Matlab求解线性方程组、非线性方程组
- 格式:docx
- 大小:10.30 KB
- 文档页数:5
非线性方程组求解-Matlab-fsolve实例一:①建立文件fun.m:function y=fun(x)y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];②>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。
实例二:①建立文件fun.mfunction F=myfun(x)F=[x(1)-3*x(2)-sin(x(1));2*x(1)+x(2)-cos(x(2))];②然后在命令窗口求解:>> x0=[0;0]; %设定求解初值>> options=optimset('Display','iter'); %设定优化条件>> [x,fv]=fsolve(@myfun,x0,options) %优化求解%MATLAB显示的优化过程Norm of First-order Trust-region Iteration Func-count f(x) step optimality radius0 3 1 2 11 6 0.000423308 0.5 0.0617 12 9 5.17424e-010 0.00751433 4.55e-005 1.253 12 9.99174e-022 1.15212e-005 9.46e-011 1.25 Optimization terminated: first-order optimality is less than options.TolFun.x =0.49660.0067fv =1.0e-010 *0.31610.0018实例三:求下列非线性方程组在(0.5,0.5) 附近的数值解。
Matlab中的非线性优化和非线性方程求解技巧在科学和工程领域中,我们经常会遇到一些复杂的非线性问题,例如最优化问题和方程求解问题。
解决这些问题的方法主要分为线性和非线性等,其中非线性问题是相对复杂的。
作为一种强大的数值计算工具,Matlab提供了许多专门用于解决非线性优化和非线性方程求解的函数和方法。
本文将介绍一些常用的Matlab中的非线性优化和非线性方程求解技巧。
非线性优化是指在给定一些约束条件下,寻找目标函数的最优解的问题。
在实际应用中,往往需要根据实际情况给出一些约束条件,如等式约束和不等式约束。
Matlab中的fmincon函数可以用于求解具有约束条件的非线性优化问题。
其基本语法如下:[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)其中,fun是目标函数,x0是初始值,A、b是不等式约束矩阵和向量,Aeq、beq是等式约束矩阵和向量,lb、ub是变量的上下边界。
x表示最优解,而fval表示最优解对应的目标函数值。
另外,非线性方程求解是指寻找使得方程等式成立的变量值的问题。
Matlab中提供的fsolve函数可以用于求解非线性方程。
其基本语法如下:x = fsolve(fun,x0)其中,fun是方程函数,x0是初始值,x表示方程的解。
除了fmincon和fsolve函数之外,Matlab还提供了一些其他的非线性优化和非线性方程求解函数,例如lsqnonlin、fminunc等,这些函数分别适用于无约束非线性优化问题和带约束非线性方程求解问题。
除了直接调用这些函数外,Matlab还提供了一些可视化工具和辅助函数来帮助我们更好地理解和解决非线性问题。
例如,使用Matlab的优化工具箱可以实现对非线性优化问题的求解过程可视化,从而更直观地观察到优化算法的收敛过程。
此外,Matlab还提供了一些用于计算梯度、雅可比矩阵和海塞矩阵的函数,这些函数在求解非线性问题时非常有用。
Matlab 解方程这里系统的介绍一下关于使用Matlab求解方程的一系列问题,网络上关于Matlab求解方程的文章数不胜数,但是我大体浏览了一下,感觉很多文章都只是零散的介绍了一点,都只给出了一部分Matlab函数例子,以至于刚接触的人面对不同文章中的不同函数一脸茫然,都搞不清楚这些函数各自的用途,也不知道在什么样的情况下该选择哪个函数来求解方程,在使用Matlab解方程时会很纠结。
不知道读者是否有这样的感觉,反正我刚开始接触时就是这样的感觉,面对网络搜索到一系列函数都好想知道他们之间是个什么关系。
所谓的方程就是含有未知数的等式,解方程就是找出使得等式成立时的未知数的数值。
求方程的解可以转换成不同形式,比如求函数的零点、多项式的根。
方程分类很多,按照未知数个数分为一元、二元、多元方程;按照未知数组合形式分为线性方程和非线性方程;按照非零项次数是否一致分为齐次方程和非齐次方程。
线性方程就是方程中未知数次数是一次的,未知数之间不存在指、对、2及以上幂次的关系,线性方程又分为一元线性方程,也就是一元一次方程;多元线性方程,也就是多元一次方程,多以线性方程组的形式出现(包括齐次线性方程组和非齐次线性方程组)。
在Matlab中求解方程的函数主要有roots、solve、fzero、和fsolve函数等,接下来详细的介绍一下各个Matlab函数的使用方法和使用场合。
一、直接求解法(线性方程组)直接求解法不需要借助任何的Matlab函数,主要用于求解线性方程组,也就是未知数次数是一次的方程组,包括齐次线性方程组合非齐次线性方程组。
当然既然可以求解方程组自然也就可以求解单个方程。
主要针对A x=b形式的方程,其中A是未知数系数矩阵,x是未知数列向量,b是常数列向量,当b=0时就是齐次线性方程组,b ≠0时是非齐次线性方程组。
用左除法,x=A\b例:求解线性方程组的解12341242341234251357926640x x x x x x x x x x x x x x +-+=⎧⎪-+=-⎪⎨+-=⎪⎪+--=⎩解:即直接利用b 左除以A 。
matlab 方程组解一、概述Matlab是一种强大的数学计算软件,它可以用来解决各种数学问题,包括解方程组。
在Matlab中,求解方程组是一个非常重要的功能,因为很多实际问题都可以转化为方程组的形式。
本文将详细介绍如何使用Matlab求解线性方程组和非线性方程组。
二、线性方程组1. 线性方程组的定义线性方程组是指各个未知量的次数都不超过1次的代数方程组。
例如:2x + 3y = 54x - 5y = 6就是一个包含两个未知量x和y的线性方程组。
2. Matlab中求解线性方程组方法在Matlab中,可以使用“\”或者“inv()”函数来求解线性方程组。
其中,“\”表示矩阵左除,即Ax=b时,求解x=A\b;“inv()”函数表示矩阵求逆,即Ax=b时,求解x=inv(A)*b。
例如,在Matlab中求解以下线性方程组:2x + 3y = 54x - 5y = 6可以使用以下代码:A=[2,3;4,-5];b=[5;6];x=A\b输出结果为:x =1.00001.0000其中,“A”为系数矩阵,“b”为常数矩阵,“x”为未知量的解。
三、非线性方程组1. 非线性方程组的定义非线性方程组是指各个未知量的次数超过1次或者存在乘积项、幂项等非线性因素的代数方程组。
例如:x^2 + y^2 = 25x*y - 3 = 0就是一个包含两个未知量x和y的非线性方程组。
2. Matlab中求解非线性方程组方法在Matlab中,可以使用“fsolve()”函数来求解非线性方程组。
该函数需要输入一个函数句柄和初始值向量,输出未知量的解向量。
例如,在Matlab中求解以下非线性方程组:x^2 + y^2 = 25x*y - 3 = 0可以使用以下代码:fun=@(x)[x(1)^2+x(2)^2-25;x(1)*x(2)-3];x0=[1;1];[x,fval]=fsolve(fun,x0)输出结果为:Local minimum found.Optimization completed because the size of the gradient is less thanthe default value of the function tolerance.<stopping criteria details>ans =1.60561.8708其中,“fun”为函数句柄,表示要求解的非线性方程组,“x0”为初始值向量,“[x,fval]”为输出结果,其中“x”表示未知量的解向量,“fval”为函数值。
非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。
Matlab中常用的数学函数解析Matlab是一个强大的数值计算和可视化软件,它提供了丰富的数学函数,方便用户进行各种数学运算和分析。
在本文中,我们将解析一些常用的Matlab数学函数,介绍其用法和应用场景。
一、求解方程和优化问题在科学和工程领域,求解方程和优化问题是常见的任务。
Matlab提供了许多函数用于这些目的,其中最常用的是solve和fmincon函数。
1. solve函数solve函数用于求解代数方程或方程组。
例如,我们想求解一个一元二次方程2x^2 + 3x - 5 = 0的根,可以使用solve函数:```syms xeqn = 2*x^2 + 3*x - 5 == 0;sol = solve(eqn, x);```solve函数返回一个包含根的结构体sol,我们可以通过sol.x获得根的值。
当然,solve函数也可以求解多元方程组。
2. fmincon函数fmincon函数是Matlab中的一个优化函数,用于求解有约束的最小化问题。
例如,我们希望找到一个函数f(x)的最小值,同时满足一些约束条件,可以使用fmincon函数:```x0 = [0.5, 0.5]; % 初始解A = [1, 2]; % 不等式约束系数矩阵b = 1; % 不等式约束右侧常数lb = [0, 0]; % 变量下界ub = [1, 1]; % 变量上界nonlcon = @mycon; % 非线性约束函数options = optimoptions('fmincon', 'Algorithm', 'sqp'); % 优化选项[x, fval] = fmincon(@myfun, x0, A, b, [], [], lb, ub, nonlcon, options);```其中,myfun为目标函数,mycon为非线性约束函数。
fmincon函数返回最优解x和最小值fval。
matlab十个简单案例编写1. 求解线性方程组线性方程组是数学中常见的问题之一,而MATLAB提供了用于求解线性方程组的函数。
例如,我们可以使用"linsolve"函数来求解以下线性方程组:2x + 3y = 74x - 2y = 2代码如下所示:A = [2, 3; 4, -2];B = [7; 2];X = linsolve(A, B);disp(X);解释:上述代码定义了一个2x2的矩阵A和一个2x1的矩阵B,分别表示线性方程组的系数矩阵和常数向量。
然后,使用linsolve函数求解线性方程组,结果存储在X中,并通过disp函数打印出来。
运行代码后,可以得到x=2和y=1的解。
2. 求解非线性方程除了线性方程组外,MATLAB还可以用于求解非线性方程。
例如,我们可以使用"fzero"函数求解以下非线性方程:x^2 + 2x - 3 = 0代码如下所示:fun = @(x) x^2 + 2*x - 3;x0 = 0;x = fzero(fun, x0);disp(x);解释:上述代码定义了一个匿名函数fun,表示非线性方程。
然后,使用fzero函数传入fun和初始值x0来求解非线性方程的根,并通过disp函数打印出来。
运行代码后,可以得到x=1的解。
3. 绘制函数图像MATLAB提供了强大的绘图功能,可以帮助我们可视化函数的形状和特征。
例如,我们可以使用"plot"函数绘制以下函数的图像:y = cos(x)代码如下所示:x = linspace(0, 2*pi, 100);y = cos(x);plot(x, y);解释:上述代码首先使用linspace函数生成一个从0到2π的100个等间距点的向量x,然后计算对应的cos值,并存储在向量y中。
最后,使用plot函数将x和y作为横纵坐标绘制出函数图像。
运行代码后,可以看到cos函数的周期性波动图像。
matlab求线性方程组的解求解线性方程分为两种方法–直接法和迭代法常见的方法一共有8种直接法Gauss消去法Cholesky分解法迭代法Jacobi迭代法Gauss-Seidel迭代法超松弛迭代法共轭梯度法Bicg迭代法Bicgstab迭代法这里我从计算代码的角度来解释一下,代码按以下顺序给出。
把方程组直接带入已知条件,就可以得到答案。
适用条件Gauss消去法:求解中小规模线性方程(阶数不过1000),一般用于求系数矩阵稠密而且没有任何特殊结构的线性方程组Cholesky分解法:对称正定方程优先使用,系数矩阵A是n 阶对称正定矩阵Jacobi迭代法非奇异线性方程组,分量的计算顺序没有关系Gauss-Seidel迭代法与Jacobi迭代法相似,但计算的分量不能改变超松弛迭代法Jacobi迭代法和Gauss-Seidel迭代法的加速版,由Gauss-Seidel迭代法改进而来,速度较快共轭梯度法需要确定松弛参数w,只有系数矩阵具有较好的性质时才可以找到最佳松弛因子。
但好处是不用确定任何参数,他是对称正定线性方程组的方法也是求解大型稀疏线性方程组最热门的方法Bicg迭代法本质是用双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Bicgstab迭代法本质是用稳定双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Gauss消去法第一、二个函数ltri、utri是一定要掌握的,后面的几乎每个函数都要用到ltri简单来说,当Ly=bb,L(非奇异下三角矩阵)已知求yfunction y =ltri(L,b)n=size(b,1);y=zeros(n,1);for j =1:n-1y(j)=b(j)/L(j,j);b(j+1:n)=b(j+1:n)-y(j)*L(j+1:n,j); endy(n)=b(n)/L(n,n);utri简单来说,当Ux=yy,U(非奇异上三角矩阵)已知求xfunction x =utri(U,y)n=size(y,1);x=zeros(n,1);for j = n:-1:2x(j)=y(j)/U(j,j);y(1:j-1)=y(1:j-1)-x(j)*U(1:j-1,j);endx(1)=y(1)/U(1,1);gauss算法,计算时粘贴过去就好function[L,U]=gauss(A)n=size(A,1);for k =1:n-1A(k+1:n,k)=A(k+1:n,k)/A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k +1:n)-A(k+1:n,k)*A(k,k+1:n);endL=tril(A,-1)+eye(n);U=triu(A);使用例子已经知道一个线性方程组,这里我就不写出数学形式了,A是系数矩阵,直接把上面写好的函数复制过来在运算就可以。
计算方法matlab实验报告计算方法MATLAB实验报告引言:计算方法是一门研究如何用计算机来解决数学问题的学科。
在计算方法的学习过程中,MATLAB作为一种强大的数值计算软件,被广泛应用于科学计算、工程计算、数据分析等领域。
本实验报告将介绍在计算方法课程中使用MATLAB 进行的实验内容和实验结果。
一、二分法求方程根在数值计算中,求解非线性方程是一个常见的问题。
二分法是一种简单而有效的求解非线性方程根的方法。
在MATLAB中,可以通过编写函数和使用循环结构来实现二分法求解方程根。
实验步骤:1. 编写函数f(x),表示待求解的非线性方程。
2. 设定初始区间[a, b],满足f(a) * f(b) < 0。
3. 利用二分法迭代求解方程根,直到满足精度要求或迭代次数达到预设值。
实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个非线性方程的根。
例如,对于方程f(x) = x^3 - 2x - 5,我们通过二分法迭代了5次,得到了方程的一个根x ≈ 2.0946。
二、高斯消元法解线性方程组线性方程组的求解是计算方法中的重要内容之一。
高斯消元法是一种常用的求解线性方程组的方法,它通过矩阵变换将线性方程组化为上三角矩阵,从而简化求解过程。
在MATLAB中,可以利用矩阵运算和循环结构来实现高斯消元法。
实验步骤:1. 构建线性方程组的系数矩阵A和常数向量b。
2. 利用高斯消元法将系数矩阵A化为上三角矩阵U,并相应地对常数向量b进行变换。
3. 利用回代法求解上三角矩阵U,得到线性方程组的解向量x。
实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个线性方程组。
例如,对于线性方程组:2x + 3y - z = 13x - 2y + 2z = -3-x + y + 3z = 7经过高斯消元法的计算,我们得到了方程组的解x = 1,y = -2,z = 3。
三、数值积分方法数值积分是计算方法中的重要内容之一,它用于计算函数在给定区间上的定积分。
Matlab求解线性方程组、非线性方程组姓名:罗宝晶学号:1012208015 专业:材料学院高分子系第一部分数值计算Matlab求解线性方程组AX=B或XA=B在MATLAB中,求解线性方程组时,主要采用除法运算符“/”和“\”。
如:X=A\B表示求矩阵方程AX=B的解;X=B/A表示矩阵方程XA=B的解。
对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。
如果矩阵A不是方阵,其维数是m×n,则有:m=n 恰定方程,求解精确解;m>n 超定方程,寻求最小二乘解;m<n 不定方程,寻求基本解,其中至多有m个非零元素。
针对不同的情况,MATLAB将采用不同的算法来求解。
一.恰定方程组恰定方程组由n个未知数的n个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式:Ax=b 其中A是方阵,b是一个列向量;在线性代数中,最常用的方程组解法有:(1)利用Cramer公式来求解法;(2)利用矩阵求逆解法,即x=A-1b;(3)利用Gaussian消去法;(4)利用Lu法求解。
一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大。
前三种解法的真正意义是在其理论上,而不是实际的数值计算。
MATLAB 中,出于对算法稳定性的考虑,行列式及逆的计算大都在Lu分解的基础上进行。
在MATLAB中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b。
在MATLAB的指令解释器在确认变量A非奇异后,就对它进行Lu分解,并最终给出解x;若矩阵A的条件数很大,MATLAB会提醒用户注意所得解的可靠性。
如果矩阵A是奇异的,则Ax=b的解不存在,或者存在但不唯一;如果矩阵A接近奇异时,MATLAB将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵A是病态矩阵,也会给出警告信息。
此外还要注意:在求解方程时,尽量不要用inv(A)*b命令,而应采用A\b的解法。
matlab 解矩阵方程
在MATLAB 中,您可以使用多种方法来解矩阵方程。
以下是一些常见的方法:
1. 左除(\)运算符:
使用左除运算符\ 可以求解线性方程组。
matlab复制代码:
A = [1, 2; 3, 4];
b = [5; 6];
x = A \ b; % 解方程Ax = b
2. \函数:
MATLAB 也提供了\ 函数来求解线性方程组。
matlab复制代码:
x = linsolve(A, b);
3. eig 函数:
如果矩阵A 是对称的,可以使用eig 函数找到特征向量和特征值。
这也可以用于解非线性方程组,特别是当方程可以转换为特征值问题时。
4. sym 和subs:
对于符号矩阵和方程,您可以使用sym 来创建符号对象,并使用subs 函数进行替换和计算。
5. fmincon:
对于非线性最小二乘问题,您可以使用fmincon 函数。
这需要定义一个目标函数,并使用优化工具箱。
6. 迭代方法:
对于非线性方程或非线性方程组,可能需要使用迭代方法,如牛顿法、雅可比法等。
MATLAB 提供了多种迭代方法,如fzero、fsolve 等。
7. 矩阵分解:
对于一些特殊类型的矩阵,您可能想要使用矩阵分解,如LU 分解、QR 分解等,然后使用这些分解来求解方程。
在选择适合您需求的解法时,请考虑方程的性质(线性或非线性)、矩阵的类型和大小以及您的计算资源。
主题:matlab共轭梯度法求解方程组近年来,随着科学技术的不断发展,数学建模和计算机仿真成为科学研究和工程技术领域的重要手段。
在实际应用中,我们常常需要解决线性方程组的求解问题,而共轭梯度法作为一种高效的迭代求解方法,广泛应用于信号处理、图像处理、地球物理勘探和优化问题等领域。
本文将介绍如何利用matlab中的共轭梯度法求解线性方程组的基本原理和实际操作方法。
1. 共轭梯度法的基本原理共轭梯度法是一种迭代法,用于求解对称正定线性方程组Ax=b。
该方法的核心思想是通过一系列的迭代操作,逐步逼近方程组的解,直到满足一定的精度要求。
在每一步迭代中,共轭梯度法利用残差和方向向量的共轭性质,不断寻找最优的步长,从而实现方程组的求解。
2. matlab中共轭梯度法的基本调用方法在matlab中,调用共轭梯度法求解线性方程组非常简单。
需要将方程组的系数矩阵A和右端向量b输入到matlab中,然后利用内置函数conjugateGradient进行求解。
具体的调用方法如下:x = conjugateGradient(A, b, x0, maxIter, tol)其中,A为系数矩阵,b为右端向量,x0为初始解向量,maxIter为最大迭代次数,tol为精度要求。
调用完毕后,matlab将返回方程组的近似解x。
3. 共轭梯度法在实际工程中的应用共轭梯度法作为一种高效的求解方法,在工程技术领域得到了广泛的应用。
以图像处理为例,图像处理中经常需要解决大规模的线性方程组,而共轭梯度法能够高效地求解这类问题,提高了图像处理算法的效率和稳定性。
另外,在地球物理勘探中,共轭梯度法也被广泛应用于三维数据的快速处理和解释。
可以说,共轭梯度法在实际工程中发挥着重要的作用。
4. 共轭梯度法的优缺点分析尽管共轭梯度法具有非常高的效率和稳定性,但是该方法也存在一些缺点。
该方法只适用于对称正定的线性方程组,对于一般的线性方程组并不适用。
共轭梯度法的收敛速度受到方程条件数的影响,对于病态问题,可能收敛速度较慢。
实验2 利用matlab解(非)线性、微分方程(组)-答案1、对于下列线性方程组:(1)请用直接法求解;(2)请用LU分解方法求解;(3)请用QR分解方法求解;(4)请用Cholesky分解方法求解。
(1)>> A=[2 9 0;3 4 11;2 2 6]A =2 9 03 4 112 2 6>> B=[13 6 6]'B =1366>> x=inv(A)*Bx =7.4000-0.2000-1.4000或:>> X=A\BX =7.4000-0.2000-1.4000(2)>> [L,U]=lu(A);>> x=U\(L\B)x =7.4000-0.2000-1.4000(3)>> [Q,R]=qr(A);>> x=R\(Q\B)x =7.4000-0.2000-1.4000(4)>> chol(A)??? Error using ==> cholMatrix must be positive definite.2、设迭代精度为10-6,分别用Jacobi 迭代法、Gauss-Serdel 迭代法求解下列线性方程组,并比较此两种迭代法的收敛速度。
Jacobi 迭代法:>> A=[10 -1 0;-1 10 -2;0 -2 10];>> B=[9 7 5]';>> [x,n]=jacobi(A,B,[0,0,0]',1e-6)x =0.99370.93680.6874n =11Gauss-Serdel 迭代法:>> A=[10 -1 0;-1 10 -2;0 -2 10];>> B=[9 7 5]';>> [x,n]=gauseidel(A,B,[0,0,0]',1e-6)x =0.99370.93680.6874n =73、求解非线性方程010=-+x xe x 在2附近的根。
求解线性方程组
solve,linsolve
例:
A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1]; %矩阵的行之间用分号隔开,元素之间用逗号或空格
B=[3;1;1;0]
X=zeros(4,1);%建立一个4 元列向量X=linsolve(A,B) diff(fun,var,n):对表达式fun 中的变量var 求n 阶导数。
例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式diff(F); %matlab 区分大小写pretty(ans) %pretty():用习惯书写方式显示变量;ans 是答案表达式
非线性方程求解fsolve(fun,x0,options) 其中fun 为待解方程或方程组的文件名;x0 位求解方程的初始向量或矩阵;option 为设置命令参数建立文件fun.m:function y=fun(x) y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ... x(2) -
0.5*cos(x(1))+0.3*sin(x(2))];
>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve')) 注:
...为续行符
m 文件必须以function 为文件头,调用符为@ ;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。
Matlab 求解线性方程组
AX=B 或XA=B
在MATLAB 中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。
如:
X=A\B 表示求矩阵方程AX=B 的解;
X=B/A 表示矩阵方程XA=B 的解。
对方程组X=A\B,要求 A 和B用相同的行数,X和 B 有相同的列数,它的行数等于矩阵 A 的列数,方程X=B/A 同理。
如果矩阵A 不是方阵,其维数是m×n,则有:
m=n 恰定方程,求解精确解;
m>n 超定方程,寻求最小二乘解;
m<n 不定方程,寻求基本解,其中至多有m 个非零元素。
针对不同的情况,MATLAB 将采用不同的算法来求解。
一.恰定方程组
恰定方程组由n 个未知数的n 个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式:
Ax=b 其中A 是方阵,b 是一个列向量;在线性代数教科书中,最常用的方程组解法有:
(1)利用cramer 公式来求解法;
(2)利用矩阵求逆解法,即x=A-1b;
(3)利用gaussian 消去法;
(4)利用lu 法求解。
一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大。
前三种解法的真正意义是在其理论上,而不是实际的数值计算。
MATLAB 中,出于对算法稳定性的考虑,行列式及逆的计算大都在lu分解的基础上进行。
在MATLAB 中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b。
在MATLAB 的指令解释器在确认变量 A 非奇异后,就对它进行lu 分解,并最终给出解x;若矩阵 A 的条件数很大,MATLAB 会提醒用户注意所得解的可靠性。
如果矩阵 A 是奇异的,则Ax=b 的解不存在,或者存在但不唯一;如果矩阵 A 接近奇异时,MATLAB 将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵 A 是病态矩阵,也会给出警告信息。
注意:在求解方程时,尽量不要用inv(A)*b 命令,而应采用A\b 的解法。
因为后者的计算速度比前者快、精度高,尤其当矩阵 A 的维数比较大时。
另外,除法命令的适用行较强,对于非方阵A,也能给出最小二乘解。
二.超定方程组
对于方程组Ax=b,A 为n×m 矩阵,如果 A 列满秩,且n>m。
则方程组没有精
确解,此时称方程组为超定方程组。
线性超定方程组经常遇到的问题是数据的曲线拟合。
对于超定方程,在MATLAB 中,利用左除命令(x=A\b)来寻求它的最
小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x 只是最小二乘意义上的解。
左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder 变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;
【例7】
求解超定方程组
A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13]
A=
2 -1 3
3 1 -5
4 -1 1
1 3 -13
b=[3 0 3 -6]';
rank(A)
ans=
3
x1=A\b
x1=
1.0000
2.0000
1.0000 x2=pinv(A)*b
x2=
1.0000
2.0000
1.0000
A*x1-b
ans=
1.0e-014
-0.0888
-0.0888
-0.1332
可见x1 并不是方程Ax=b 的精确解,用x2=pinv(A)*b 所得的解与x1 相同。
三.欠定方程组欠定方程组未知量个数多于方程个数,但理论上有无穷个解。
MATLAB 将寻求一个基本解,其中最多只能有m 个非零元素。
特解由列主元qr分解求得。
【例8】解欠定方程组A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5] A=
1 -
2 1 1
1 -
2 1 -1
1 -
2 1 -1
1 -
2 1 5
b=[1 -1 5]'
x1=A\b
Warning:Rank deficient,rank=2 tol=4.6151e-015
x1=
-0.0000
1.0000
x2=pinv(A)*b
x2=
-0.0000
0.0000
1.0000
四.方程组的非负最小二乘解在某些条件下,所求的线性方程组的解出现负数是没有意义的。
虽然方程组可以得到精确解,但却不能取负值解。
在这种情况下,其非负最小二乘解比方程的精确解更有意义。
在MATLAB 中,求非负最小
二乘解常用函数nnls,其调用格式为:
(1)X=nnls(A,b)返回方程Ax=b 的最小二乘解,方程的求解过程被限制在x 的条件下;
(2)X=nnls(A,b,TOL)指定误差TOL 来求解,TOL的默认值为
TOL=max(size(A))*norm(A,1)*eps,矩阵的-1 范数越大,求解的误差越大;
(3)[X,W]=nnls(A,b) 当x(i)=0 时,w(i)<0;当下x(i)>0 时,w(i)0,同时返回一个双向量w。
【例9】求方程组的非负最小二乘解
A=[3.4336 -0.5238 0.6710
-0.5238 3.2833 -0.7302
0.6710 -0.7302 4.0261];
b=[-1.000 1.5000 2.5000];
[X,W]=nnls(A,b)
X=
0.6563
0.6998
W=
-3.6820
-0.0000
-0.0000
x1=A\b
x1=
-0.3569
0.5744
0.7846
A*X-b ans= 1.1258 0.1437 -0.1616 A*x1-b ans= 1.0e-0.15
-0.2220
0.4441。