§3.2 周期信号的频谱和功率谱
- 格式:ppt
- 大小:1.44 MB
- 文档页数:27
第3章功率谱估计和信号频率估计方法在信号处理和通信系统设计中,功率谱估计和信号频率估计是非常重要的技术。
功率谱估计可以用来研究信号的频域特性和频率分量的强度分布,信号频率估计可以用来确定信号的频率成分。
本章将介绍功率谱估计和信号频率估计的常用方法。
3.1功率谱估计功率谱是描述信号功率随频率变化的函数。
常用的功率谱估计方法有非参数法和参数法。
非参数法是一类基于信号的样本序列进行计算的方法,不依赖于对信号的概率模型的先验假设。
常见的非参数法有周期图法、半周期图法等。
周期图法是一种基于时域序列的离散傅里叶变换的方法。
它将信号分成多个时段,对每个时段进行傅里叶变换,然后求得功率谱密度。
周期图法具有快速计算和较好的频率分辨能力的特点,适用于信号周期性较强的情况。
半周期图法是周期图法的一种改进方法。
它首先将信号分成两个连续的时段,计算各自的功率谱密度,然后取两个时段的平均值作为最终的功率谱估计。
半周期图法减少了周期图法中窗函数的影响,提高了估计的准确性。
参数法是一种基于对信号进行参数建模的方法。
常见的参数法有自回归(AR)模型、线性预测(ARMA)模型等。
自回归模型是一种用于描述信号随机过程的自回归线性滤波模型。
它通过自回归系数描述信号当前样本值与过去样本值的线性关系。
自回归模型估计功率谱的方法主要有Burg方法、 Yule-Walker方法等。
自回归模型具有较好的频率分辨能力和较高的准确性,适用于信号具有较长时间相关性的情况。
线性预测模型是将信号分解成预测误差和线性组合的方式。
它通过选择适当的线性预测滤波器系数来最小化预测误差的均方差,从而得到功率谱的估计。
线性预测模型估计功率谱的方法主要有Levinson-Durbin算法和Burg算法等。
线性预测模型具有较好的频率分辨能力和较高的估计准确性,适用于信号具有较强的谱峰特性的情况。
3.2信号频率估计信号频率估计是通过对信号进行时域分析来确定信号的频率成分。
(1)信号通常分为两类:能量信号和功率信号;
(2)一般来讲,能量信号其傅氏变换收敛(即存在),而功率信号傅氏变换通常不收敛,当然,若信号存在周期性,可引入特殊数学函数(Delta)表征傅氏变换的这种非收敛性;(3)信号是信息的搭载工具,而信息与随机性紧密相关,所以实际信号多为随机信号,这类信号的特点是状态随机性随时间无限延伸,其样本能量无限。
换句话说,随机信号(样本)大多属于功率信号而非能量信号,它并不存在傅氏变换,亦即不存在频谱;
(4)若撇开搭载信息的有用与否,随机信号又称随机过程,很多噪声属于特殊的随机过程,它们的某些统计特性具有平稳性,其均值和自相关函数具有平稳性。
对于这样的随机过程,自相关函数蜕化为一维确定函数,前人证明该确定相关函数存在傅氏变换;
(5)能量信号频谱通常既含有幅度也含有相位信息;幅度谱的平方(二次量纲)又叫能量谱(密度),它描述了信号能量的频域分布;功率信号的功率谱(密度)描述了信号功率随频率的分布特点(密度:单位频率上的功率),业已证明,平稳信号功率谱密度恰好是其自相关函数的傅氏变换。
对于非平稳信号,其自相关函数的时间平均(对时间积分,随时变性消失而再次退变成一维函数)与功率谱密度仍是傅氏变换对;
(6)实际中我们获得的往往仅仅是信号的一段支撑,此时即使信号为功率信号,截断之后其傅氏变换收敛,但此变换结果严格来讲不属于任何“谱”(进一步分析可知它是样本真实频谱的平滑:卷积谱);
(7)对于(6)中所述变换若取其幅度平方,可作为平稳信号功率谱(密度)的近似,是为经典的“周期图法”;
(8)FFT是DFT的快速实现,DFT是DTFT的频域采样,DTFT是FT的频域延拓。
人们不得已才利用DFT近似完成本属于FT的任务。
若仅提FFT,是非常不专业的。
功率谱和频率谱
功率谱和频率谱都是信号分析中常用的工具,用于研究信号的频域特性。
它们在不同的上下文中有不同的定义和用途:
功率谱:
1.定义:功率谱是一个信号在频域上的能量分布,表示信号在各个频率上的功率强度。
2.表示:通常用单位频率的功率密度函数来表示,即信号在单位频率范围内的功率。
3.应用:功率谱广泛应用于通信、信号处理、无线通信等领域,用于分析信号的频谱特性,识别信号中的频率成分。
频率谱:
1.定义:频率谱描述了信号在频域上的频率分布情况,表示信号中各个频率成分的相对强度。
2.表示:通常以振幅-频率图或相位-频率图的形式呈现,显示信号在不同频率上的振幅或相位信息。
3.应用:频率谱常用于音频处理、音乐分析、振动分析等领域,帮助了解信号的频率特性。
在某些情况下,功率谱和频率谱可以通过傅立叶变换来相互转换。
傅立叶变换可以将一个信号从时域(时间域)转换到频域(频率域),提供了信号在频域上的全面信息。
总的来说,功率谱和频率谱是频域分析的两个重要工具,用于深入了解信号的频率特性,从而在不同应用领域中发挥作用。
频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的结果是以频率为横坐标的各种物理量的谱线和曲线,即各种幅值以频率为变量的频谱函数F(ω)。
频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。
频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。
一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。
功率谱是一个时间平均(time average)概念;功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。
保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。
有两个重要区别:1. 功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。
(随机的频域序列)2. 功率概念和幅度概念的差别。
此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在,并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。
功率谱密度是信号功率在信号持续频谱带宽上的密度,也就是说功率谱密度对频谱的积分就是功率,也就是相关函数在零点的取值。
随机信号是时域无限信号且不收敛,不具备可积分条件,因此不能直接进行傅氏变换,因此一般采用具有统计特性的功率谱来作为谱分析的依据。
●功率谱与自相关函数是一个傅氏变换对。
●功率谱具有单位频率的平均功率量纲,所以标准叫法是功率谱密度。
●通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。
像白噪声就是平一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。
可以有三种办法来重新定义谱密度,来克服上述困难:一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义谱密度;三是用平稳随机过程的谱分解来定义谱密度。
例题:O tf (t )T /31-TT如右图所示的周期性矩形脉冲信号(周期为T )经过一个低通滤波器,求其响应及响应的平均功率。
已知该滤波器的传递函数为()()⎪⎪⎩⎪⎪⎨⎧<≤<-≤=--时时时T T e T T e j H j j ωππωππωπωωωτωτ6,063,3/23,分析:周期信号可以分解成直流、基波、高次谐波等分量每个分量经过滤波器 复数解法解:求傅立叶系数:⎰-=3/001T tjn n dt eTC ωO tf (t )T /31-TT令ω0=2π/T3/0001T t jn eTjn ωω--=3/3sin 31ππjn e n c -⎪⎭⎫ ⎝⎛=3100==C A 2nj n n A eC ϕ=~基波和n 次谐波的复数表示低通滤波器只通过低于3ω0的信号,因此信号中只有直流、基波和二次谐波分量通过。
输出信号中的直流分量为:()3100==ωωj H A解:输出信号中的基波分量的复数表示为:()()τωπωωφπω0013/13sin 32+-=⎪⎭⎫ ⎝⎛=j j e c j H eA 输出信号中的二次谐波分量的复数表示为:()()τωπωωφπω00223/22232sin 94+-=⎪⎭⎫⎝⎛=j j e c j H e A 输出信号的时域表达式为:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+τωπωπτωπωπ00002322cos 32sin 943cos 3sin 3231t c t c 输出信号的平均功率为:280.02sin 41sin 211222≈⎥⎤⎢⎡⎪⎫⎛+⎥⎤⎢⎡⎪⎫ ⎛+⎪⎫ ⎛=ππc c P out第三章:信号的频谱§3-1 周期信号的频谱§3-2 非周期信号的频谱密度 傅立叶变换与频谱密度信号的频谱分布与带宽基本信号的频谱密度§3-3 频谱分析的基本定理§3-4 采样定理傅立叶变换的引出如何从频域描述一个非周期信号?tf (t )傅立叶级数?——显然不行怎么办?退而求其次,先考虑描述函数在有限区间[a,b)上的一段吧tf a,b (t )a btf T (t )a b考虑有限区间周期扩展再扩展成周期T =b -a 的函数f T (t )f T (t ):周期函数~可以用傅立叶级数表示在区间[a,b)上与f (t ) 相同傅立叶变换的引出tf T (t )a b()(),1100dt et f Tdte tf T C tjn bat jn ba T n ωω--⎰⎰==()()()⎪⎪⎩⎪⎪⎨⎧=-++∈-++=∑∞-∞=b a t b f a f b a t t f t f eC n tjn n或,2)0(0,,2)0(00ω傅立叶级数只在区间(a,b ) 上收敛于f (t ),因此C n 并不是f (t ) 的复频谱如果f T (t ) 满足狄利克雷条件,则可以展开成傅立叶级数:定义:则:ω0=2π/T傅立叶变换的引出进一步,选取对称区间[-T /2,T /2)。
1周期信号的频谱的特点周期信号的频谱一个周期信号f(t),只要满足狄里赫利条件,则可分解为一系列谐波分量之 和。
其各次谐波分量可以是正弦函数或余弦函数,也可以是指数函数。
不同的周 期信号,其展开式组成情况也不尽相同。
在实际工作中,为了表征不同信号的谐 波组成情况,时常画出周期信号各次谐波的分布图形,这种图形称为信号的频谱, 它是信号频域表示的一种方式。
描述各次谐波振幅与频率关系的图形称为振幅频谱,描述各次谐波相位与频率关系的图形称为相位频谱。
根据周期信号展成傅里叶级数的不同形式又分为单 边频谱和双边频谱。
1 单边频谱若周期信号f (t)的傅里叶级数展开式为式(3-15),即f(t) = A )-二 A nCoS(n 」t :n )(3-24)n T则对应的振幅频谱A n 和相位频谱J 称为单边频谱。
例3-3求图3-4所示周期矩形信号f (t)的单边频谱图。
由f (t)波形可知,f (t)为偶函数,其傅里叶系数4 T/2冇〒0 f (t )C0S n Jdt =b n =02sin (n 二 /4)a匚1 0∖ a n CoSn 「t = _ ∙ a^4nn若周期信号f (t )的傅里叶级数展开式为式(3-17),即则F n 与n 0所描述的振幅频谱以及F n 的相位ar CtanF n =S 与氏所描述的相位 频谱称为双边频谱。
例3-4画出图3-4所示矩形周期信号f (t)的双边频谱图形2sin(2 代cosrW因此AOA n2sin(n 二 /4)A =0.45 A 2 : 0.32 A 3 : 0.15 A =0A 5 ■- 0.09A 6 ■ 0.106单边振幅频谱如图 3-5 所示。
0.450.32木 f(t)0.25'0.150.09第°6-4- /20 /24 a t图3 - 400筮尖尬眈 6⅛∕图3 - 5f(t)f(t∏ V F n e jntn =-oC ∣(3 - 25)解 由式(3-18)和图3-4可知A arcta nF n—I —■ ■ ∙~~~~• •~~•~■-5」--「0 门3」51图3-6从上例频谱图上可以看出,单边振幅频谱是指 代=2^与正n 值的关系,双 边振幅频谱是指F n 与正负n 值的关系。
功率谱频谱计算摘要:一、引言二、功率谱和频谱的概念1.功率谱2.频谱三、功率谱和频谱的计算方法1.离散傅里叶变换(DFT)2.快速傅里叶变换(FFT)四、功率谱和频谱在实际应用中的意义1.在信号处理中的应用2.在通信系统中的应用五、总结正文:一、引言在信号处理和通信系统中,功率谱和频谱的计算是非常重要的。
它们可以帮助我们更好地分析和理解信号的特性。
本文将详细介绍功率谱和频谱的概念,以及它们的计算方法。
二、功率谱和频谱的概念1.功率谱功率谱是一种描述信号能量分布的函数,它反映了信号在不同频率下的能量大小。
功率谱通常用一个矩形图表示,横轴是频率,纵轴是信号的功率。
2.频谱频谱是信号在频域中的表示形式,它显示了信号在不同频率下的振幅和相位信息。
频谱通常用一个波形图表示,横轴是频率,纵轴是信号的振幅或相位。
三、功率谱和频谱的计算方法1.离散傅里叶变换(DFT)离散傅里叶变换是一种将时域信号转换为频域信号的算法。
它通过将信号分解成一组正弦和余弦函数的叠加,从而得到信号的频谱。
2.快速傅里叶变换(FFT)快速傅里叶变换是离散傅里叶变换的快速算法。
它利用信号的对称性和周期性,将DFT 的计算复杂度从O(N^2) 降低到O(NlogN)。
四、功率谱和频谱在实际应用中的意义1.在信号处理中的应用功率谱和频谱在信号处理中被广泛应用,如滤波、信号识别、噪声抑制等。
通过分析信号的频谱,我们可以了解信号的频率成分,从而对信号进行适当的处理。
2.在通信系统中的应用在通信系统中,功率谱和频谱的计算对于信号调制和解调、信道估计、误码纠正等环节至关重要。
准确的功率谱和频谱分析可以提高通信系统的性能和可靠性。
五、总结本文介绍了功率谱和频谱的概念,以及它们的计算方法。
通过这些方法,我们可以更好地分析和理解信号的特性。