呈直线趋势时,可考虑采用指数函数来描述Y与X间的非线性关系,lna和b分别为截距和斜率。
更一般的指数函数Y=aebX+k(12.31)式中k为一常量,往往未知, 应用时可试用不同的值。
2.对数函数(lograrithmic function)Y=a+blnX(X>0)(12.32)b>0时,Y随X增大而增大,先快后慢;b<0时,Y随X增大而减少,先快后慢,见图12.4(c)、(d)。
当以Y和lnX绘制的散点图呈直线趋势时,可考虑采用对数函数描述Y与X之间的非线性关系,式中的b和a分别为斜率和截距。
更一般的对数函数Y=a+bln(X+k) (12.33)式中k为一常量,往往未知。
YYYYXXXX(a)lnY=lna+bX(b)lnY=lna-bX(c)Y=a+blnX(d)Y=a-blnX图12.4曲线示意3.幂函数(power function)Y=aXb(a>0,X>0)(12.34) 式中b>0时,Y随X增大而增大;b<0时,Y随X增大而减少。
曲线拟合初步认识曲线拟合是一种寻找可以最佳逼近某些数据的曲线的方法。
在实际应用中,我们经常需要通过数据来寻找规律或者预测未来的趋势。
曲线拟合就是一种有效的数据分析方法。
本文将介绍一些基本的曲线拟合概念及应用。
一、曲线拟合的概念曲线拟合是一种数学方法,用于建立数据的数学模型,并通过模型来预测未知的数据。
曲线拟合旨在寻找可以最好地描述数据的函数。
常见的曲线拟合方法包括多项式拟合、指数拟合、对数拟合和幂函数拟合。
这些方法都可以用来拟合不同类型的数据,并且在不同的应用场景中具有不同的优点和局限性。
二、曲线拟合的应用曲线拟合在各种领域中都有广泛的应用。
例如,它可以用于预测股票价格、天气变化、经济趋势等。
在科学研究中,曲线拟合可以用于分析实验数据、研究物理规律等。
在工程领域中,曲线拟合可以用于设计机器人、优化设备参数等。
三、曲线拟合的实现曲线拟合的实现可以使用各种工具和软件来完成。
例如,MATLAB 是一种流行的数据分析工具,它提供了许多不同的曲线拟合函数。
Python也是一种流行的编程语言,它提供了许多强大的数据分析和可视化库,如NumPy、SciPy和matplotlib。
这些工具可以帮助我们更轻松地实现曲线拟合,并且可以处理大量的数据。
四、曲线拟合的算法曲线拟合的算法基于最小二乘法,它可以用于计算最佳拟合线和拟合误差。
最小二乘法是一种基本的数据拟合方法,它尝试通过最小化预测误差的平方和来找到拟合模型,以最大程度地逼近数据点。
这个算法已经成为曲线拟合的主要方法之一。
五、曲线拟合的局限性曲线拟合并不是一种通用的解决方案,它具有一些局限性。
例如,曲线拟合假设数据点之间的关系是光滑的,如果数据点之间存在突变或者不连续,曲线拟合可能无法达到较好的效果。
此外,曲线拟合还需要适当选择合适的模型和参数,否则可能会出现过拟合或欠拟合的问题。
结论本文介绍了曲线拟合的基本概念、应用、算法和局限性。
曲线拟合是一种非常有用的数据分析方法,在实际应用中可以帮助我们更好地理解和预测数据。
数学中的曲线拟合曲线拟合是数学中一种重要的数值分析方法,它主要用于研究数据点的关系,并通过建立适当的数学模型来预测未知数据或者分析数据间的相互影响。
在各个领域中,曲线拟合都扮演着重要的角色,从物理、生物到工程等多个学科都离不开曲线拟合技术的应用。
本文将简要介绍曲线拟合的基本概念、方法和实际应用。
一、曲线拟合概述曲线拟合是指通过建立数学模型,将数据点拟合在一条曲线上,在统计学中也称为回归分析。
在拟合过程中,我们试图找到最佳拟合曲线,使得所有数据点到拟合曲线的距离尽可能小,从而能够更好地描述数据间的规律。
常用的曲线模型包括线性回归、多项式拟合、指数拟合和对数拟合等。
二、曲线拟合方法1.线性回归线性回归是曲线拟合中最简单的一种方法,它假设数据点之间存在线性关系,即可以用一条直线来拟合数据。
线性回归的核心是最小二乘法,通过最小化实际观测值与拟合值之间的平方差来确定最佳拟合直线的斜率和截距。
2.多项式拟合多项式拟合是曲线拟合中常用的一种方法,它利用多项式函数来逼近数据点。
多项式拟合的核心是最小二乘法,通过最小化实际观测值与拟合值之间的平方差来确定最佳拟合曲线的系数。
多项式拟合可以根据数据点的特点选择合适的多项式阶数,从而更好地描述数据间的关系。
3.非线性拟合若数据点之间的关系不能通过线性函数或多项式函数来表示,就需要使用非线性拟合方法。
非线性拟合通过建立非线性模型来拟合数据点,常用的非线性模型包括指数函数、对数函数、幂函数等。
非线性拟合通常需要借助数值计算方法,如最小二乘法、牛顿法或Levenberg-Marquardt算法等。
三、曲线拟合应用举例曲线拟合广泛应用于各个领域,以下举例说明其实际应用:1.物理学中的运动学分析物理学中,我们常常使用曲线拟合的方法来研究运动学问题。
通过对物体在不同条件下运动的轨迹进行拟合,可以得到运动的规律和物体的运动参数,如位移、速度、加速度等。
2.生物学中的生长模型生物学研究中,曲线拟合方法可以用于分析生物体的生长过程。
曲线拟合法
曲线拟合法是一种用于求解函数的统计学方法。
它可以利用已经收集到的数据,通过最小二乘法(Least Square Method)来求解该数据集所对应的函数,从而实现对数据和函数之间的拟合。
曲线拟合法主要用来估计定量数据的表达式,从而研究特定定性数据,如温度、压力等的变化规律。
该方法可以让我们更好地理解数据的特征,从而做出更好的决策。
曲线拟合法是一种基于样本数据的有效工具,它可以帮助我们更加准确地估计函数的形式。
它不仅能够对历史数据进行准确预测,而且可以用来探索定量数据变化的相关规律,从而更好地控制和平衡变量之间的关系。
曲线拟合法需要将被研究的函数表示为一个曲线,并使用最小二乘法来拟合该曲线。
在这个过程中,需要先把函数分解为一系列的函数部分,然后利用系数来表示它们之间的关系,最后再将这些系数拟合到原始函数上。
此外,曲线拟合法还可以用来估计和推断未知的数据。
它可以使用已知的数据来拟合函数,然后利用拟合函数来预测未知点的值。
这样,便可以获得更加准确的数据估计。
因此,曲线拟合法是一种有效的统计学方法,它可以帮助我们准确预测数据,并且能够发现和探索定量数据变化的规律。