人教版八年级数学上册分式的基本性质
- 格式:ppt
- 大小:4.00 MB
- 文档页数:91
八年级数学上册分式知识点在八年级数学上册中,学生将开始学习分式的概念和相关知识。
分式在数学中起着重要的作用,并广泛应用于各种实际问题的解决中。
下面将详细介绍八年级数学上册中与分式相关的知识点。
一、分式的定义和表示方式分式是指用横线将两个数连接起来形成的表达式,上面的数被称为分子,下面的数被称为分母。
分式的形式通常表示为a/b,其中a为整数,b为非零整数。
例如,2/3、5/4等都是分式的表示形式。
在分式中,分子和分母之间用分数线表示,分子位于分数线的上方,分母位于分数线的下方。
二、分式的基本性质1. 分式的值:分式所表示的值等于分子除以分母的结果。
例如,对于分式2/3,它的值为2除以3,即2/3。
2. 分式的约分与通分:分子和分母可以同时除以一个相同的非零数,使得分子和分母没有公约数,这个过程称为约分。
通分是指将两个或多个分式的分母变为相同的方式。
例如,分式1/4和1/2的通分结果为1/4和2/4,它们的分母相同。
3. 分式的乘法和除法:两个分式相乘时,分子乘以分子,分母乘以分母,得到的结果为新的分式。
例如,计算1/4乘以2/3,得到的结果为1/6。
当进行两个分式的除法运算时,将除法运算转化为乘法运算,将除法运算转化为乘法运算的倒数。
例如,计算1/4除以2/3,可以转化为1/4乘以3/2,结果为1/8。
4. 分式的加法和减法:两个分式相加时,需要找到它们的通分形式,然后将分子相加,分母保持不变。
例如,计算1/4加上1/2,通分得到2/8加上4/8,结果为6/8,可以约分为3/4。
当进行两个分式的减法运算时,同样需要找到它们的通分形式,然后将分子相减,分母保持不变。
例如,计算1/2减去1/4,通分得到2/4减去1/4,结果为1/4。
三、分式在实际问题中的应用分式在解决实际问题中起着重要的作用,在日常生活和学习中都有广泛的应用。
1. 分享物品:当多个人要平分一件物品时,可以使用分式来表示每个人得到的份额。
八年级上册分式一、分式的基本概念与性质1.分式的定义:分式是指形如a/b的表达式,其中a和b都是整式,b不为零。
a称为分子,b称为分母。
2.分式的基本性质:(1)分式的分子与分母同时乘以(或除以)同一个非零整式,分式的值不变。
(2)分式的分子与分母同时加减同一个整式,分式的值不变。
(3)分式的分子与分母同时乘以(或除以)同一个有理数,分式的值不变。
二、分式的运算1.分式加减法:分式加减法是将两个或多个分式的分子进行加减运算,分母保持不变。
需要注意的是,分母必须相同,否则需要先进行通分。
2.分式乘除法:分式乘除法是将两个分式的分子相乘(或相除),分母相乘(或相除)。
同样需要注意,分子和分母的运算结果必须为整式。
3.乘法公式在分式中的应用:乘法公式如平方差公式、完全平方公式等,在分式运算中也同样适用。
三、分式方程及其解法1.分式方程的定义与特点:分式方程是指含有分式的等式,其中未知数的次数不低于1。
分式方程的特点是分母中含有未知数。
2.分式方程的解法:求解分式方程的一般步骤为去分母、移项、合并同类项、化简、求解。
需要注意的是,解分式方程时要防止分母为零的情况。
3.解分式方程的注意事项:在解分式方程时,要遵循分式方程的求解法则,同时注意化简和计算过程中的细节。
四、分式不等式及其解集1.分式不等式的定义与特点:分式不等式是指含有分式的不等式,其中未知数的次数不低于1。
分式不等式的特点是分母中含有未知数。
2.分式不等式的解法:求解分式不等式的一般步骤为去分母、移项、合并同类项、化简、求解。
需要注意的是,解分式不等式时要防止分母为零的情况。
3.分式不等式的应用:分式不等式在实际问题中具有广泛的应用,如不等式的求解、实际问题中的优化问题等。
五、分式在实际问题中的应用1.数学模型建立:分式在数学模型建立中具有重要作用,如波动问题、生长问题等。
2.实际问题分析与解决:分式在实际问题中可以用来表示数量关系、比例关系等,从而帮助分析问题和解决问题。
第十五章 分式一、知识概念:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A叫做分式,A 为分子,B为分母。
1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.6.分式有意义:分母不为0(0B ≠)7.分式无意义:分母为0(0B =)8.分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) 9.分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )10.分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) 11.分式值为1:分子分母值相等(A=B )12.分式值为-1:分子分母值互为相反数(A+B=0)二、分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 三、整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n na a -=(0a ≠,n 是正整数) 四、分式方程的意义:分母中含有未知数的方程叫做分式方程.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程); ②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
新2024秋季八年级人教版数学上册第十五章分式《分式:分式的基本性质》听课记录一、教学目标(核心素养)1.知识与技能:学生能够理解并掌握分式的基本性质,包括分式有意义的条件、分式相等的条件以及分式的约分与通分。
2.过程与方法:通过实例分析和讨论,引导学生探索分式基本性质的规律,培养学生的观察、归纳和推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的数学态度和探究精神,以及合作学习的意识。
二、导入教师行为:•教师首先复习上节课关于分式概念的内容,提问学生:“谁能说说什么是分式?分式与分数有什么不同?”•接着,教师展示两个简单的分式,如32x和6x4x2,提问:“这两个分式相等吗?为什么?”引导学生思考分式相等的条件。
•由此引出本节课的主题:“为了更深入地理解分式,我们需要掌握分式的基本性质。
那么,分式有哪些基本性质呢?这就是我们今天要学习的内容。
”学生活动:•学生回忆并回答教师关于分式概念的提问,巩固上节课所学内容。
•认真观察教师给出的分式例子,思考并尝试回答分式相等的条件,为学习分式基本性质做铺垫。
过程点评:•教师通过复习旧知和提出问题,自然过渡到新课内容,激发了学生的学习兴趣和求知欲。
•学生积极参与思考,为学习分式基本性质奠定了良好的基础。
三、教学过程3.1 分式有意义的条件教师行为:•教师明确指出:“分式有意义的条件是分母不能为0。
”•通过具体例子说明,如x−1x,当x=1时,分母为0,分式无意义。
•引导学生思考并总结分式有意义的条件。
学生活动:•认真听讲,理解分式有意义的条件。
•分析教师给出的例子,尝试自己总结分式有意义的条件,并与同学交流讨论。
过程点评:•教师通过具体例子和清晰讲解,使学生明确了分式有意义的条件。
•学生通过思考和讨论,加深了对这一性质的理解。
3.2 分式相等的条件教师行为:•教师给出两个分式相等的例子,如ba=dc(b=0,d=0),并指出:“如果两个分式相等,那么它们的交叉相乘也相等,即ad=bc。
初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。
二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。
2. 能够运用约分与通分的方法对分式进行运算。
3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。
三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。
难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:教材、练习本、计算器。
五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。
2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。
(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。
(3)通过例题讲解,演示如何运用基本性质简化分式。
3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。
4. 例题讲解:(1)分式的乘除法运算。
(2)分式的乘方运算。
(3)含有绝对值的分式简化。
5. 课堂小结:六、板书设计1. 分式的定义与结构。
2. 分式的基本性质。
3. 分式的约分与通分。
4. 分式的乘除法及乘方运算。
5. 例题及解题步骤。
七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。
(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。
(3)计算分式的乘方:(x^24)/(x+2)^2。
2. 答案:(1)1/(2x4)。
(2)3x(x2)/(2(x+2)(x2))。
(3)(x2)^2/(x+2)^2。
八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。
第十五章 15.1.2分式的基本性质知识点1:分式的基本性质分式的基本性质:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变.用式子表示为: =,=,C≠0,其中A、B、C是整式.关键提醒:(1)基本性质式子中的A、B、C表示的是整式.(2)C是不为零的整式.C是一个含有字母的代数式,由于字母的取值是任意的,所以C就有等于0的可能性.因此运用分式的基本性质时,考查C的值是否为0,已成为重点.(3)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.知识点2:分式的约分1. 利用分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.2. 约分的关键是找出分子与分母的公因式.公因式的确定方法:①当分子和分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式.②当分子和分母是多项式时,先把多项式因式分解,再确定.归纳整理:进行约分时,应注意以下几点:(1)当分式的分子与分母都是单项式时,可直接约分,也就是约去分子、分母系数的最大公约数,相同字母的最低次幂;(2)当分式的分子与分母都是多项式时,应先进行因式分解,再进行约分;(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面;(4)约分的结果应化为最简分式.知识点3:分式的通分(1)分式的通分:利用分式的基本性质,使分子和分母同时乘以适当的整式,不改变分式的值把几个分式化成相同分母的分式,这样的分式变形叫做分式的通分.(2)最简公分母:各分母所有因式的最高次幂的积,叫作最简公分母.(3)分式通分的关键是确定几个分式的最简公分母.最简公分母的确定方法:①取各分母系数的最小公倍数;②凡单独出现的字母,则连同它的指数作为最简公分母的一个因式;③同指数幂取次数最高的,这样得到的因式的积就是最简公分母.考点1:分式的性质【例1】不改变分式的值,使下列分式的分子、分母都不含“-”号.(1);(2);(3).点拨:(1)改变分子、分母的“负”号,分式的值不变;(2)改变分子和分式本身的符号,分式的值不变;(3)改变分母和分式本身的符号,分式的值不变.解:(1)=;(2)=-;(3)=-.考点2:分数约分的计算【例2】下列约分正确的有( ).①=;②=1;③=0;④=.A. 1个B. 2个C. 3个D. 4个点拨:①分子、分母中的m分别与a和b相加,而不是相乘,故分子、分母没有公因式,①错误;②(m-n)3=-(n-m)3,约分后结果为-1,②错误;③分子、分母完全相同,约分以后应为1,③错误;④分子a2-2a-3=(a-3)(a+1),分母a2+2a+1=(a+1)2,约去公因式(a+1),结果为,④正确.答案:A.考点3:分数通分的计算【例3】通分:与.解:因为最简公分母是(m+3)(m-3),所以=,==-.点拨:通分的关键是确定各分母的最简公分母.先确定两个分式的最简公分母是(m+3)(m-3),再利用公式的基本性质分别变形.。
分式的基本性质说课稿5篇分式的基本性质说课稿5篇在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,下面给大家分享分式的基本性质说课稿,欢迎阅读!分式的基本性质说课稿精选篇1一、教材分析1、教材的地位及作用“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。
2、教学重点、难点分析:教学重点:理解并掌握分式的基本性质教学难点:灵活运用分式的基本性质进行分式化简、变形3教材的处理学习是学生主动构建知识的过程。
学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。
学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。
本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。
让学生自我构建新知识。
通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用. 最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
二、目标分析:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。
为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:1、知识技能:1)了解分式的基本性质2)能灵活运用分式的基本性质进行分式变形2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
初中数学《分式的基本性质》教案一、教学内容本节课我们将学习人教版初中数学教材八年级上册第十二章《分式》第一节“分式的基本性质”。
具体内容包括分式的概念、分式的基本性质以及分式的约分。
二、教学目标1. 理解并掌握分式的概念,能够正确书写分式。
2. 掌握分式的基本性质,能够运用这些性质进行分式的简化。
3. 学会分式的约分方法,能够熟练地进行分式的约分。
三、教学难点与重点教学难点:分式的基本性质以及运用这些性质进行分式的简化。
教学重点:分式的概念、分式的约分。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:练习本、铅笔。
五、教学过程1. 实践情景引入:通过实际生活中的例子,如分数表示的巧克力分享问题,引出分式的概念。
2. 教学新课:(1)讲解分式的定义,让学生理解分式的意义。
(2)通过例题讲解分式的基本性质,如分子分母同乘(除)一个不等于0的整式,分式的值不变。
(3)进行随堂练习,让学生运用分式的基本性质进行分式的简化。
3. 知识巩固:讲解分式的约分方法,让学生通过练习掌握约分技巧。
六、板书设计1. 分式的定义2. 分式的基本性质3. 分式的简化方法4. 分式的约分方法七、作业设计1. 作业题目:(1)化简分式:$\frac{3x^2}{6x}$。
(2)已知分式$\frac{2x4}{3x6}$的值与分式$\frac{x2}{x3}$的值相等,求$x$的值。
2. 答案:(1)$\frac{x}{2}$(2)$x=1$八、课后反思及拓展延伸1. 反思:本节课学生对分式的概念和基本性质掌握情况良好,但对分式的约分方法掌握不够熟练,需要在课后加强练习。
2. 拓展延伸:研究分式的乘除运算,为下一节课的学习打下基础。
重点和难点解析需要重点关注的细节包括:1. 分式基本性质的理解与应用2. 分式约分方法的掌握3. 实践情景引入的有效性4. 作业设计的针对性与难度一、分式基本性质的理解与应用1. 分式的分子和分母同乘(除)一个不等于0的整式,分式的值不变。
人教版八年级数学上册15.1.2《分式的基本性质》教学设计一. 教材分析人教版八年级数学上册15.1.2《分式的基本性质》是分式部分的重要内容,主要让学生了解分式的基本性质,包括分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变;分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式;分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
这些性质为后续分式的运算提供了重要的理论基础。
二. 学情分析八年级的学生已经学习了有理数的运算,对运算规律有一定的了解,但分式作为新的运算对象,其性质和运算规律与有理数有很大差异,需要学生在已有的知识基础上进行适当的延伸和拓展。
同时,学生可能对分式的实际应用场景还不够清晰,需要在教学过程中加以引导。
三. 教学目标1.理解分式的基本性质,并能灵活运用。
2.掌握分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变的规律。
3.掌握分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式的规律。
4.能运用分式的基本性质解决实际问题。
四. 教学重难点1.重点:分式的基本性质。
2.难点:分式的实际应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题引导学生思考,通过案例让学生理解分式的基本性质,通过小组合作让学生互相讨论、交流,提高解决问题的能力。
六. 教学准备1.PPT课件。
2.相关案例和练习题。
3.小组合作学习材料。
七. 教学过程1.导入(5分钟)利用PPT课件,展示分式的实际应用场景,如分数的简化、化学方程式的计算等,引出分式的基本性质。
2.呈现(10分钟)通过PPT课件,展示分式的基本性质,包括:a.分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
b.分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式。
同时,结合案例进行讲解,让学生理解并掌握这些性质。