平面向量的正交分解及坐标表示
- 格式:ppt
- 大小:540.00 KB
- 文档页数:16
平面向量的正交分解及坐标表示选择题1. 已知向量(,2),(3,)→→=-=-m m a b ,m ∈R ,若()→→→+∥a a b 则=m ( )A.B.C.D.-1或4【分值】5【答案】C【易错点】(1)向量平行与向量垂直在坐标运算上容易弄混(2)容易把=m 况遗漏掉【考查方向】本题主要考查向量的坐标运算以及向量共线得坐标表示,向量得坐标运算特别是平行与垂直的坐标表示常常是这几年高考的热点问题,属于基础题,考查学生对基本的结论的掌握及运算求解能力.【解题思路】先求得→→+a b 的坐标,进而再利用向量平行的坐标运算结论得到关于m 的方程,从而解得m 的值.【解析】(3,2)m m a b +=--+,若()∥a a b +,则有(2)2(3)0m m m -+---=,解得m =2. 在ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若()PA 4,3=,()PQ 1,5=,则BC =( )A. ()5,8B. ()8,6C. ()-6,21D. ()18,39【分值】5【答案】C【易错点】个别同学在表示向量PC时不能直接和PA与PQ建立联系.【考查方向】本题主要考查平面向量基本定理以及向量的几何运算法则及坐标运算,是对用基底表示完平面向量后又对其坐标运算的考查.【解题思路】本题实质是以PA与PQ为基底表示向量BC,可以先将BC转化到离基底比较近的向量PC上,然后再逐步逼近基向量,最后依据向量的加减法坐标运算法则得到BC 的坐标.【解析】()()()()==-=-=-=-.BC3PC32PQ PA6PQ3PA6,3012,96,213.已知点()B a,0共线,则函数y sin axP2,1在直线AB上,且A(0)2,,()=的周期为( )pA.2B. pC. 2pD. 3p【分值】5【答案】A【易错点】(1)三点共线,有些同学不会利用向量这一工具来解决问题;(2)在用向量共线的坐标表示时易与垂直的结论弄混.【考查方向】本题主要考查平面向量共线的坐标表示及三角函数的图像及性质。
2.3.2平面向量的正交分解及坐标表示、坐标运算学习目标1.掌握平面向量的正交分解及其坐标表示;2.会用坐标表示平面向量的加、减、数乘运算。
学习任务:(一)平面向量的正交分解:阅读课本94-95页,回答下列问题 1、什么是正交分解?2、观察右图,OA a =,完成下列问题:(1)向量1OA 与向量i 共线,则存在唯一实数x ,使得i OA___1=; (2)向量2OA 与向量j 共线,则存在唯一实数y ,使得j OA__2=;(3)由平行四边形法则,________________+=+==OA a. 3、阅读课本第95-96页,完成下列问题向量的坐标表示的定义:分别选取与x 轴、y 轴方向相同的 向量i ,j 作为 ,对于任一向量a , ____________一对实数x 、y ,使得a xi y j =+,(,x y R ∈),实数对(,)x y 叫___________,记作_________ 其中x 叫 ,y 叫 。
说明:(1)对于a ,有且仅有一对实数(,)x y 与之对应;(2)相等的向量的坐标 ;(3)i =( , ),j =( , ),0(0,0)=;(4)直角坐标系中点A 、向量OA 、有序数(x,y )有什么关系?从原点引出的向量OA 的坐标(,)x y 就是 。
(二)平面向量的坐标运算1.阅读课本第96页,完成问题已知),(),,(2211y x b y x a ==,则(1)=+b a ____________________,=-b a____________________(用坐标表示)。
(2)=aλ____________________(R ∈λ)(用坐标表示)。
2.阅读课本第97页例4,完成课本第100页练习1,2;课本第101页习题A 组2。
3.若A 点坐标为),(11y x ,B 点坐标为),(22y x ,O 为坐标原点,则(1)OA =___________,OB =___________,________________________=-=-=AB 。
2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算.3.2&2.3.3 平面向量的正交分解及坐标表示平面向量的坐标运算预习课本P94~98,思考并完成以下问题怎样分解一个向量才为正交分解?如何由a,b的坐标求a+b,a-b,λa的坐标?[新知初探].平面向量正交分解的定义把一个平面向量分解为两个互相垂直的向量..平面向量的坐标表示基底:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.坐标:对于平面内的一个向量a,有且仅有一对实数x,y,使得a=xi+yj,则有序实数对叫做向量a的坐标.坐标表示:a=.特殊向量的坐标:i=,j=,0=.[点睛] 平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e1和e2互相垂直.由向量坐标的定义,知两向量相等的充要条件是它们的横、纵坐标对应相等,即a=b⇔x1=x2且y1=y2,其中a=,b=..平面向量的坐标运算设向量a=,b=,λ∈R,则有下表:文字描述符号表示加法两个向量和的坐标分别等于这两个向量相应坐标的和a+b=减法两个向量差的坐标分别等于这两个向量相应坐标的差a-b=数乘实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标λa=重要结论一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标已知A,B,则=[点睛] 向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.[小试身手].判断下列命题是否正确.相等向量的坐标相同与向量的起点、终点无关.当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.两向量差的坐标与两向量的顺序无关.点的坐标与向量的坐标相同.答案:√√××.若a=,b=,则3a+2b的坐标是A.B.c.D.答案:c.若向量=,=,则=A.B.c.D.答案:A.若点,点N,用坐标表示向量=______.答案:平面向量的坐标表示[典例]如图,在边长为1的正方形ABcD中,AB与x轴正半轴成30°角.求点B和点D的坐标和与的坐标.[解] 由题知B,D分别是30°,120°角的终边与单位圆的交点.设B,D.由三角函数的定义,得x1=cos30°=32,y1=sin30°=12,∴B32,12.x2=cos120°=-12,y2=sin120°=32,∴D-12,32.∴=32,12,=-12,32.求点和向量坐标的常用方法求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.[活学活用]已知o是坐标原点,点A在象限,||=43,∠xoA=60°,求向量的坐标;若B,求的坐标.解:设点A,则x=43cos60°=23,y=43sin60°=6,即A,=.=-=.平面向量的坐标运算[典例] 已知三点A,B,c,则向量3+2=________,-2=________.已知向量a,b的坐标分别是,,求a+b,a-b,3a,2a +3b的坐标.[解析] ∵A,B,c,∴=,=,=.∴3+2=3+2==.-2=-2==.[答案]解:a+b=+=,a-b=-=,a=3=,a+3b=2+3=+=.平面向量坐标运算的技巧若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.向量的线性坐标运算可完全类比数的运算进行.[活学活用].设平面向量a=,b=,则a-2b=A.B.c.D.解析:选A ∵2b=2=,∴a-2b=-=..已知,N,=12,则P点坐标为______.解析:设P,=,=,∴=12=12=-4,12,∴x-3=-4,y+2=12.∴x=-1,y=-32.答案:-1,-32向量坐标运算的综合应用[典例] 已知点o,A,B及=+t,t为何值时,点P在x轴上?点P在y轴上?点P在第二象限?[解] 因为=+t=+t=,若点P在x轴上,则2+3t=0,所以t=-23.若点P在y轴上,则1+3t=0,所以t=-13.若点P在第二象限,则1+3t<0,2+3t>0,所以-23<t<-13.[一题多变].[变条件]本例中条件“点P在x轴上,点P在y轴上,点P在第二象限”若换为“B为线段AP的中点”试求t的值.解:由典例知P,则1+1+3t2=4,2+2+3t2=5,解得t=2..[变设问]本例条件不变,试问四边形oABP能为平行四边形吗?若能,求出t值;若不能,说明理由.解:=,=.若四边形oABP为平行四边形,则=,所以3-3t=1,3-3t=2,该方程组无解.故四边形oABP不能成为平行四边形.向量中含参数问题的求解向量的坐标含有两个量:横坐标和纵坐标,如果横或纵坐标是一个变量,则表示向量的点的坐标的位置会随之改变.解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程,解这个方程,就能达到解题的目的.层级一学业水平达标.如果用i,j分别表示x轴和y轴方向上的单位向量,且A,B,则可以表示为A.2i+3jB.4i+2jc.2i-jD.-2i+j解析:选c 记o为坐标原点,则=2i+3j,=4i+2j,所以=-=2i-.已知=a,且A12,4,B14,2,又λ=12,则λa等于A.-18,-1B.14,3c.18,1D.-14,-3解析:选A ∵a==14,2-12,4=-14,-2,∴λa=12a=-18,-1..已知向量a=,2a+b=,则b=A.B.c.D.解析:选A b=-2a=-=..在平行四边形ABcD中,Ac为一条对角线,=,=,则=A.B.c.D.解析:选c =-=-=-=..已知,N,点P是线段N上的点,且=-2,则P点的坐标为A.B.c.D.解析:选D 设P,则=,=,由=-2得10-x=4+2x,-2-y=-14+2y,所以x =2,y=4..已知向量a=,b=,若a+nb=,则-n的值为________.解析:∵a+nb==,∴2+n=9,-2n=-8,∴=2,n=5,∴-n=2-5=-3.答案:-3.若A,B,c,则+2=________.解析:∵A,B,c,∴=,=.∴+2=+2=+=.答案:.已知o是坐标原点,点A在第二象限,||=6,∠xoA =150°,向量的坐标为________.解析:设点A,则x=||cos150°=6cos150°=-33,y=||sin150°=6sin150°=3,即A,所以=.答案:.已知a=,B点坐标为,b=,c=,且a=3b-2c,求点A的坐标.解:∵b=,c=,∴3b-2c=3-2=-=,即a==.又B,设A点坐标为,则==,∴1-x=-7,0-y=10⇒x=8,y=-10,即A点坐标为.0.已知向量=,=,点A.求线段BD的中点的坐标.若点P满足=λ,求λ与y的值.解:设B,因为=,A,所以=,所以x1+1=4,y1+2=3,所以x1=3,y1=1,所以B.同理可得D,设BD的中点,则x2=3-42=-12,y2=1-32=-1,所以-12,-1.由=-=,=-=,又=λ,所以=λ=,所以1=-7λ,1-y=-4λ,所以λ=-17,y=37. 层级二应试能力达标.已知向量=,=,则12=A.B.c.D.解析:选D 12=12=12=,故选D..已知向量a=,b=,c=,且c=λ1a+λ2b,则λ1,λ2的值分别为A.-2,1B.1,-2c.2,-1D.-1,2解析:选D ∵c=λ1a+λ2b,∴=λ1+λ2=,∴λ1+2λ2=3,2λ1+3λ2=4,解得λ1=-1,λ2=2..已知四边形ABcD的三个顶点A,B,c,且=2,则顶点D的坐标为A.2,72B.2,-12c.D.解析:选A 设点D,则由题意得=2=,故2=4,2n -4=3,解得=2,n=72,即点D2,72,故选A..对于任意的两个向量=,n nn=.设f f f等于A.B.c.D.解析:选B 由⊗f=,得p-2q=5,2p+q=0,解得p=1,q=-2,所以f f.已知向量i=,j=,对坐标平面内的任一向量a,给出下列四个结论:①存在唯一的一对实数x,y,使得a=;②若x1,x2,y1,y2∈R,a=≠,则x1≠x2,且y1≠y2;③若x,y∈R,a=,且a≠0,则a的起点是原点o;④若x,y∈R,a≠0,且a的终点坐标是,则a=.其中,正确结论有________个.解析:由平面向量基本定理,可知①正确;例如,a=≠,但1=1,故②错误;因为向量可以平移,所以a=与a 的起点是不是原点无关,故③错误;当a的终点坐标是时,a=是以a的起点是原点为前提的,故④错误.答案:1.已知A,B,o为坐标原点,点c在∠AoB内,|oc|=22,且∠Aoc=π4.设=λ+,则λ=________.解析:过c作cE⊥x轴于点E,由∠Aoc=π4知,|oE|=|cE|=2,所以=+=λ+,即=λ,所以=λ,故λ=23.答案:23.在△ABc中,已知A,B,c,,N,D分别是AB,Ac,Bc的中点,且N与AD交于点F,求的坐标.解:∵A,B,c,∴==,==.∵D是Bc的中点,∴=12=12=12=-72,-4.∵,N分别为AB,Ac的中点,∴F为AD的中点.∴=-=-12=-12-72,-4=74,2..在直角坐标系xoy中,已知点A,B,c,若++=0,求的坐标.若=+n,且点P在函数y=x+1的图象上,求-n. 解:设点P的坐标为,因为++=0,又++=++=.所以6-3x=0,6-3y=0,解得x=2,y=2.所以点P的坐标为,故=.设点P的坐标为,因为A,B,c,所以=-=,=-=,因为=+n,所以=+n=,所以x0=+2n,y0=2+n,两式相减得-n=y0-x0,又因为点P在函数y=x+1的图象上,所以y0-x0=1,所以-n=1.。
平面向量的正交分解及坐标表示1.引言平面向量是二维空间中的一个重要概念,它由起点和终点两个点确定,可以表示为一个有序对(a,b),其中a和b分别表示向量在x轴和y轴上的投影。
在二维空间中,向量的正交分解是一个重要的概念,它可以将一个向量分解为两个相互垂直的向量的和。
本文将介绍平面向量的正交分解及其坐标表示。
2.平面向量的概念平面向量是二维空间中的一个重要概念,它可以表示为一个有向线段,具有大小和方向。
平面向量通常用字母a、b、c等表示,其大小通常用模来表示,记作|a|。
方向通常用角度或者有向角表示。
3.平面向量的坐标表示平面向量可以用坐标来表示,通常表示为(a,b),其中a和b分别表示向量在x轴和y轴上的投影。
例如,向量a可以表示为(a1,a2),其中a1表示向量在x轴上的投影,a2表示向量在y轴上的投影。
4.向量的正交分解向量的正交分解是指将一个向量分解为两个相互垂直的向量的和。
设向量a的坐标表示为(a1,a2),则可以将向量a分解为两个坐标分别为(a1,0)和(0,a2)的向量的和。
这两个向量分别表示了向量a在x轴和y轴上的投影。
5.正交分量与投影在向量的正交分解中,正交分量表示了向量在两个相互垂直的方向上的投影,投影表示了向量在某个方向上的投影。
在二维空间中,向量的正交分量就是向量在x轴和y轴上的投影,这两个向量之间是相互垂直的。
6.向量的坐标表示与正交分解的关系向量的坐标表示与向量的正交分解有密切的联系。
通过向量的坐标表示,我们可以很容易地进行正交分解,将向量表示为两个垂直向量的和,分别表示向量在x轴和y轴上的投影。
7.向量正交分解的应用向量的正交分解在实际问题中有很多应用。
例如,在物理学中,做功可以分解为沿着路径方向和垂直于路径方向的力的分量,这就是一个向量的正交分解。
在工程学中,力的分解、速度的分解等问题都可以用到向量的正交分解。
8.总结平面向量的正交分解是一个重要的概念,通过正交分解,我们可以将一个向量分解为两个相互垂直的向量的和,这对于我们理解向量在空间中的运动和变化具有重要意义。