周期信号的功率证明要点
- 格式:ppt
- 大小:197.50 KB
- 文档页数:1
3-3 周期信号的频谱一、 周期信号的频谱一个周期信号)(t f ,只要满足狄里赫利条件,则可分解为一系列谐波分量之和。
其各次谐波分量可以是正弦函数或余弦函数,也可以是指数函数。
不同的周期信号,其展开式组成情况也不尽相同。
在实际工作中,为了表征不同信号的谐波组成情况,时常画出周期信号各次谐波的分布图形,这种图形称为信号的频谱,它是信号频域表示的一种方式。
描述各次谐波振幅与频率关系的图形称为振幅频谱,描述各次谐波相位与频率关系的图形称为相位频谱。
根据周期信号展成傅里叶级数的不同形式又分为单边频谱和双边频谱。
1 单边频谱若周期信号)(t f 的傅里叶级数展开式为式(3-15),即∑ ∞=+Ω+=10)cos()(n n nt n AA t f ϕ (3-24)则对应的振幅频谱n A 和相位频谱n ϕ称为单边频谱。
例3-3 求图3-4所示周期矩形信号)(t f 的单边频谱图。
解 由)(t f 波形可知, )(t f 为偶函数,其傅里叶系数⎰==2/0021)(4T dt t f Ta⎰=Ω=2/0)4/sin(2cos )(4T n n n tdt n t f Ta ππ=n b故∑∑∞=∞=Ω+=Ω+=110cos )4/sin(241cos 2)(n n n tn n n t n a a t f ππ因此410=A ,ππn n A n )4/sin(2=即45.01=A , 32.02≈A , 15.03≈A , 04=A , 09.05≈A , 106.06≈A ┅单边振幅频谱如图3-5所示。
tf(t)图 3 - 4ττττ4 2/ 0 2/ 4--1图 3 - 50.250.450.320.150.090.106ΩΩΩΩΩΩΩ7 6 5 4 3 2 0A n2 双边频谱若周期信号)(t f 的傅里叶级数展开式为式(3-17),即25)-(3 )(∑∞-∞=Ω=n tjn neFt f则nF 与Ωn 所描述的振幅频谱以及n F 的相位n n F θ=arctan 与Ωn 所描述的相位频谱称为双边频谱。
《信号与系统》知识要点第一章 信号与系统1、周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。
(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。
2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量: 2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。
⎰∞∞-=t t f E d )(2def3 ① ②4、信号的基本运算1) 两信号的相加和相乘 2) 信号的时间变化a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c) 尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度.正跳变对应着正冲激;负跳变对应着负冲激。
5、阶跃函数和冲激函数 (1)单位阶跃信号00()10t u t t <⎧=⎨>⎩0t =是()u t 的跳变点。
(2)单位冲激信号定义:性质:()1()00t dt t t δδ∞-∞⎧=⎪⎨⎪=≠⎩⎰ t1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞-∞∞-∞=-=⎰⎰()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-2)偶函数 ()()t t δδ=-3)尺度变换 ()1()at t aδδ=4)微积分性质 d ()()d u t t tδ= ()d ()t u t δττ-∞=⎰(3)冲激偶 ()t δ'性质: ()()(0)()(0)()f t t f t f t δδδ'''=-()()d (0)f t t t f δ∞-∞''=-⎰()d ()tt t t δδ-∞'=⎰()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰(4)斜升函数 ()()()d tr t t t εεττ-∞==⎰(5)门函数 ()()()22G t t t τττεε=+--6、系统的特性 (重点:线性和时不变性的判断) (1)线性1)定义:若同时满足叠加性与均匀性,则称满足线性性质。
1.几点说明: ①若x (t )是周期的,则x (2t )也是周期的,反之也成立②对于f [k ]=cos[Ωk ]只有当|Ω|/2π为有理数的时候,才是一个周期信号③设x1(t )和x2(t )的基本周期分别是T1和T2,则x1+x2是周期信号的条件是12T T =km为有理数(k ,m 为互素正整数)周期是T=m 1T =k 2T 思考:周期分别为3和5的两个离散序列的卷积和的周期为多少?为什么?与 功率信号(公式见书4p )E 。
若为有限值则为能量信号。
否则,计算功率P ,若为有限值则为功率信号。
否则,;两者都不是。
注:一个信号不可能既是能量信号又是功率信号,但可能既不是能量信号也不是功率信号。
思考:确定下述论点正确与否,并简述理由。
(1)所有非周期信号都是能量信号。
(2)所有能量信号都是周期信号。
(3)两个功率信号之积总是一个功率信号。
(4)两个功率信号之和总是一个功率信号。
(1)错;双边信号一般是功率信号,甚至不是能量,也不是功率信号,如e^2t (2)错;因为:周期信号一定是 功率信号(3)错;假设2个 信号周期 相等,其中一个 前半周期不等于0,后半周期=0;另一个则相反;相乘后,恒等于=0哦!但是大部分情况下,是 对的! (4)错;可能相加后恒等于 0哦;但是大部分情况下,是 对的! 2.LTI 系统(考试难点)(1)当系统的微分方程是常系数的线性微分方程时,系统为线性时不变系统。
(2)一般情况下,可分别判断系统是否满足线性和时不变性。
判断系统是否线性注意问题:1.在判断可分解性时,应考察系统的完全响应y (t )是否可以表示为两部分之和,其中一部分只与系统的初始状态有关,而另一部分只与系统的输入激励有关。
2.在判断系统的零输入响应()x y t 是否具有线性时,应以系统的初始状态为自变量(如上述例题中y (0)),而不能以其它的变量(如t 等)作为自变量。
3.在判断系统的零状态响应()f y t 是否具有线性时,应以系统的输入激励为自变量(如上述例题中f (t )),而不能以其它的变量(如t 等)作为自变量。