第十章 第三节 二项式定理
- 格式:ppt
- 大小:605.50 KB
- 文档页数:39
2020高中数学复习学案第10章 计数原理、概率、随机变量及其分布3 二项式定理【要点梳理·夯实知识基础】1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C r n an -r b r +…+C n n b n(n ∈N +). 这个公式所表示的规律叫做二项式定理,等式右边的多项式叫做(a +b )n 的二项展开式,其中的系数C r n (r =0,1,2,…,n )叫做 二项式系数 .式中的 C r n an -rb r 叫做二项展开式的 通项 ,用T r +1表示,通项是展开式的第 r +1 项,即T r +1=C r n an -r b r (其中0≤r ≤n ,r ∈N ,n ∈N +). 2.二项展开式形式上的特点 (1)项数为 n +1 .(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为 n . (3)字母a 按 降幂 排列,从第一项开始,次数由n 逐项减1直到零;字母b 按 升幂 排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到 C n -1n ,C nn .3.二项式系数的性质(1)对称性:与首末两端“ 等距离 ”的两个二项式系数相等,即C m n =C n -m n .(2)增减性与最大值:二项式系数C r n,当r <n +12时,二项式系数是递增的;当r >n +12时,二项式系数是递减的.当n 是偶数时,那么其展开式中间两项T n2+1的二项式系数最大. 当n 是奇数时,那么其展开式中间两项T n +12和T n +12+1的二项式系数相等且最大.(3)各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C r n +…+C n n =2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1 . 【学练结合】[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)C k n an -k b k是(a +b )n 的展开式中的第k 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( )答案:(1)× (2)× (3)√ (4)× [小题查验]1.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9 B .8 C .7D .6解析:B [令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.]2.(教材改编)若⎝ ⎛⎭⎪⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120解析:B [二项式系数之和2n =64,所以n =6,T k +1=C k 6·x 6-k ·⎝ ⎛⎭⎪⎫1x k =C k 6x 6-2k,当6-2k =0,即当k =3时为常数项,T 4=C 36=20.]3.(2018·全国Ⅲ卷)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式中x 4的系数为( )A .10B .20C .40D .80解析:C [T r +1=C r 5(x 2)5-r ⎝ ⎛⎭⎪⎫2x r =C r 52r x 10-3r ,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40.]4.若⎝ ⎛⎭⎪⎫x 2-1x n 展开式的二项式系数之和为128,则展开式中x 2的系数为( )A .-21B .-35C .35D .21解析:C [由已知得2n =128,n =7,所以T r +1=C r 7x 2(7-r )·⎝ ⎛⎭⎪⎫-1x r =C r 7(-1)r x 14-3r,令14-3r =2,得r =4,所以展开式中x 2的系数为C 47(-1)4=35.故选C.]5.⎝ ⎛⎭⎪⎫1x +x n 的展开式中,第3项与第7项的二项式系数相等,则展开式中的第4项为 ________ .解析:由题意得C 2n =C 6n ,所以n =8.所以⎝ ⎛⎭⎪⎫1x +x 8展开式的第4项为T 4=C 38⎝ ⎛⎭⎪⎫1x 3x 5=56x 2. 答案:56x 2【考点探究·突破重点难点】考点一 二项展开式的特定项或系数问题(多维探究)[命题角度1] 求展开式中的某一项1.⎝ ⎛⎭⎪⎫x 3-2x 4+⎝ ⎛⎭⎪⎫x +1x 8的展开式中x 4的常数项为( ) A .32 B .34 C .36D .38解析:D [⎝ ⎛⎭⎪⎫x 3-2x 4的展开式的通项为T k +1=C k 4·(x 3)4-k ·⎝ ⎛⎭⎪⎫-2x k =C k 4(-2)k x 12-4k,令12-4k =0,解得k =3, ⎝ ⎛⎭⎪⎫x +1x 8的展开式的通项为 T r +1=C r 8·x 8-r ·⎝ ⎛⎭⎪⎫1x r =C r 8·x 8-2r , 令8-2r =0,得r =4,所以所求常数项为C 34(-2)3+C 48=38.][命题角度2] 求展开式中的系数或二项式系数2.(1+x )(1-x )5的展开式中x 4的系数是( ) A .-35 B .-5 C .5D .35解析:B [(1-x )5展开式的通项是T r +1=C r 5(-x )r =(-1)r C r 5x r ,所以(1-x )5展开式中x 4的系数是(-1)4C 45=5,x 3项的系数是(-1)3C 35=-10,所以(1+x )(1-x )5的展开式中x 4项的系数是1×5+1×(-10)=-5,故选B.][命题角度3] 由已知条件求n 的值或参数的值3.若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a = ________ .解析:⎝⎛⎭⎪⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ·x -r 2=C r 5a 5-r ·x 10-5r 2,令10-52r =5,得r =2,所以C 25a 3=-80,解得a =-2.答案:-2 【解题规律方法】与二项展开式有关问题的解题策略(1)求展开式中的第n 项,可依据二项式的通项直接求出第n 项.(2)求展开式中的特定项,可依据条件写出第r +1项,再由特定项的特点求出r 值即可.(3)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.[跟踪训练](1)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .80解析:C [因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40,x 3y 3=y ·(x 3y 2),其系数为C 25·23=80.所以x 3y 3的系数为80-40=40.故选C.] (2)若⎝ ⎛⎭⎪⎪⎫x -23x n (n ∈N +)展开式的二项式系数和为32,则其展开式的常数项为( )A .80B .-80C .160D .-160解析:B [根据二项式系数和的性质,可知2n =32,解得n =5,所以⎝⎛⎭⎪⎪⎫x -23x n的展开式的通项为T r +1=C r 5·(x )5-r⎝⎛⎭⎪⎪⎫-23x r =(-2)r C r 5x 5-r 2-r 3,令5-r 2-r 3=0,解得r =3,所以其展开式的常数项为(-2)3C 35=-80,故选B.]考点二 二项式系数的性质或各项系数的和(师生共研)[典例] (1)在二项式⎝ ⎛⎭⎪⎫x 2-1x 11的展开式中,系数最大的项为第 ________项.(2)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为 ________ .[解析] (1)依题意可知T r +1=C r 11(-1)r x 22-3r,0≤r ≤11,r ∈Z ,二项式系数最大的是C 511与C 611.当r =6时,T 7=C 611x 4,故系数最大的项是第七项.(2)令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9,所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.[答案] (1)七 (2)1或-3 [互动探究]本例(2)变为:若(x +2+m )9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为 ________ .解析:令x =2,得到a 0+a 1+a 2+…+a 9=(4+m )9,令x =0,得到a 0-a 1+a 2-a 3+…-a 9=(m +2)9,所以有(4+m )9(m +2)9=39,即m 2+6m +5=0,解得m =-1或-5.答案:-1或-5 【解题方法指导】(1)“赋值法”普遍适用于恒等式,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[跟踪训练](1)已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .1D .20解析:D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又易知a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20.](2)在二项式⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为 ________ .解析:令x =1,得各项系数的和为4n ,而各项的二项式系数的和等于2n ,根据已知,得方程4n +2n =72,解得n =3.所以二项展开式的通项T r +1=C r 3(x )3-r⎝ ⎛⎭⎪⎫3x r =3r C r 3x 32-32r ,显然当r =1时,T r +1是常数项,值为3C 13=9. 答案:92020高中数学复习学案第10章 计数原理、概率、随机变量及其分布3 二项式定理检测一、选择题1.C 1n +2C 2n +4C 3n +…+2n -1C n n 等于( D ) A .3n B .2·3n C.3n2-1D.3n -12解析:因为C 0n +2(C 1n +2C 2n +4C 3n +…+2n -1C n n )=(1+2)n ,所以C 1n +2C 2n +4C 3n +…+2n -1C n n =3n -12.2.在⎝ ⎛⎭⎪⎫x 2+1x 5的展开式中x 的系数为( B )A .5B .10C .20D .40解析:∵T r +1=C r 5(x 2)5-r ⎝ ⎛⎭⎪⎫1x r=C r 5x 10-3r,令10-3r =1,得r =3,∴x 的系数为C 35=10.3.已知⎝ ⎛⎭⎪⎫x 3+2x n的展开式的各项系数和为243,则展开式中x 7的系数为( B )A .5B .40C .20D .10解析:由题意,二项式⎝ ⎛⎭⎪⎫x 3+2x n 的展开式中各项的系数和为243,令x =1,则3n=243,解得n =5,所以二项式⎝ ⎛⎭⎪⎫x 3+2x 5的展开式的通项公式为T r +1=C r 5(x 3)5-r⎝ ⎛⎭⎪⎫2x r =2r C r 5x 15-4r ,令15-4r =7,得r =2,则T 3=22C 25x 15-4×2=40x 7,即x 7的系数为40,故选B.4.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( C )A .2n -1B .2n -1C .2n +1-1D .2n解析:令x =1,得1+2+22+ (2)=1×(2n +1-1)2-1=2n +1-1.5.(3-2x -x 4)(2x -1)6的展开式中,含x 3项的系数为( C )A .600B .360C .-600D .-360解析:由二项展开式的通项公式可知,展开式中含x 3项的系数为3×C 3623(-1)3-2×C 2622(-1)4=-600.6.已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( B )A .1B .243C .121D .122解析:令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.故选B. 7.在⎝ ⎛⎭⎪⎫1+x +1x 2 01510的展开式中,x 2的系数为( C )A .10B .30C .45D .120解析:因为⎝ ⎛⎭⎪⎫1+x +1x 2 01510=⎣⎢⎡⎦⎥⎤(1+x )+1x 2 01510=(1+x )10+C 110(1+x )91x 2 015+…+C 1010⎝ ⎛⎭⎪⎫1x2 01510,所以x 2只出现在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45.故选C. 二、填空题8.(x 2-1x )8的展开式中x 7的系数为-56.(用数字作答)解析:二项展开式的通项T r +1=C r 8(x 2)8-r ·(-1x )r =(-1)r C r 8x 16-3r,令16-3r =7,得r =3,故x 7的系数为-C 38=-56. 9.若二项式(x -23x)n 的展开式中仅有第6项的二项式系数最大,则其常数项是13_440.解析:∵二项式(x -23x)n 的展开式中仅有第6项的二项式系数最大,∴n=10,∴T r +1=C r 10(x )10-r(-23x )r =(-2)r C r 10·x 30-5r6 ,令30-5r 6=0,解得r =6,∴常数项是(-2)6C 610=13 440.10.若(x +a )(1+2x )5的展开式中x 3的系数为20,则a =-14.解析:(x +a )(1+2x )5的展开式中x 3的系数为C 25·22+a ·C 35·23=20,∴40+80a =20,解得a =-14.11.在(x +4x -4)5的展开式中,x 3的系数是180.解析:(x +4x -4)5=(-4+x +4x )5的展开式的通项T r +1=C r 5(-4)5-r·(x +4x )r ,r =0,1,2,3,4,5,(x +4x )r 的展开式的通项T k +1=C k r x r -k (4x )k =4k C k r xr -2k ,k =0,1,…,r .令r -2k =3,当k =0时,r =3;当k =1时,r =5.∴x 3的系数为40×C 03×(-4)5-3×C 35+4×C 15×(-4)0×C 55=180.12.在(x +x )6⎝ ⎛⎭⎪⎫1+1y 5的展开式中,x 4y 2项的系数为( C )A .200B .180C .150D .120解析:(x +x )6展开式的通项公式为T r +1=C r 6(x )6-r x r=C r 6,令6+r2=4,得r =2,则T 3=C 26=15x 4.⎝ ⎛⎭⎪⎫1+1y 5展开式的通项公式为T r +1=C r 5⎝ ⎛⎭⎪⎫1y r =C r 5y -r ,令r =2可得T 3=C 25y -2=10y -2.故x 4y 2项的系数为15×10=150.13.已知(2x -1)4=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4,则a 2=( B )A .18B .24C .36D .56解析:∵(2x -1)4=[(2x -2)+1]4=[1+(2x -2)]4=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4,∴a 2=C 24·22=24,故选B.14.⎝ ⎛⎭⎪⎫x -a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为-48.解析:令x =1,可得⎝ ⎛⎭⎪⎫x -a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5展开式中x 4项的系数即是⎝ ⎛⎭⎪⎫2x -1x 5展开式中的x 3项与x 5项系数的和.又⎝ ⎛⎭⎪⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得x 3项与x 5项的系数分别为-80与32,故原展开式中x 4项的系数为-80+32=-48.尖子生小题库——供重点班学生使用,普通班学生慎用15.已知(1+ax +by )5(a ,b 为常数,a ∈N *,b ∈N *)的展开式中不含字母x 的项的系数和为243,则函数f (x )=sin2x +b 2sin (x +π4),x ∈[0,π2]的最小值为2.解析:令x =0,y =1,得(1+b )5=243,解得b =2.因为x ∈[0,π2],所以x+π4∈[π4,3π4],则sin x +cos x =2sin(x +π4)∈[1,2],所以f (x )=sin2x +b 2sin (x +π4)=sin2x +2sin x +cos x =2sin x ·cos x +2sin x +cos x=sin x+cos x+1sin x +cos x≥2(sin x +cos x )·1sin x +cos x=2,当且仅当sin x +cos x =1时取“=”,所以f (x )的最小值为2.。
二项式定理进门测判断下列结论是否正确(请在括号中打“√”或“×”)(1)C k n a n-k b k是二项展开式的第k项.()(2)二项展开式中,系数最大的项为中间一项或中间两项.()(3)(a+b)n的展开式中某一项的二项式系数与a,b无关.()(4)在(1-x)9的展开式中系数最大的项是第五、第六两项.()(5)若(3x-1)7=a7x7+a6x6+…+a1x+a0,则a7+a6+…+a1的值为128.()作业检查无第2课时阶段训练题型一二项展开式命题点1求二项展开式中的特定项或指定项的系数例1(1)(2x+x)5的展开式中,x3的系数是______________.(用数字填写答案)(2)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60命题点2 已知二项展开式某项的系数求参数例2 (1)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =____________. (2)若⎝⎛⎭⎫ax 2+1x 5的展开式中x 5的系数为-80,则实数a =________. (1)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)(2)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案) 题型二 二项式系数的和或各项系数的和的问题 例3 在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.(1)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( ) A .5 B .6 C .7 D .8(2)若(1-2x )2 016=a 0+a 1x +a 2x 2+…+a 2 016x 2 016,则a 12+a 222+…+a 2 01622 016的结果是多少?题型三 二项式定理的应用例4 (1)设a ∈Z 且0≤a <13,若512 012+a 能被13整除,则a 等于( ) A .0 B .1 C .11 D .12(2)1.028的近似值是________.(精确到小数点后三位)(1)1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是( )A .-1B .1C .-87D .871.二项式定理二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k na n -k b k +…+C n n b n (n ∈N *)二项展开式的通项公式T k +1=C k n an -k b k,它表示第k +1项 二项式系数二项展开式中各项的系数C k n(k ∈{0,1,2,…,n })2.二项式系数的性质(1)C 0n =1,C n n=1. C m n +1=C m -1n+C mn . (2)C m n =C n -mn.(3)n 是偶数时,12n T+项的二项式系数最大;n 是奇数时,12n T+与112n T++T 项的二项式系数相等且最大.(4)C 0n +C 1n +C 2n +…+C n n=2n . 阶段重难点梳理【知识拓展】二项展开式形式上的特点(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.(4)二项式的系数从C0n,C1n,一直到C n-1n,C n n.典例(1)若(x-3x)n展开式的各项系数绝对值之和为1 024,则展开式中含x项的系数为________.(2)已知(x-m)7=a0+a1x+a2x2+…+a7x7的展开式中x4的系数是-35,则a1+a2+…+a7=________. 1.(x-y)n的二项展开式中,第m项的系数是()A.C m n B.C m+1nC.C m-1n D.(-1)m-1C m-1n2.设i为虚数单位,则(x+i)6的展开式中含x4的项为() A.-15x4B.15x4C.-20i x4D.20i x43.使(3x+1x x)n(n∈N*)的展开式中含有常数项的最小的n值为() A.4 B.5 C.6 D.7重点题型训练4.在(x 2-3x )n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是________.1.在x 2(1+x )6的展开式中,含x 4项的系数为( ) A .30 B .20 C .15 D .102.已知⎝⎛⎭⎫x -ax 5的展开式中含32x 的项的系数为30,则a 等于( )A. 3 B .- 3 C .6 D .-63.(4x -2-x )6(x ∈R )展开式中的常数项是( ) A .-20 B .-15 C .15D .204.已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A .29 B .210 C .211 D .2125.若在(x +1)4(ax -1)的展开式中,x 4的系数为15,则a 的值为( ) A .-4 B.52 C .4 D.726.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-a 3+…+(-1)n a n 等于( ) A.34(3n -1) B.34(3n -2) 作业布置C.32(3n -2) D.32(3n -1) 7.若(x +a )2(1x -1)5的展开式中常数项为-1,则a 的值为( )A .1B .9C .-1或-9D .1或98.在(1-2x )6的展开式中,x 2的系数为________.(用数字作答) 9.⎝⎛⎭⎫x 2-1x 8的展开式中x 7的系数为________.(用数字作答) 10.在(2-x )6的展开式中,含x 3的二项式系数为________,系数为________.(均用数字作答) 11.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.12.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6; (4)|a 0|+|a 1|+|a 2|+…+|a 7|.13.求证:1+2+22+…+25n -1(n ∈N *)能被31整除.*14.若(x +412x)n 展开式中前三项的系数成等差数列,求:(1)展开式中所有x 的有理项; (2)展开式中系数最大的项.二项式定理判断下列结论是否正确(请在括号中打“√”或“×”)(1)C k n an -k b k是二项展开式的第k 项.( × ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( × ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( √ ) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项.( × )(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( × )题型一 二项展开式命题点1 求二项展开式中的特定项或指定项的系数阶段训练进门测例1 (1)(2x +x )5的展开式中,x 3的系数是______________.(用数字填写答案) (2)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60答案 (1)10 (2)C解析 (1)(2x +x )5展开式的通项公式T k +1=C k 5(2x )5-k ·(x )k =C k 525-k52kx-,k ∈{0,1,2,3,4,5},令5-k 2=3,解得k =4,得T 5=C 4525-445-2x=10x 3,∴x 3的系数是10.(2)方法一 利用二项展开式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.方法二 利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23=30.故选C. 命题点2 已知二项展开式某项的系数求参数例2 (1)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =____________. (2)若⎝⎛⎭⎫ax 2+1x 5的展开式中x 5的系数为-80,则实数a =________. 答案 (1)3 (2)-2解析 (1)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.(2)∵T k +1=C k 5(ax 2)5-k⎝⎛⎭⎫1x k =a 5-k C k 55102k x -,∴10-52k =5,解得k =2,∴a 3C 25=-80,解得a =-2. 思维升华 求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.(1)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)(2)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案) 答案 (1)-20 (2)12解析 (1)x 2y 7=x ·(xy 7),其系数为C 78, x 2y 7=y ·(x 2y 6),其系数为-C 68,∴x 2y 7的系数为C 78-C 68=8-28=-20.(2)设通项为T k +1=C k 10x10-k a k ,令10-k =7, ∴k =3,∴x 7的系数为C 310a 3=15, ∴a 3=18,∴a =12.题型二 二项式系数的和或各项系数的和的问题例3 在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.解 设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数的和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10. 由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29,偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1,① 令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,② ①+②得2(a 0+a 2+…+a 10)=1+510, ∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510,∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102;x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.思维升华 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.(1)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( ) A .5 B .6 C .7 D .8 答案 B解析 由题意得a =C m 2m ,b =C m +12m +1,∴13C m 2m =7C m +12m +1,∴13·(2m )!m !·m !=7·(2m +1)!m !·(m +1)!, ∴7(2m +1)m +1=13,解得m =6,经检验符合题意,故选B.(2)若(1-2x )2 016=a 0+a 1x +a 2x 2+…+a 2 016x 2 016,则a 12+a 222+…+a 2 01622 016的结果是多少?解 当x =0时,左边=1,右边=a 0,∴a 0=1.当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 2 01622 016,∴0=1+a 12+a 222+…+a 2 01622 016.即a 12+a 222+…+a 2 01622 016=-1.题型三 二项式定理的应用例4 (1)设a ∈Z 且0≤a <13,若512 012+a 能被13整除,则a 等于( ) A .0 B .1 C .11 D .12(2)1.028的近似值是________.(精确到小数点后三位) 答案 (1)D (2)1.172解析 (1)512 012+a =(52-1)2 012+a =C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012×52·(-1)2 011+C 2 0122 012·(-1)2 012+a ,∵C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012×52·(-1)2 011能被13整除且512 012+a 能被13整除, ∴C 2 0122 012·(-1)2 012+a =1+a 也能被13整除,因此a 的值为12. (2)1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172.思维升华 (1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项,而求近似值则应关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.(1)1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是( )A .-1B .1C .-87D .87 答案 B解析 1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数是1.(2)已知2n +2·3n +5n -a 能被25整除,求正整数a 的最小值. 解 原式=4·6n +5n -a =4(5+1)n +5n -a=4(C 0n 5n +C 1n 5n -1+…+C n -2n 52+C n -1n 5+C n n)+5n -a =4(C 0n 5n +C 1n 5n -1+…+C n -2n52)+25n +4-a , 显然正整数a 的最小值为4.1.二项式定理二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C kna n -k b k +…+C n n b n (n ∈N *)二项展开式的通项公式T k +1=C k n an -k b k ,它表示第k +1项 二项式系数二项展开式中各项的系数C k n (k ∈{0,1,2,…,n })第3课时阶段重难点梳理2.二项式系数的性质(1)C 0n =1,C n n=1. C m n +1=C m -1n+C m n . (2)C m n =C n -mn.(3)n 是偶数时,12n T+项的二项式系数最大;n 是奇数时,12n T+与112n T++T 项的二项式系数相等且最大.(4)C 0n +C 1n +C 2n +…+C n n=2n . 【知识拓展】二项展开式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .典例 (1)若(x -3x )n 展开式的各项系数绝对值之和为1 024,则展开式中含x 项的系数为________.(2)已知(x -m )7=a 0+a 1x +a 2x 2+…+a 7x 7的展开式中x 4的系数是-35,则a 1+a 2+…+a 7=________. 错解展示解析 (1)(x +3x)n 展开式中,令x =1可得4n =1 024,∴n =5,重点题型训练∴(x -3x )n 展开式的通项T k +1=(-3)k ·C k 5·532kx -,令5-3k2=1,得k =1.故展开式中含x 项的系数为C 15=5.(2)a 1+a 2+…+a 7=C 17+C 27+…+C 77=27-1.答案 (1)5 (2)27-1 现场纠错解析 (1)在(x +3x)n 的展开式中,令x =1,可得(x -3x )n 展开式的各项系数绝对值之和为4n =22n =1 024=210,∴n =5.故(x -3x )5展开式的通项为T k +1=(-3)k ·C k 5·532kx -,令5-3k2=1,得k =1,故展开式中含x 项的系数为-15. (2)∵(x -m )7=a 0+a 1x +a 2x 2+…+a 7x 7, 令x =0,∴a 0=(-m )7.又∵展开式中x 4的系数是-35,∴C 37·(-m )3=-35, ∴m =1.∴a 0=(-m )7=-1.在(x -m )7=a 0+a 1x +a 2x 2+…+a 7x 7中, 令x =1,得0=-1+a 1+a 2+…+a 7, 即a 1+a 2+a 3+…+a 7=1. 答案 (1)-15 (2)1纠错心得 和二项展开式有关的问题,要分清所求的是展开式中项的系数还是二项式系数,是系数和还是二项式系数的和.1.(x -y )n 的二项展开式中,第m 项的系数是( ) A .C m nB .C m +1nC .C m -1nD .(-1)m -1C m -1n答案 D解析 (x -y )n 展开式中第m 项的系数为C m -1n(-1)m -1. 2.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 4答案 A解析 由题可知,含x 4的项为C 26x 4i 2=-15x 4.故选A.3.使(3x +1x x )n (n ∈N *)的展开式中含有常数项的最小的n 值为( )A .4B .5C .6D .7 答案 B解析 (3x +1x x)n的展开式中的第k +1项为C k n()323k n kx x--=C k n 3n -k·52k xn-.若展开式中含常数项,则存在n ∈N *,k ∈N ,使n -52k =0.故最小的n 值为5.4.在(x 2-3x )n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是________.答案 7解析 由题意知n2+1=5,解得n =8,(x 2-3x )8的展开式的通项T k +1=C k 8(x 2)8-k (-3x)k =(-1)k 2k -8C k 848-3k x,令8-4k3=0,得k =6,则展开式中的常数项为(-1)626-8C 68=7.1.在x 2(1+x )6的展开式中,含x 4项的系数为( ) A .30 B .20 C .15 D .10 答案 C解析 因为(1+x )6的展开式的第k +1项为T k +1=C k 6x k ,x 2(1+x )6的展开式中含x 4的项为C 26x 4=15x 4,所以系数为15.2.已知⎝⎛⎭⎫x -ax 5的展开式中含32x 的项的系数为30,则a 等于( )A. 3 B .- 3 C .6 D .-6 答案 D作业布置解析 ⎝⎛⎭⎫x -a x 5的展开式通项T k +1=C k 552k x -(-1)k a k ·2k x -=(-1)k a k C k 552k x-,令52-k =32,则k =1,∴T 2=-a C 1532x ,∴-a C 15=30,∴a =-6,故选D. 3.(4x -2-x )6(x ∈R )展开式中的常数项是( ) A .-20 B .-15 C .15 D .20答案 C解析 设展开式中的常数项是第k +1项,则T k +1=C k 6·(4x )6-k ·(-2-x )k =C k 6·(-1)k ·212x -2kx·2-kx=C k 6·(-1)k ·212x-3kx,∵12x -3kx =0恒成立,∴k =4, ∴T 5=C 46·(-1)4=15. 4.已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A .29 B .210 C .211 D .212 答案 A解析 由题意,C 3n =C 7n ,解得n =10,则奇数项的二项式系数和为2n -1=29.故选A. 5.若在(x +1)4(ax -1)的展开式中,x 4的系数为15,则a 的值为( ) A .-4 B.52 C .4 D.72答案 C解析 ∵(x +1)4(ax -1)=(x 4+4x 3+6x 2+4x +1)(ax -1),∴x 4的系数为4a -1=15,∴a =4. 6.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-a 3+…+(-1)n a n 等于( )A.34(3n -1) B.34(3n -2) C.32(3n -2) D.32(3n -1) 答案 D解析 在展开式中,令x =2,得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)na n =3(1-3n )1-3=32(3n -1). 7.若(x +a )2(1x -1)5的展开式中常数项为-1,则a 的值为( )A .1B .9C .-1或-9D .1或9答案 D解析 由于(x +a )2=x 2+2ax +a 2,而(1x -1)5的展开式通项为T k +1=(-1)k C k 5·x k -5,其中k =0,1,2,…,5.于是(1x -1)5的展开式中x -2的系数为(-1)3C 35=-10,x -1项的系数为(-1)4C 45=5,常数项为-1,因此(x +a )2(1x -1)5的展开式中常数项为1×(-10)+2a ×5+a 2×(-1)=-a 2+10a -10,依题意-a 2+10a -10=-1,解得a 2-10a +9=0,即a =1或a =9. 8.在(1-2x )6的展开式中,x 2的系数为________.(用数字作答) 答案 60解析 展开式的通项T k +1=C k 6·16-k ·(-2x )k =C k 6(-2)k ·x k .令k =2,得T 3=C 26·4x 2=60x 2,即x 2的系数为60.9.⎝⎛⎭⎫x 2-1x 8的展开式中x 7的系数为________.(用数字作答)答案 -56解析 ⎝⎛⎭⎫x 2-1x 8的通项T k +1=C k 8(x 2)8-k ⎝⎛⎭⎫-1x k =(-1)k C k 8x 16-3k ,当16-3k =7时,k =3,则x 7的系数为(-1)3C 38=-56.10.在(2-x )6的展开式中,含x 3的二项式系数为________,系数为________.(均用数字作答) 答案 20 -160解析 (2-x )6展开式的通项T k +1=C k 626-k (-x )k , 令k =3,∴含x 3的二项式系数为C 36=20,系数为C 36×23×(-1)3=-160.11.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.答案 10解析 f (x )=x 5=(1+x -1)5,它的通项为T k +1=C k 5(1+x )5-k ·(-1)k , T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10.12.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.①令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094.(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093.(4)方法一 ∵(1-2x )7展开式中,a 0、a 2、a 4、a 6大于零,而a 1、a 3、a 5、a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187. 方法二 |a 0|+|a 1|+|a 2|+…+|a 7|,即(1+2x )7展开式中各项的系数和,令x =1, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=37=2 187.13.求证:1+2+22+…+25n -1(n ∈N *)能被31整除. 证明 ∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1=(31+1)n -1=C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C n n -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ),显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数, ∴原式能被31整除.*14.若(x)n 展开式中前三项的系数成等差数列,求:(1)展开式中所有x 的有理项;(2)展开式中系数最大的项.解 易求得展开式前三项的系数为1,12C 1n ,14C 2n .据题意得2×12C 1n =1+14C 2n ⇒n =8.(1)设展开式中的有理项为T k +1, 由T k +1=C k 8(x )8-k)k =(12)k C k 81634kx -,∴k 为4的倍数,又0≤k ≤8,∴k =0,4,8.故有理项为T 1=(12)0C 0816304x -⨯=x 4,T 5=(12)4C 4816344x -⨯=358x ,T 9=(12)8C 8816384x -⨯=1256x 2.(2)设展开式中T k +1项的系数最大,则⎩⎨⎧ (12)k C k 8≥(12)k +1C k +18,(12)k C k 8≥(12)k -1C k -18⇒k=2或k =3. 故展开式中系数最大的项为T 3=(12)2C 2816324x -⨯=752x ,T 4=(12)3C 3816334x -⨯=774x .。
高中数学知识点总结第十章排列组合和二项式定理高中数学知识点总结:第十章——排列组合和二项式定理排列组合和二项式定理是高中数学中重要的概念和工具,它们在各个领域都有广泛的应用。
本文将对这两个知识点进行总结和说明。
1. 排列与组合排列是指从一组元素中按照一定顺序取出一部分元素的方式。
组合是指从一组元素中不考虑顺序地取出一部分元素的方式。
排列和组合都涉及到元素的选择和顺序,但它们在选择的要求上有所不同。
1.1 排列排列的计算公式为:P(n, m) = n! / (n-m)!,其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
1.2 组合组合的计算公式为:C(n, m) = n! / (m!(n-m)!),其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
2. 二项式定理二项式定理是数学中一个非常重要的定理,它描述了一个二项式的幂展开式。
二项式是一个形如(a+b)^n的表达式,而二项式定理则给出了(a+b)^n的展开形式。
二项式定理的表达式为:(a+b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。
其中C(n, k)表示从n个元素中选择k个元素的组合数。
二项式定理的展开形式中包含了n+1个项,每一项的系数是组合数C(n, k),指数是a和b的幂。
二项式定理的应用非常广泛,在数值计算、概率统计、组合数学等领域中都得到了广泛的运用。
它可以用来快速计算幂次方的结果,也可以用来求解概率问题或者排列组合问题。
3. 相关例题在学习排列组合和二项式定理的过程中,我们可以通过解决一些典型的例题来加深对这两个知识点的理解。
例题1:某班有10名学生,要从中选择3名学生组成一个小组,问有多少种不同的选择方式?解析:根据排列的计算公式,可以得到答案:P(10, 3) = 10! / 7! = 720。
第3讲 二项式定理1.二项式定理 (1)定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n nb n (n ∈N *). (2)通项:第k +1项为T k +1=C k n an -k b k. (3)二项式系数:二项展开式中各项的二项式系数为:C k n (k =0,1,2,…,n ). 2.二项式系数的性质[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)(a +b )n 的展开式中的第r 项是C r n an -r b r .( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)在(a +b )n 的展开式中,每一项的二项式系数与a ,b 无关.( )(4)通项T r +1=C r n an -r b r 中的a 和b 不能互换.( ) (5)(a +b )n 展开式中某项的系数与该项的二项式系数相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)× [教材衍化]1.(选修2-3P31例2(1)改编)(1+2x )5的展开式中,x 2的系数为________.解析:T k +1=C k 5(2x )k =C k 52k x k ,当k =2时,x 2的系数为C 25·22=40.答案:402.(选修2-3P31例2(2)改编)若⎝⎛⎭⎫x +1x n展开式的二项式系数之和为64,则展开式的常数项为________.解析:二项式系数之和2n=64,所以n =6,T k +1=C k 6·x6-k·⎝⎛⎭⎫1x k=C k 6x 6-2k,当6-2k =0,即当k =3时为常数项,T 4=C 36=20.答案:203.(选修2-3P41B 组T5改编)若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________.解析:令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.答案:8 [易错纠偏](1)混淆“二项式系数”与“系数”致误; (2)配凑不当致误.1.在二项式⎝⎛⎭⎫x 2-2x n的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为________.解析:由题意得2n =32,所以n =5.令x =1,得各项系数的和为(1-2)5=-1. 答案:-12.已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=________. 解析:因为(1+x )10=[2-(1-x )]10,所以其展开式的通项公式为T r +1=(-1)r 210-r ·C r 10(1-x )r ,令r =8,得a 8=4C 810=180.答案:180二项展开式中的特定项或特定项的系数(高频考点)二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择题、填空题的形式呈现,试题多为容易题或中档题.主要命题角度有:(1)求展开式中的某一项;(2)求展开式中的项的系数或二项式系数; (3)由已知条件求n 的值或参数的值. 角度一 求展开式中的某一项(2019·高考浙江卷)在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.【解析】 该二项展开式的第k +1项为T k +1=C k 9(2)9-k x k,当k =0时,第1项为常数项,所以常数项为()29=162;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.【答案】 162 5角度二 求展开式中的项的系数或二项式系数⎝⎛⎭⎫1+1x 2(1+x )6展开式中x 2的系数为( ) A .15 B .20 C .30D .35【解析】 (1+x )6展开式的通项T r +1=C r 6x r ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C.【答案】 C角度三 由已知条件求n 的值或参数的值(2020·浙江新高考联盟联考)若二项式(ax -1x)6(a >0)的展开式中x 3的系数为A ,常数项为B ,若A =4B ,则a =________.【解析】 T r +1=(-1)r C r 6(ax )6-r (1x)r =(-1)r a 6-r C r 6x 6-32r . 令6-32r =3得r =2,则 A =a 4C 26=15a 4; 令6-32r =0得r =4,则B =(-1)4a 2C 46=15a 2, 又由A =4B 得15a 4=4×15a 2,则a =2. 【答案】 2与二项展开式有关问题的解题策略(1)求展开式中的第n 项,可依据二项式的通项直接求出第n 项.(2)求展开式中的特定项,可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (3)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.1.若⎝⎛⎭⎫x 6+1x x n的展开式中含有常数项,则正整数n 的最小值等于( )A .3B .4C .5D .6解析:选C.T r +1=C r n (x 6)n -r ⎝⎛⎭⎫1x x r=C r n x 6n -152r ,当T r +1是常数项时,6n -152r =0,即n=54r ,又n ∈N *,故n 的最小值为5,故选C. 2.(2020·金华十校期末调研)在(x 2-1x )n 的展开式中,只有第5项的二项式系数最大,则n =________;展开式中常数项是________.解析:在⎝⎛⎭⎫x 2-1x n的展开式中,只有第5项的二项式系数最大,所以n =8. 所以T r +1=C r 8⎝⎛⎭⎫x 28-r⎝⎛⎭⎫-1x r =⎝⎛⎭⎫128-r(-1)r C r 8x8-2r.由8-2r =0,得r =4.所以展开式中常数项是⎝⎛⎭⎫124(-1)4C 48=358. 答案:8358二项式系数的性质或各项系数和(1)在二项式⎝⎛⎭⎫x 2-1x 11的展开式中,系数最大的项为第________项. (2)(2020·宁波十校联考)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.【解析】 (1)依题意可知T r +1=C r 11(-1)r x22-3r,0≤r ≤11,r ∈Z ,二项式系数最大的是C 511与C 611.当r =6时,T 7=C 611x 4,故系数最大的项是第七项. (2)令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9,所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.【答案】 (1)七 (2)1或-3(变条件)本例(2)变为:若(x +2+m )9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =2,得到a 0+a 1+a 2+…+a 9=(4+m )9,令x =0,得到a 0-a 1+a 2-a 3+…-a 9=(m +2)9,所以有(4+m )9(m +2)9=39,即m 2+6m +5=0,解得m =-1或-5.答案:-1或-5赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.1.在⎝⎛⎭⎫x 2+1x n的展开式中,只有第4项的二项式系数最大,则展开式中常数项是( ) A .15 B .20 C .30D .120解析:选A.因为二项展开式中中间项的二项式系数最大,又二项式系数最大的项只有第4项,所以展开式中共有7项, 所以n =6, 展开式的通项为T r +1=C r 6(x 2)6-r⎝⎛⎭⎫1x r=C r 6x 12-3r , 令12-3r =0,则r =4,故展开式中的常数项为T 5=C 46=15.2.已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________.解析:由题意知a 4为含x 的项的系数,根据二项式定理得a 4=C 23×12×C 22×22+C 33×13×C 12×2=16,a 5是常数项,所以a 5=C 33×13×C 22×22=4.答案:16 4二项式定理的应用设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A .0 B .1 C .11D .12【解析】 512 018+a =(52-1)2 018+a =C 02 018522 018-C 12 018522 017+…+C 2 0172 018×52×(-1)2 017+C 2 0182 018×(-1)2 018+a .因为52能被13整除,所以只需C 2 0182 018×(-1)2 018+a 能被13整除,即a +1能被13整除,所以a =12.【答案】 D(1)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式,应注意:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.(2)求余数问题时,应明确被除式f (x )与除式g (x )(g (x )≠0),商式q (x )与余式的关系及余式的范围.1.(2020·金华十校联考)设二项式⎝⎛⎭⎫x -12n(n ∈N *)展开式的二项式系数和与各项系数和分别为a n ,b n ,则a 1+a 2+…+a nb 1+b 2+…+b n=( )A .2n -1+3 B .2(2n -1+1) C .2n +1D .1解析:选C.二项式⎝⎛⎭⎫x -12n(n ∈N *)展开式的二项式系数和为2n ,各项系数和为⎝⎛⎭⎫1-12n=⎝⎛⎭⎫12n ,所以a n =2n ,b n =⎝⎛⎭⎫12n,所以a 1+a 2+…+a n b 1+b 2+…+b n =2×(1-2n )1-212×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=2n +1-21-12n =2n +1,故选C. 2.求证:3n >(n +2)·2n -1(n ∈N *,n >2). 证明:因为n ∈N *,且n >2, 所以3n =(2+1)n 展开后至少有4项.(2+1)n =2n +C 1n ·2n -1+…+C n -1n ·2+1≥2n +n ·2n -1+2n +1>2n +n ·2n -1=(n +2)·2n -1, 故3n >(n +2)·2n -1(n ∈N *,n >2).[基础题组练]1.(2020·金华十校期末调研)在(x 2-4)5的展开式中,含x 6的项的系数为( ) A .20 B .40 C .80D .160解析:选D.T r +1=C r 5(x 2)5-r (-4)r =(-4)r C r 5x 10-2r,令10-2r =6,解得r =2,所以含x 6的项的系数为(-4)2C 25=160.2.(2020·台州高三期末考试)已知在(x 2-15x )n 的展开式中,第6项为常数项,则n =( )A .9B .8C .7D .6解析:选D.因为第6项为常数项,由C 5n (x 2)n -5(-15x )5=-(12)n -5C 5n ·x n -6,可得n -6=0,解得n =6.故选D.3.(2020·温州市普通高中模考)在⎝⎛⎭⎫x +3x n的展开式中,各项系数和与二项式系数和之比为64,则x 3的系数为( )A .15B .45C .135D .405解析:选C.由题意4n 2n =64,n =6,T r +1=C r 6x 6-r ⎝⎛⎭⎫3x r =3r C r 6x 6-3r 2,令6-3r 2=3,r =2,32C 26=135.4.(2020·湖州市高三期末考试)若(x +a x )(2x -1x )5的展开式中各项系数的和为2,则该展开式中常数项是( )A .-40B .-20C .40D .20解析:选C.令x =1,(1+a )×(2-1)5=2,解得a =1. 所以(2x -1x)5的通项公式T r +1=C r 5(2x )5-r (-1x )r =(-1)r 25-r C r 5x 5-2r , 令5-2r =-1,5-2r =1. 解得r =3或2.所以该展开式中常数项=(-1)322C 35+(-1)2×23C 25=40. 5.(x 2-x +1)10的展开式中x 3项的系数为( ) A .-210 B .210 C .30D .-30解析:选A.(x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10, 所以含x 3项的系数为:-C 910C 89+C 1010(-C 710)=-210.6.(x 2+x +y )5的展开式中x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:选C.(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为C k 3(x 2)3-k ·x k =C k 3x 6-k ,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30,故选C. 7.已知(ax +b )6的展开式中x 4项的系数与x 5项的系数分别为135与-18,则(ax +b )6的展开式中所有项系数之和为( )A .-1B .1C .32D .64解析:选D.由二项展开式的通项公式可知x 4项的系数为C 26a 4b 2,x 5项的系数为C 16a 5b ,则由题意可得⎩⎪⎨⎪⎧C 26a 4b 2=135C 16a 5b =-18,解得a +b =±2,故(ax +b )6的展开式中所有项的系数之和为(a+b )6=64,选D.8.在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .210解析:选C.因为f (m ,n )=C m 6C n 4,所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120.9.(2020·义乌调研测试)若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C .1D .2解析:选D.因为⎝⎛⎭⎫x +1x 10展开式的通项公式为T r +1=C r 10x 10-r ·⎝⎛⎭⎫1x r=C r 10x 10-2r ,所以(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中含x 6的项为x 2·C 310x 4-a C 210x 6=(C 310-a C 210)x 6,则C 310-a C 210=30,解得a =2,故选D.10.(2020·台州模拟)(x +2y )7的展开式中,系数最大的项是( ) A .68y 7 B .112x 3y 4 C .672x 2y 5D .1 344x 2y 5解析:选C.设第r +1项系数最大,则有⎩⎪⎨⎪⎧C r 7·2r ≥C r -17·2r -1,C r 7·2r ≥C r +17·2r +1, 即⎩⎪⎨⎪⎧7!r !(7-r )!·2r ≥7!(r -1)!(7-r +1)!·2r -1,7!r !(7-r )!·2r≥7!(r +1)!(7-r -1)!·2r +1,即⎩⎨⎧2r ≥18-r,17-r ≥2r +1解得⎩⎨⎧r ≤163,r ≥133.又因为r ∈Z ,所以r =5.所以系数最大的项为T 6=C 57x 2·25y 5=672x 2y 5.故选C.11.(2020·金华市东阳二中高三调研)在二项式⎝⎛⎭⎫x -1x n的展开式中恰好第5项的二项式系数最大,则展开式中含x 2项的系数是________.解析:因为在二项式⎝⎛⎭⎫x -1x n的展开式中恰好第5项的二项式系数最大,所以n =8, 展开式的通项公式为T r +1=C r 8·(-1)r ·x8-2r,令8-2r =2,则r =3,所以展开式中含x 2项的系数是-C 38=-56. 答案:-5612.(2020·温州中学高三模考)已知(1+x +x 2)⎝⎛⎭⎫x +1x 3n(n ∈N *)的展开式中没有常数项,且2≤n ≤8,则n =________.解析:因为⎝⎛⎭⎫x +1x 3n的通项公式为T r +1=C r n x n -r ·x -3r =C r n x n -4r,故当n -4r =0,-1,-2时存在常数项,即n =4r ,4r -1,4r -2,故n =2,3,4,6,7,8时为常数项,所以当n =5时没有常数项符合题设.答案:513.若直线x +ay -1=0与2x -y +5=0垂直,则二项式⎝⎛⎭⎫ax 2-1x 5的展开式中x 4的系数为________.解析:由两条直线垂直,得1×2+a ×(-1)=0,得a =2,所以二项式为⎝⎛⎭⎫2x 2-1x 5,其通项公式T r +1=C r 5(2x 2)5-r ·⎝⎛⎭⎫-1x r=(-1)r 25-r C r 5x 10-3r ,令10-3r =4,解得r =2,所以二项式的展开式中x 4的系数为23C 25=80.答案:8014.已知⎝⎛⎭⎫1-1x (1+x )5的展开式中x r (r ∈Z 且-1≤r ≤5)的系数为0,则r =________. 解析:依题意,(1+x )5的展开式的通项公式为T r +1=C r 5x r ,故展开式为⎝⎛⎭⎫1-1x (x 5+5x 4+10x 3+10x 2+5x +1),故可知展开式中x 2的系数为0,故r =2.答案:215.(2020·杭州市高考模拟)若(2x -1x 2)n 的展开式中所有二项式系数和为64,则n =________;展开式中的常数项是________.解析:因为(2x -1x 2)n 的展开式中所有二项式系数和为2n =64,则n =6;根据(2x -1x 2)n=(2x -1x2)6的展开式的通项公式为T r +1=C r 6·(-1)r ·(2x )6-r ·x -2r =C r 6·(-1)r ·26-r ·x 6-3r , 令6-3r =0,求得r =2,可得展开式中的常数项是C 26·24=240.答案:6 24016.(2020·浙江东阳中学高三检测)已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 0=________;(a 0+a 2+a 4+a 6)2-(a 1+a 3+a 5+a 7)2=________.解析:由(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,观察:可令x =0得:(1-2×0)7=a 0+a 1×0+…+a 7×0=1,a 0=1.(a 0+a 2+a 4+a 6)2-(a 1+a 3+a 5+a 7)2=(a 0+a 1+…+a 7)[a 0+a 2+a 4+a 6-(a 1+a 3+a 5+a 7)],则可令x =1得:(1-2×1)7=a 0+a 1+a 2+…+a 7=-1, 再可令x =-1得:(1+2×1)7=a 0-a 1+a 2-a 3+…-a 7=37=2 187, 可得:(a 0+a 2+a 4+a 6)2-(a 1+a 3+a 5+a 7)2 =-1×2 187=-2 187. 答案:1 -2 18717.设f (x )是(x 2+12x )6展开式中的中间项,若f (x )≤mx 在区间[22,2]上恒成立,则实数m 的取值范围是________.解析:(x 2+12x )6的展开式中的中间项为第四项,即f (x )=C 36(x 2)3(12x )3=52x 3,因为f (x )≤mx 在区间[22,2]上恒成立,所以m ≥52x 2在[22,2]上恒成立,所以m ≥(52x 2)max =5,所以实数m 的取值范围是[5,+∞). 答案:[5,+∞)[综合题组练]1.C 22n +C 42n +…+C 2k 2n +…+C 2n 2n (n ∈N *)的值为( )A .2nB .22n -1 C .2n -1D .22n -1-1解析:选D.(1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n 2n x 2n . 令x =1,得C 02n +C 12n +C 22n +…+C 2n -12n +C 2n 2n =22n ;再令x =-1,得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n 2n =0.两式相加,可得C 22n +C 42n +…+C 2n2n =22n2-1=22n -1-1.2.(2020·杭州七校联考)若(x +y )9按x 的降幂排列的展开式中,第二项不大于第三项,且x +y =1,xy <0,则x 的取值范围是( )A.⎝⎛⎭⎫-∞,15 B.⎣⎡⎭⎫45,+∞C.⎝⎛⎦⎤-∞,-45 D .(1,+∞)解析:选D.二项式(x +y )9的展开式的通项是T r +1=C r 9·x9-r ·y r . 依题意,有⎩⎪⎨⎪⎧C 19·x 9-1·y ≤C 29·x 9-2·y 2,x +y =1,xy <0,由此得⎩⎪⎨⎪⎧x 8·(1-x )-4x 7·(1-x )2≤0,x (1-x )<0, 解得x >1,即x 的取值范围为(1,+∞).3.若⎝⎛⎭⎫x +13x n 的展开式中前三项的系数分别为A ,B ,C ,且满足4A =9(C -B ),则展开式为x 2的系数为________.解析:易得A =1,B =n 3,C =C 2n 9=n (n -1)18,所以有4=9⎝⎛⎭⎫n 2-n 18-n 3,即n 2-7n -8=0,解得n =8或n =-1(舍).在⎝⎛⎭⎫x +13x 8中,因为通项T r +1=C r 8x 8-r ⎝⎛⎭⎫13x r =C r 83r·x 8-2r ,令8-2r =2,得r =3,所以展开式中x 2的系数为5627. 答案:56274.已知(x tanθ+1)5的展开式中x 2的系数与⎝⎛⎭⎫x +544的展开式中x 3的系数相等,则tan θ=________.解析:⎝⎛⎭⎫x +544的通项为T r +1=C r 4·x 4-r ·⎝⎛⎭⎫54r ,令4-r =3,则r =1,所以⎝⎛⎭⎫x +544的展开式中x 3的系数是C 14·54=5,(x tan θ+1)5的通项为T R +1=C R 5·(x tan θ)5-R ,令5-R =2,得R =3,所以(x tan θ+1)5的展开式中x 2的系数是C 35·tan 2θ=5,所以tan 2θ=12,所以tan θ=±22.答案:±225.(2020·台州市书生中学高三期中)设m ,n ∈N ,f (x )=(1+x )m +(1+x )n .(1)当m =n =5时,若f (x )=a 5(1-x )5+a 4(1-x )4+…+a 1(1-x )+a 0,求a 0+a 2+a 4的值;(2)f (x )展开式中x 的系数是9,当m ,n 变化时,求x 2系数的最小值.解:(1)当m =n =5时,f (x )=2(1+x )5,令x =0,则f (0)=a 5+a 4+…+a 1+a 0=2,令x =2,则f (2)=-a 5+a 4-…-a 1+a 0=2×35,所以a 0+a 2+a 4=f (0)+f (2)2=35+1=244. (2)由题意得f (x )展开式中x 的系数是C 1m +C 1n =m +n =9,x 2系数为C 2m +C 2n =m (m -1)2+n (n -1)2=m 2+n 2-(m +n )2=m 2+n 2-92, 又m 2+n 2-92=m 2+(9-m )2-92=2m 2-18m +722, 因为m ,n ∈N ,所以当m =4或m =5时最小,最小值为16.6.(2020·金丽衢十二校联考)已知⎝⎛⎭⎫12+2x n . (1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.解:(1)通项T r +1=C r n ⎝⎛⎭⎫12n -r·(2x )r =22r -n C r n x r , 由题意知C 4n ,C 5n ,C 6n 成等差数列,所以2C 5n =C 4n +C 6n ,所以n =14或7.当n =14时,第8项的二项式系数最大,该项的系数为22×7-14C 714=3 432; 当n =7时,第4、5项的二项式系数相等且最大,其系数分别为22×3-7C 37=352,22×4-7C 47=70. (2)由题意知C 0n +C 1n +C 2n =79,所以n =12或n =-13(舍).所以T r +1=22r -12C r 12x r .由⎩⎪⎨⎪⎧22r -12C r 12≥22(r -1)-12C r -112,22r -12C r 12≥22(r +1)-12C r +112,得⎩⎨⎧r ≤525,r ≥475所以r =10. 所以展开式中系数最大的项为T 11=22×10-12·C 1012x 10=332(2x )10.。