周期信号功率式证明
- 格式:ppt
- 大小:276.00 KB
- 文档页数:1
的电流,v (t )为一.能量信号和功率信号定义:一般说来,能量总是与某一物理量的平方成正比,则在整个时间域内,实信号天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University一般周期信号为功率信号;天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University二.相关系数与相关函数天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University最小,则有是能量有限的实信号。
天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University由柯西-施瓦尔茨不等式,得(2⎡⎰∞t f 的相关特性相关系数天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University三.相关与卷积的比较卷积表达式:(,相关性最强R )ω[f F 相关定理表明:两信号互相关函数的傅里叶变换等于其中第一个信号的变换与第二个信号变换取共轭两者之天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University判断下面的信号是功率信号还是能量信号。
天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University例()(E t cos =对此功率有限信号,由自相关函数的定义,有)⎤天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University周期信号自相关函数仍为周期信号天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University])(τF R =天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical Universityωπ(⎰∞∞-F⎪⎫≤T t ωπ(21F ⎰∞∞-R (τ)cos(1t ω的自相关函数和功率谱为功率信号)(t f 天津医科大学生物医学工程学院School of Biomedical Engineering, Tianjin Medical University因为功率有限信号的功率谱函数与自相关函数是一功率谱为:。
《信号与系统》知识要点第一章 信号与系统1、周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。
(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。
2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量: 2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。
⎰∞∞-=t t f E d )(2def3 ① ②4、信号的基本运算1) 两信号的相加和相乘 2) 信号的时间变化a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c) 尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度.正跳变对应着正冲激;负跳变对应着负冲激。
5、阶跃函数和冲激函数 (1)单位阶跃信号00()10t u t t <⎧=⎨>⎩0t =是()u t 的跳变点。
(2)单位冲激信号定义:性质:()1()00t dt t t δδ∞-∞⎧=⎪⎨⎪=≠⎩⎰ t1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞-∞∞-∞=-=⎰⎰()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-2)偶函数 ()()t t δδ=-3)尺度变换 ()1()at t aδδ=4)微积分性质 d ()()d u t t tδ= ()d ()t u t δττ-∞=⎰(3)冲激偶 ()t δ'性质: ()()(0)()(0)()f t t f t f t δδδ'''=-()()d (0)f t t t f δ∞-∞''=-⎰()d ()tt t t δδ-∞'=⎰()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰(4)斜升函数 ()()()d tr t t t εεττ-∞==⎰(5)门函数 ()()()22G t t t τττεε=+--6、系统的特性 (重点:线性和时不变性的判断) (1)线性1)定义:若同时满足叠加性与均匀性,则称满足线性性质。
例题:O tf (t )T /31-TT如右图所示的周期性矩形脉冲信号(周期为T )经过一个低通滤波器,求其响应及响应的平均功率。
已知该滤波器的传递函数为()()⎪⎪⎩⎪⎪⎨⎧<≤<-≤=--时时时T T e T T e j H j j ωππωππωπωωωτωτ6,063,3/23,分析:周期信号可以分解成直流、基波、高次谐波等分量每个分量经过滤波器 复数解法解:求傅立叶系数:⎰-=3/001T tjn n dt eTC ωO tf (t )T /31-TT令ω0=2π/T3/0001T t jn eTjn ωω--=3/3sin 31ππjn e n c -⎪⎭⎫ ⎝⎛=3100==C A 2nj n n A eC ϕ=~基波和n 次谐波的复数表示低通滤波器只通过低于3ω0的信号,因此信号中只有直流、基波和二次谐波分量通过。
输出信号中的直流分量为:()3100==ωωj H A解:输出信号中的基波分量的复数表示为:()()τωπωωφπω0013/13sin 32+-=⎪⎭⎫ ⎝⎛=j j e c j H eA 输出信号中的二次谐波分量的复数表示为:()()τωπωωφπω00223/22232sin 94+-=⎪⎭⎫⎝⎛=j j e c j H e A 输出信号的时域表达式为:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+τωπωπτωπωπ00002322cos 32sin 943cos 3sin 3231t c t c 输出信号的平均功率为:280.02sin 41sin 211222≈⎥⎤⎢⎡⎪⎫⎛+⎥⎤⎢⎡⎪⎫ ⎛+⎪⎫ ⎛=ππc c P out第三章:信号的频谱§3-1 周期信号的频谱§3-2 非周期信号的频谱密度 傅立叶变换与频谱密度信号的频谱分布与带宽基本信号的频谱密度§3-3 频谱分析的基本定理§3-4 采样定理傅立叶变换的引出如何从频域描述一个非周期信号?tf (t )傅立叶级数?——显然不行怎么办?退而求其次,先考虑描述函数在有限区间[a,b)上的一段吧tf a,b (t )a btf T (t )a b考虑有限区间周期扩展再扩展成周期T =b -a 的函数f T (t )f T (t ):周期函数~可以用傅立叶级数表示在区间[a,b)上与f (t ) 相同傅立叶变换的引出tf T (t )a b()(),1100dt et f Tdte tf T C tjn bat jn ba T n ωω--⎰⎰==()()()⎪⎪⎩⎪⎪⎨⎧=-++∈-++=∑∞-∞=b a t b f a f b a t t f t f eC n tjn n或,2)0(0,,2)0(00ω傅立叶级数只在区间(a,b ) 上收敛于f (t ),因此C n 并不是f (t ) 的复频谱如果f T (t ) 满足狄利克雷条件,则可以展开成傅立叶级数:定义:则:ω0=2π/T傅立叶变换的引出进一步,选取对称区间[-T /2,T /2)。
1周期信号的频谱的特点周期信号的频谱一个周期信号f(t),只要满足狄里赫利条件,则可分解为一系列谐波分量之 和。
其各次谐波分量可以是正弦函数或余弦函数,也可以是指数函数。
不同的周 期信号,其展开式组成情况也不尽相同。
在实际工作中,为了表征不同信号的谐 波组成情况,时常画出周期信号各次谐波的分布图形,这种图形称为信号的频谱, 它是信号频域表示的一种方式。
描述各次谐波振幅与频率关系的图形称为振幅频谱,描述各次谐波相位与频率关系的图形称为相位频谱。
根据周期信号展成傅里叶级数的不同形式又分为单 边频谱和双边频谱。
1 单边频谱若周期信号f (t)的傅里叶级数展开式为式(3-15),即f(t) = A )-二 A nCoS(n 」t :n )(3-24)n T则对应的振幅频谱A n 和相位频谱J 称为单边频谱。
例3-3求图3-4所示周期矩形信号f (t)的单边频谱图。
由f (t)波形可知,f (t)为偶函数,其傅里叶系数4 T/2冇〒0 f (t )C0S n Jdt =b n =02sin (n 二 /4)a匚1 0∖ a n CoSn 「t = _ ∙ a^4nn若周期信号f (t )的傅里叶级数展开式为式(3-17),即则F n 与n 0所描述的振幅频谱以及F n 的相位ar CtanF n =S 与氏所描述的相位 频谱称为双边频谱。
例3-4画出图3-4所示矩形周期信号f (t)的双边频谱图形2sin(2 代cosrW因此AOA n2sin(n 二 /4)A =0.45 A 2 : 0.32 A 3 : 0.15 A =0A 5 ■- 0.09A 6 ■ 0.106单边振幅频谱如图 3-5 所示。
0.450.32木 f(t)0.25'0.150.09第°6-4- /20 /24 a t图3 - 400筮尖尬眈 6⅛∕图3 - 5f(t)f(t∏ V F n e jntn =-oC ∣(3 - 25)解 由式(3-18)和图3-4可知A arcta nF n—I —■ ■ ∙~~~~• •~~•~■-5」--「0 门3」51图3-6从上例频谱图上可以看出,单边振幅频谱是指 代=2^与正n 值的关系,双 边振幅频谱是指F n 与正负n 值的关系。