周期信号的功率证明要点
- 格式:ppt
- 大小:197.50 KB
- 文档页数:1
3-3 周期信号的频谱一、 周期信号的频谱一个周期信号)(t f ,只要满足狄里赫利条件,则可分解为一系列谐波分量之和。
其各次谐波分量可以是正弦函数或余弦函数,也可以是指数函数。
不同的周期信号,其展开式组成情况也不尽相同。
在实际工作中,为了表征不同信号的谐波组成情况,时常画出周期信号各次谐波的分布图形,这种图形称为信号的频谱,它是信号频域表示的一种方式。
描述各次谐波振幅与频率关系的图形称为振幅频谱,描述各次谐波相位与频率关系的图形称为相位频谱。
根据周期信号展成傅里叶级数的不同形式又分为单边频谱和双边频谱。
1 单边频谱若周期信号)(t f 的傅里叶级数展开式为式(3-15),即∑ ∞=+Ω+=10)cos()(n n nt n AA t f ϕ (3-24)则对应的振幅频谱n A 和相位频谱n ϕ称为单边频谱。
例3-3 求图3-4所示周期矩形信号)(t f 的单边频谱图。
解 由)(t f 波形可知, )(t f 为偶函数,其傅里叶系数⎰==2/0021)(4T dt t f Ta⎰=Ω=2/0)4/sin(2cos )(4T n n n tdt n t f Ta ππ=n b故∑∑∞=∞=Ω+=Ω+=110cos )4/sin(241cos 2)(n n n tn n n t n a a t f ππ因此410=A ,ππn n A n )4/sin(2=即45.01=A , 32.02≈A , 15.03≈A , 04=A , 09.05≈A , 106.06≈A ┅单边振幅频谱如图3-5所示。
tf(t)图 3 - 4ττττ4 2/ 0 2/ 4--1图 3 - 50.250.450.320.150.090.106ΩΩΩΩΩΩΩ7 6 5 4 3 2 0A n2 双边频谱若周期信号)(t f 的傅里叶级数展开式为式(3-17),即25)-(3 )(∑∞-∞=Ω=n tjn neFt f则nF 与Ωn 所描述的振幅频谱以及n F 的相位n n F θ=arctan 与Ωn 所描述的相位频谱称为双边频谱。
《信号与系统》知识要点第一章 信号与系统1、周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。
(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。
2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量: 2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。
⎰∞∞-=t t f E d )(2def3 ① ②4、信号的基本运算1) 两信号的相加和相乘 2) 信号的时间变化a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c) 尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度.正跳变对应着正冲激;负跳变对应着负冲激。
5、阶跃函数和冲激函数 (1)单位阶跃信号00()10t u t t <⎧=⎨>⎩0t =是()u t 的跳变点。
(2)单位冲激信号定义:性质:()1()00t dt t t δδ∞-∞⎧=⎪⎨⎪=≠⎩⎰ t1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞-∞∞-∞=-=⎰⎰()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-2)偶函数 ()()t t δδ=-3)尺度变换 ()1()at t aδδ=4)微积分性质 d ()()d u t t tδ= ()d ()t u t δττ-∞=⎰(3)冲激偶 ()t δ'性质: ()()(0)()(0)()f t t f t f t δδδ'''=-()()d (0)f t t t f δ∞-∞''=-⎰()d ()tt t t δδ-∞'=⎰()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰(4)斜升函数 ()()()d tr t t t εεττ-∞==⎰(5)门函数 ()()()22G t t t τττεε=+--6、系统的特性 (重点:线性和时不变性的判断) (1)线性1)定义:若同时满足叠加性与均匀性,则称满足线性性质。
1.几点说明: ①若x (t )是周期的,则x (2t )也是周期的,反之也成立②对于f [k ]=cos[Ωk ]只有当|Ω|/2π为有理数的时候,才是一个周期信号③设x1(t )和x2(t )的基本周期分别是T1和T2,则x1+x2是周期信号的条件是12T T =km为有理数(k ,m 为互素正整数)周期是T=m 1T =k 2T 思考:周期分别为3和5的两个离散序列的卷积和的周期为多少?为什么?与 功率信号(公式见书4p )E 。
若为有限值则为能量信号。
否则,计算功率P ,若为有限值则为功率信号。
否则,;两者都不是。
注:一个信号不可能既是能量信号又是功率信号,但可能既不是能量信号也不是功率信号。
思考:确定下述论点正确与否,并简述理由。
(1)所有非周期信号都是能量信号。
(2)所有能量信号都是周期信号。
(3)两个功率信号之积总是一个功率信号。
(4)两个功率信号之和总是一个功率信号。
(1)错;双边信号一般是功率信号,甚至不是能量,也不是功率信号,如e^2t (2)错;因为:周期信号一定是 功率信号(3)错;假设2个 信号周期 相等,其中一个 前半周期不等于0,后半周期=0;另一个则相反;相乘后,恒等于=0哦!但是大部分情况下,是 对的! (4)错;可能相加后恒等于 0哦;但是大部分情况下,是 对的! 2.LTI 系统(考试难点)(1)当系统的微分方程是常系数的线性微分方程时,系统为线性时不变系统。
(2)一般情况下,可分别判断系统是否满足线性和时不变性。
判断系统是否线性注意问题:1.在判断可分解性时,应考察系统的完全响应y (t )是否可以表示为两部分之和,其中一部分只与系统的初始状态有关,而另一部分只与系统的输入激励有关。
2.在判断系统的零输入响应()x y t 是否具有线性时,应以系统的初始状态为自变量(如上述例题中y (0)),而不能以其它的变量(如t 等)作为自变量。
3.在判断系统的零状态响应()f y t 是否具有线性时,应以系统的输入激励为自变量(如上述例题中f (t )),而不能以其它的变量(如t 等)作为自变量。
例题:O tf (t )T /31-TT如右图所示的周期性矩形脉冲信号(周期为T )经过一个低通滤波器,求其响应及响应的平均功率。
已知该滤波器的传递函数为()()⎪⎪⎩⎪⎪⎨⎧<≤<-≤=--时时时T T e T T e j H j j ωππωππωπωωωτωτ6,063,3/23,分析:周期信号可以分解成直流、基波、高次谐波等分量每个分量经过滤波器 复数解法解:求傅立叶系数:⎰-=3/001T tjn n dt eTC ωO tf (t )T /31-TT令ω0=2π/T3/0001T t jn eTjn ωω--=3/3sin 31ππjn e n c -⎪⎭⎫ ⎝⎛=3100==C A 2nj n n A eC ϕ=~基波和n 次谐波的复数表示低通滤波器只通过低于3ω0的信号,因此信号中只有直流、基波和二次谐波分量通过。
输出信号中的直流分量为:()3100==ωωj H A解:输出信号中的基波分量的复数表示为:()()τωπωωφπω0013/13sin 32+-=⎪⎭⎫ ⎝⎛=j j e c j H eA 输出信号中的二次谐波分量的复数表示为:()()τωπωωφπω00223/22232sin 94+-=⎪⎭⎫⎝⎛=j j e c j H e A 输出信号的时域表达式为:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+τωπωπτωπωπ00002322cos 32sin 943cos 3sin 3231t c t c 输出信号的平均功率为:280.02sin 41sin 211222≈⎥⎤⎢⎡⎪⎫⎛+⎥⎤⎢⎡⎪⎫ ⎛+⎪⎫ ⎛=ππc c P out第三章:信号的频谱§3-1 周期信号的频谱§3-2 非周期信号的频谱密度 傅立叶变换与频谱密度信号的频谱分布与带宽基本信号的频谱密度§3-3 频谱分析的基本定理§3-4 采样定理傅立叶变换的引出如何从频域描述一个非周期信号?tf (t )傅立叶级数?——显然不行怎么办?退而求其次,先考虑描述函数在有限区间[a,b)上的一段吧tf a,b (t )a btf T (t )a b考虑有限区间周期扩展再扩展成周期T =b -a 的函数f T (t )f T (t ):周期函数~可以用傅立叶级数表示在区间[a,b)上与f (t ) 相同傅立叶变换的引出tf T (t )a b()(),1100dt et f Tdte tf T C tjn bat jn ba T n ωω--⎰⎰==()()()⎪⎪⎩⎪⎪⎨⎧=-++∈-++=∑∞-∞=b a t b f a f b a t t f t f eC n tjn n或,2)0(0,,2)0(00ω傅立叶级数只在区间(a,b ) 上收敛于f (t ),因此C n 并不是f (t ) 的复频谱如果f T (t ) 满足狄利克雷条件,则可以展开成傅立叶级数:定义:则:ω0=2π/T傅立叶变换的引出进一步,选取对称区间[-T /2,T /2)。
三、功率谱分析字体[大][中][小]周期信号的功率谱为其双边幅值频谱的平方|c n|2;非周期信号的功率谱为其幅值谱密度的平方|X(ω)|2=X(ω)X*(ω)。
随机信号属于时域无限信号,其频率、幅值和相位为随机变量。
因而,采用具有统计特性的功率谱估计进行谱分析(一)自功率谱密度及其估计各态历经随机信号的功率谱密度S x(ω)与自相关函数R x(τ)为傅里叶变换偶对,即为了方便,也可用在非负频率范围内(ω>0)定义的单边功率谱密度G x(ω)代替双边功率谱密度S x(ω),两者之间的关系为自功率谱估计可分为线性估计法与非线性估计法。
前者以快速变换为基础,应用较早,也称为经典谱分析法; 后者是与时序模型结合的一种新方法,又称为现代谱分析方法。
1. 周期图各态历经随机信号的均方值ψx2为信号能量的时域描述。
巴什瓦定理表明,信号能量的时域计算与频域计算相等,即由此定义自功率谱密度及其估计为:式中表12-45 典型信号的自相关、频谱、概率密度(续)X(ω)为测试数据x(t)的傅里叶变换,X(k)为N个数据x(n)的离散傅里叶变换,由FFT 直接求出。
由于X(k)具有周期函数的性质,所以称由此获得的自功率谱估计为周期图。
自相关估计x′(r)的快速傅里叶变换可作为自功率谱估计的另一计算公式以上两种估计都是自功率谱S x(ω)的有偏估计,只是偏差大小不同。
两种估计在时域对数据或对自相关估计进行截断,相当于加窗处理,致使谱估计成为真实功率谱(或称为真功率谱)与窗谱W(ω)的卷积,即Ŝx(ω)=S x(ω)*W(ω)窗谱旁瓣的泄漏效应和卷积的作用使真功率谱的尖峰数值变化,邻近点的数值变大,造成谱估计的模糊与失真以上两种估计的方差较大; 相距2π/N的各点估计值互不相关,故数据点数N越大,这些点的估计值的随机起伏越严重。
为改善谱估计的估计质量,在增大数据点数的同时,采用平均化处理和窗处理方法减小谱估计的方差。
周期图法估计功率谱随机信号谱估计方法的Matlab实现摘要:功率谱估计是随机信号分析中的一个重要内容。
从介绍功率谱的估计原理入手分析经典谱估计和现代谱估计两类估计方法的原理、各自特点及在Matlab中的实现方法。
经典功率谱估计的方差大、谱分辨率差,分辨率反比于有效信号的长度,但现代谱估计的分辨率不受此限制。
给出了功率谱估计的应用。
关键词:功率谱估计;周期图法;AR参数法;1 引言在一般工程实际中,随机信号通常是无限长的,例如,传感器的温漂,不可能得到无限长时间的无限个观察结果来获得完全准确的温漂情况,即随机信号总体的情况,一般只能在有限的时间内得到有限个结果,即有限个样本,根据经验来近似地估计总体的分布。
有时,甚至不需要知道随机信号总体地分布,而只需要知道其数字特征,如均值、方差、均方值、相关函数、功率谱的比较精确的情况即估计值。
功率谱估计(PSD)是用有限长的数据估计信号的功率谱,它对于认识一个随机信号或其他应用方面都是重要的,是数字信号处理的重要研究内容之一。
功率谱估计可以分为经典谱估计(非参数估计)和现代谱估计(参数估计)。
2 .平均周期图法和平滑平均周期图法对于周期图的功率谱估计, 当数据长度N 太大时, 谱曲线起伏加剧, 若N 太小, 谱的分辨率又不好,因此需要改进。
两种改进的估计法是平均周期图法和平滑平均周期图法。
(1)Bartlett 法:Bartlett 平均周期图的方法是将N 点的有限长序列x(n)分段求周期图再平均。
Matlab 代码示例1:fs=600;n=0:1/fs:1;xn=cos(2*pi*20*n)+3*cos(2*pi*90*n)+randn(size(n)); nfft=512;window=hamming(nfft); %矩形窗noverlap=0;%数据无重叠p=0.9;%置信概率[Pxx,Pxxc]=psd(xn,nfft,fs,window,noverlap,p); index=0:round(nfft/2- 1);k=index*fs/nfft;plot_Pxx=10*log10(Pxx(index+1));plot_Pxxc=10*log10(Pxxc(index+1));figure(1)plot(k,plot_Pxx);figure(2)plot(k,[plot_Pxx plot_Pxx- plot_Pxxcplot_Pxx+plot_Pxxc]);matlab调试图下图(2)Welch 法:Welch 法对Bartlett 法进行了两方面的修正, 一是选择适当的窗函数w(n), 并在周期图计算前直接加进去, 加窗的优点是无论什么样的窗函数均可使谱估计非负。