差分脉冲阳极溶出伏安法测定溶液中金属离子全解
- 格式:docx
- 大小:37.64 KB
- 文档页数:10
水质重金属监测-阳极溶出伏安法杭州富铭环境科技有限公司摘要:本文基于阳极溶出伏安法测定水质中的铜、锌、铅、镉、汞、砷等重金属,在测量原理、硬件电路设计和软件设计等几方面进行了叙述。
关键词:水质监测;阳极溶出伏安法一、引言对水质重金属的检测通常采取取水样送实验室,使用原子吸收光谱法、原子荧光光谱法进行检测,不但成本高、效率低、操作复杂,而且水样输送过程引起的二次污染会影响检测结果的客观性。
本文基于线性扫描阳极溶出伏安法设计了一款能对铜、锌、铅、、镉、汞、砷等重金属进行现场自动检测的自动检测系统。
该系统无需人工操作,具有体积小、灵敏度高、检出限低、检测快速等优点。
(一)测量原理溶出伏安法是一种将电解沉积和电解溶出两个过程相结合的电化学分析方法。
操作主要分为富集、静置和沉积3个步骤。
首先在一定电位下将被测离子电沉积到工作电极上,通常此阶段采用磁力搅拌器搅拌溶液以提高富集效率;然后静置片刻,使被富集的物质在工作电极上分布均匀,以提高分析结果的再现性;最后反向扫描电位,使沉积的物质快速溶出,同时记录溶出电流峰,获得溶出伏安曲线。
通过电流出峰电位定性判断溶出物质,通过峰电流与物质浓度正比例关系定量计算被测物质的浓度。
由于溶出过程能产生较大的电流,所以该方法具有较高的灵敏度,最低检出限可达10-12 mol/L。
物质富集量与富集电位、富集时间、扫描速率、溶液PH值等有关,因此检测过程需合理配置相关参数。
溶出伏安法有多种,本文采用线性扫描溶出伏安法,其原理图如图1所示。
线性扫描溶出伏安法原理-图1(二)硬件电路设计系统采用MSP430F4270作为核心处理器。
MSP430F4270内部集成有3个独立16 bit带内部参考的∑-Δ模数转换器、12 bit数模转换器、可编程增益放大器、LCD驱动器等,芯片的高度集成度使硬件设计变得简单,大大提高了系统的可靠性。
系统按照功能分为水样预处理单元、控制单元、检测单元和通信单元。
铋膜差分脉冲阳极溶出伏安法测定痕量铁铋膜差分脉冲阳极溶出伏安法(BiDEP)是一种高灵敏度、高选择性的电化学分析方法,可用于痕量元素的测定。
本文将介绍使用BiDEP法测定痕量铁的实验流程。
实验仪器- BiDEP电化学工作站- 三电极电池体系:铂电极为工作电极,铅电极为参比电极,铁电极为辅助电极- pH计- 磁力搅拌器试剂及材料- BiCl3(0.1 mol/L)电解质溶液- FeCl3(1.0 mmol/L)溶液- HCl(0.1 mol/L)溶液- NaOH(0.1 mol/L)溶液- 双膜铋电极- 双膜铋电极研磨液- 甲醇- 去离子水- 紫外可见分光光度计实验步骤1. 制备双膜铋电极将双膜铋电极放入双膜铋电极研磨液中轻轻摇晃,使电极表面获得一层均匀的黑色氧化铋膜。
然后将电极在去离子水中冲洗干净,并用甲醇擦干。
2. 调节电化学工作站参数调节电化学工作站中的参数:扫描速率为0.01 V/s,电压范围为-0.6 V至-0.3 V。
3. 准备双电极电池体系将铂电极、铅电极和铁电极依次插入电解质溶液中,并使用磁力搅拌器将电解质溶液均匀搅拌。
4. 执行扫描在电解质溶液中加入FeCl3溶液,使铁电极上形成一层薄膜。
然后开始执行扫描,记录扫描图谱。
5. 分析数据根据扫描图谱上的峰形及位置,可以计算出溶液中的铁离子浓度。
根据公式:C = Q/(F×A×t),其中C为离子浓度,Q为阳极溶出的电量,F为法拉第常数,A为铂电极的表面积,t为溶液中铁离子阳极溶出的时间,可以计算出铁离子的溶出电量。
6. 校准法测定痕量铁采用标准曲线法或加标回收法进行铁离子浓度的校正,得到痕量铁的浓度。
7. 验证实验结果使用紫外可见分光光度计验证实验结果的准确性。
总结通过BiDEP法测定痕量铁,可以获得高灵敏度和高选择性的测量结果,适用于痕量元素的测定。
在实验中需要仔细控制实验条件,以确保测量结果的准确性。
差分脉冲阳极溶出伏安法检测重金属离子孙萍;晏明国;张鸿泽;黄琦;周林;赵苡;彭富刚;刘培良【摘要】采用新型的差分脉冲阳极溶出伏安法检测液相环境下的铅、镉重金属离子.通过改变不同的实验条件,优化实验参数,最终选用以玻碳电极同位镀汞的方法测定液相环境下的铅、镉离子.该方法对铅、镉两种离子的检出限分别达到0.54、0.79 g/L,其中镉离子线性相关系数达到了0.9997.该差分脉冲阳极溶出伏安法具有灵敏度高、仪器设备简单、操作简便,污染小,能重复测量等优点,是一种高效,廉价的检测重金属浓度的方法,为重金属离子的实时监测打下一定基础.%The differential pulse stripping voltammetry is used to detect the lead and cadmium heavy metal ions in liquid phase. The experimental parameters can be gradually optimized by changing the experimental conditions. The experimental results are analyzed and discussed. The detection limits for lead and cadmium ions are 0.54 g/L, 0.79 g/L, respectively, and the linear correlation coefficient of cadmium reaches to 0.9997. The voltammetry used here has merits such as high sensitivity, easy operation, simple structure, low pollution, repeatable measurement, and show potential application for real-time monitoring of heavy metal ions.【期刊名称】《电子科技大学学报》【年(卷),期】2017(046)005【总页数】6页(P784-789)【关键词】差分脉冲阳极溶出伏安法;玻碳电极;重金属离子;同位镀汞法【作者】孙萍;晏明国;张鸿泽;黄琦;周林;赵苡;彭富刚;刘培良【作者单位】成都信息工程大学光电技术学院成都 610225;四川农业大学理学院四川雅安 625014;四川农业大学理学院四川雅安 625014;四川农业大学理学院四川雅安 625014;四川农业大学理学院四川雅安 625014;四川农业大学理学院四川雅安 625014;四川农业大学理学院四川雅安 625014;四川农业大学理学院四川雅安 625014;四川农业大学理学院四川雅安 625014【正文语种】中文【中图分类】TM93电化学溶出法具有设备简单、灵敏度高、重现性好以及可以同时检测多种离子而被广泛应用到重金属离子的检测中[1-3]。
收稿日期:2003207207 通讯联系人:陈 剑第21卷第1期V ol.21 N o.1分析科学学报JOURNA L OF ANA LY TIC A L SCIE NCE 2005年2月Feb.2005文章编号:100626144(2005)0120051203粉末微电极溶出伏安法检测溶液中的重金属离子郭志谋,陈 剑3(武汉大学化学与分子科学学院,武汉430072)摘 要:本文利用粉末微电极技术得到了Hg 2+、Pb 2+、Cu 2+及Cd 2+的溶出伏安曲线,并分别检测了溶液中微量Hg 2+、Pb 2+、Cu 2+及Cd 2+的浓度,其测量灵敏度分别为:514.6μA/cm 2・μm ol ・L -1、131.5μA/cm 2・μm ol ・L -1、41.2μA/cm 2・μm ol ・L -1和96.5μA/cm 2・μm ol ・L -1;检出限分别为:5.0×10-7m ol/L 、5.0×10-7m ol/L 、1.0×10-6m ol/L 和2.0×10-6m ol/L ;线性检测范围分别为:3.4~10.9μm ol/L 、4.5~10.0μm ol/L 、2.9~10.0μm ol/L 和2.2~11.2μm ol/L 。
当溶液中同时存在上述四种金属离子时,采用粉末微电极技术得到了四个完全分离、互不干扰的氧化电流峰。
关键词:重金属离子;粉末微电极;溶出伏安法中图分类号:O657.15 文献标识码:A重金属是引起环境污染的主要原因之一。
测定微量重金属浓度的方法主要有光谱方法,如:原子吸收光谱法[1-5]及分光光度法[6]等。
前者测量的灵敏度较高,然而实验所需的仪器设备比较昂贵,并且测定的前处理工作要求精细。
阳极溶出伏安方法测定简单,通常采用汞和汞膜电极[7],然而由于汞电极具有较大的毒性,越来越多的研究工作致力于寻找新的电极体系,如修饰电极[8,9]等。
铋膜差分脉冲阳极溶出伏安法测定痕量铁铋膜差分脉冲阳极溶出伏安法测定痕量铁一、简介铁是一种常见的有机和无机污染物,存在于环境中的水、土壤和大气中。
痕量铁对环境和人体健康都有一定的影响,因此准确快速地测定痕量铁的含量对于环境监测和食品安全等方面都具有重要意义。
二、铋膜差分脉冲阳极溶出伏安法的原理铋膜差分脉冲阳极溶出法(DPPAS)是一种基于阳极溶出的电化学测定方法。
在该方法中,铋膜与试剂间存在反应,产生的氧化物溶解在电化学工作电极上,进而得到电流响应。
这种电流与铁的浓度呈线性关系,可以用来测定样品中痕量铁的含量。
三、实验步骤1.准备工作:根据需要,将待测样品或标准溶液稀释到适当的浓度,清洗工作电极并确保其表面无沉淀物或杂质。
2.打开电化学工作台,进行电极的连接和测量条件的设置。
3.测量前的处理:根据样品的特性,可以进行适当的预处理步骤,例如酸溶解、沉淀去除等。
4.测试曲线的建立:准备一系列不同浓度的标准溶液,分别进行测量,将电流响应与浓度建立起线性关系的测试曲线。
5.样品测量:将待测样品加入到电化学工作电极中,通过测试曲线计算出样品中铁的浓度。
四、优点和应用铋膜差分脉冲阳极溶出伏安法具有以下优点:1.灵敏度高:该方法可以对痕量铁进行快速准确的测定,灵敏度可达到ppb级别。
2.选择性好:该方法对铁和其他金属离子具有良好的选择性,可以排除其他干扰物的影响。
3.操作简便:相对于传统方法,该方法操作简便,无需复杂的仪器设备。
4.成本低廉:该方法所需试剂和仪器设备成本较低,适用于大规模的样品检测。
铋膜差分脉冲阳极溶出伏安法广泛应用于痕量铁的测定,具体应用领域包括:1.环境监测:用于水体、土壤和大气中铁污染物的检测,为环境保护和治理提供依据。
2.食品安全:用于食品中痕量铁的检测,确保食品安全和质量。
3.医学诊断:用于生物体内痕量铁的测定,对于一些疾病的诊断和治疗具有重要作用。
总结:铋膜差分脉冲阳极溶出伏安法是一种快速准确的测定痕量铁的方法,具有灵敏度高、选择性好、操作简便和成本低廉等优点。
实验主题:溶出伏安法测定微量金属离子实验目的:1. 了解溶出伏安法的基本原理和实验步骤;2. 掌握使用溶出伏安法测定微量金属离子的实验技术;3. 通过实验观察和分析,掌握实验数据处理和结果判断的方法。
实验原理:溶出伏安法是一种电化学分析方法,它利用金属离子在电极上的溶出与沉积来测定微量金属离子的方法。
在实验中,通常使用溶液作为基体溶液,通过控制电位来使金属离子在电极上溶出和沉积,然后测定溶出的电流或电荷量来计算金属离子的浓度。
实验步骤:1. 实验前,将所需的电化学仪器和试剂准备好,包括电化学工作站、双电极工作电极、参比电极、计时器、溶出伏安法测定电化学池等设备,以及待测金属离子的标准溶液。
2. 样品预处理,将待测金属离子的样品溶解或稀释至合适的浓度,使其适合进行溶出伏安分析。
3. 调节工作电极的电位,在所选定的溶出电位范围内进行扫描,使金属离子在工作电极上溶出和沉积。
4. 通过测定溶出的电流或电荷量,建立电流-电位曲线或电流-时间曲线。
5. 分析实验数据,根据溶出伏安曲线的特征和测定电流的变化,计算出待测金属离子的浓度。
实验结果与讨论:根据实验数据和分析结果,可以得出金属离子的浓度。
根据溶出伏安曲线的形状和特征,可以对金属离子的溶出过程和溶出动力学进行分析。
还可以进一步讨论实验中可能出现的误差和影响因素,以及可能的改进措施。
实验结论:通过溶出伏安法测定微量金属离子的实验,我们成功地获得了待测金属离子的浓度,并对金属离子的溶出行为进行了初步的分析。
实验结果表明,溶出伏安法是一种准确、可靠的测定微量金属离子的方法,具有很好的应用前景。
实验感想:通过本次实验,我对溶出伏安法的原理和技术有了更深入的了解,同时也锻炼了实验操作和数据处理的能力。
在今后的实验研究中,我将进一步掌握溶出伏安法的操作技巧,提高实验数据的准确性和可靠性。
溶出伏安法测定微量金属离子的实验不仅带来了实验技术上的提升,更加深了我们对电化学分析方法的理解和应用,为今后的科学研究和实验技术提供了有力支持。
差分脉冲法2+2+阳极溶出伏安2+Cd ZnPb 定溶液中测魏双李红欣名:姓13-1应用化学级:教师:宋杨张宝峰溪晓田指导摘要随着工业的迅速发展,重金属污染已经成为日益严重的环境污染问题之一,由于重金属不易被生物代谢,容易积蓄在生物体内,造成重金属中毒。
因此,重金属的检测显得尤为重要。
电化学中的溶出伏安法具有仪器设备简单、灵敏度高、选择性好等优点,广泛地应用于重金属的检测。
本论文采用采用差分脉冲溶出伏安法实现了水样中痕量铅、镉、锌的检测。
详细研究了铅、镉、锌离子在玻碳电极上的电化学响应行为。
实验结果表明:在pH =4.8 缓冲溶液中,-1.4 V 恒电位下搅拌,静置10 s 后正向电位扫描,铅离子在-0.64 V 左右出现阳极溶出峰,镉离子在-0.87 V左右出现阳极溶出峰,锌离子在-0.11 V左右出现阳极溶出峰。
在最优化实验条件下,铅、镉、锌溶出峰电流与其浓度呈良好的线性关系,实了水样中痕量铅、镉、锌离子的检测。
关键字:差分脉冲阳极溶出伏安法;电化学工作站CHI832;三电极系统;锌;铅;镉。
1.1 重金属离子的危害重金属元素铅和镉在水体中普遍存在且可长期蓄积危害人体健康。
随着人类活动的加剧,环境污染严重,重金属污染事故频发。
2005 年广东北江流域的镉污染事故、2008年湖南湘江的镉污染事故、2009年陕西凤翔的血铅事件,以及20 1 2年龙江的镉污染事故,都表明了加强对重金属的监测和预警已成为我国环境监测的重点。
铅和镉在线检测分析方法目前主要有分光光度法和电化学阳极溶出法。
分光光度法易实现自动化,适合应用于在线分析仪,但其灵敏度不足,无法满足铅和镉的痕量分析;电化学溶出伏安法灵敏度高、设备结构简单,被广泛【1-5 】。
应用于重金属的在线检测中2+2+)(Pb 作为重金属污染源可以对生物机制产生毒性作和铅金属离子镉(Cd) 的毒性主要来源于其模仿功Pb 其中用从而对人类身体健康造成了严重的威胁。
.能,它可以占据细胞中Ca 依赖蛋白中Ca 的结合位点( 如钙调节蛋白和蛋白激[6]2+,可以导致肾功能失。
接触少量的C),导致相应的生理功能不可修复Cd酶[7-9] 0 因此探索灵敏、调、骨质疏松、肺气虚、肝损伤和高血压等急性或慢性疾病2+2+ 的含量具有重要意义0 Cd Pb 和快速和简单的分析方法对于精确监控1.2 检测方法研究进展目前通常使用的重金属检测方法一般有化学检测法和仪器分检测法.化学检测法通常是将待测样品与某种化学试剂直接发生化学反应,通过生成物的颜色。
生成物在溶液中的聚集状态来判断.为了保证分析方法的顺利完成和分析结果的可靠性,即既无检失又无过度检出,所用的化学反应必须符合下列要求:1,反应产物和反应过程必须具有良好的外显效果,这是定性检出的最关键问题,主要表现在视觉和嗅觉的可感知性上;2,反应要进行得相当完全,这种内部效果是外显效果的基础13,反应对某待检出离子是专属的或具有良好的选择性,即不受共存的其它离子的干扰.化学检测法往往受到反应灵敏度的影响,而灵敏度又往往受到反应时间、反应时的温度、试剂的浓度和溶液的PH值的影响.化学检测通常只能作为一种定性分析和常量分析.随着科学仪器和计算机技术的快速发展,仪器分析在现代分析测试中越来越显出其强大的作用. 仪器分析就是采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来确定物质的化学组成、成分含量及化学结构,并且各自形成比较独立的方法原理及理论基础的一类分析方法嗍. 重金属离子的定量检测一般包括下列方法:1,原子吸收光谱法,它是以测量气态基态原子外层电子对共振线的吸收为基础的分析方法,原子吸收光谱法是一种成分分析法,可对60 多种金属元素进行定量分析,其检测限可达ng/ml,相对标准偏差为1〜2%,该法主要用于低含量元素的定量检测;2,紫外可见分光光度法,利用重金属离子与显色剂发生配合作用形成有色配合物,在特点波长下,通过测童有色配合物的吸光度来测量重金属的含量.此外,通常认可的重金属分析方法还有:微谱分(MS)、原子荧光法(AFS)、电感耦合等离子体(ICP)、X荧光光谱法(XRF)、电感耦合等离子质谱法(ICP —MS) 法等.不过,这些分析方法都要求借助比较贵重的仪器。
样品前期准备工作比较繁琐,现而近年来发展较快的电化学方法在重金属离予检测方面由于场检测难度较大等.其灵敏度高、仪器比较简单、操作方便,是一种很好的痕量分析手段而受到人们越来越多的青睐.本文就重点来介绍这种分析方法的原理和工作步骤。
1.3 金属检测的电化学方法电化学法是近年来发展较快的一种方法,它以经典极谱法为依托,在此基础上又衍生出示波极谱、阳极溶出伏安法等. 由于电化学法的检测限较低,测试灵敏度较高,值得推广应用.极谱分析法是捷克物理化学家海洛夫斯基1922年首先提出的一种电化学分析方法,由于其在发明和发展极谱分析过程的突出贡献而荣获 1 959年诺贝尔化学奖.自1925 年海洛夫斯基和方志益三制造出全世界第一台极谱仪以来,经过几十年的发展,极谱仪器和分析方法都有了长足的进展. 在仪器方面,已经从经典极谱发展到交流极谱、示波极谱、方波极谱和脉冲极谱等新的仪器品种;分析方法上,发展了极谱催化波、平行和H催化波、固定电极溶出伏安等新方法;电极材料方面,从开始的滴汞电极到悬汞电极、玻碳电极、银基汞膜电极、多孔电极和纳米材料电极等. 经典极谱中,每滴汞周期的电解电压变化只有约几个毫伏,电压变化小,每滴汞生成与滴落导致地充放电电流其数值只相当10-5mol/L离子还原所产生的电流.因此,经典极谱带有明显的局限性:严重影响对于微量或痕量组分的测定;经典极谱耗时较长,耗汞量较多;分辨率低,其要求相邻离子的半波电位相差要大于100mv 不可逆波产生干扰.阳极溶出伏安法是一种灵敏度很高、用于痕量组分的电化学分析法.溶出伏安法包含电解富集和电解溶出两个过程. 电解富集过程:将工作电极固定在产生极限电流电位上进行电解,使被测物质富集在电极上. 为了提高富集效果,可同时使电极旋转或搅拌溶液以加快被测物质快速达到电极表面. 富集物质的量取决于电极电位、电极面积、电解时间和搅拌速度等因素.溶出过程:在富集结束静止一段时间后,再在工作电极上施加一个反向电压进行电位扫描,使原来富集在电极上的物质重新氧化为离子进入溶液,在氧化过程中将产生氧化电流,记录下电压一电流曲线(即伏安曲线).该曲线呈峰形,其峰值电流与溶液中被测离子的浓度成正比,这正是溶出伏安法进行定量分析的依据,而峰值电位可作为定性分,由于汞电极具[10-11] 析的有力证据.阳极溶出伏安法通常采用汞和汞膜电极.有较大的毒性[12-14] ,越来越多的研究工作致力于寻找新的电极体系如修饰电极等[15] .粉末微电极是用一般的粉末材料填人被腐蚀了的微盘电极空腔中制得的微电极.它是多孔电极与微电极的有机结合. 粉末微电极的端面具有微盘电极的直径以及表观面积,而粉层部分具有多孔电极的性质.因而,相对于平面微盘电极,粉末微电极的实际有效反应表面积显著提高. 相应地,粉末微电极上氧化还原电对的表观交换电流密度以及表观可逆性显著增加. 这些特征已成功地应用于化学电源、电催化以及生物电化学等领域C63.对于可以在电极表面富集(吸附或电化学沉积)的氧化还原电对,利用粉末微电极可以显著提高测量的灵敏度并且可以显著地改善电极反应的表观可逆性,这对于超电势大而引起电流峰值重叠的各氧化还原电对之间的分离十分有利[16-18] .利用粉末微电极检测污染水中重金属离子的含量,首先将粉末微电极固定在比各种离子还原电势稍负的电位位置进行恒电位还原一段时间,然后将电极电势向阳极方向扫描,由于电化学氧化反应速度较快在曲线上留下尖蜂,记录下电流一电位曲线,这就是重金属离子阳极溶出伏安曲线. 为了证实电极在溶液中的富集情况,我们可以通过延长电极在还原电势上的极化时间,如果发现线性扫描曲线上电流峰的峰电量与时间成正比,则表明金属离子的电化学还原产物在电极表面上发生了明显的富集. 其次,通过不同标准离子浓度的溶液作阳极溶出伏安曲线,作出离子浓度与峰电流的标准工作曲线.最后,对照标准工作曲线,只要测出待测水样中金属离子的峰电流值就可以得出该离子的度. 而根据蜂电流所对应的的峰电位的数值就可以找出该离子的归属. [19-20]2. 实验部分2.1 实验原理溶出分析法可分为阴极溶出分析法、阳极溶出分析法、电位溶出分析法和吸附溶出分析法。
本实验采用的是阳极溶出伏安法。
.即首先将工作电极控制在某一条阳极溶出伏安法的测定包含两个基本过程。
使被使被测定物质在电极上富集,然后施加线性变化电压于工作电极上,件下,根据溶出峰电流的大小来确测物质溶出,同时记录电流与电极电位的关系曲线,是通过计算电流逢高或者面积并且样品离子浓度的计算,定被测定物质的含量。
与相同条件下的标准溶液相比较得出。
2.2实验仪器及试剂2.2.1主要仪器生产厂家仪器名称型号上海精密科学仪器有限分析天平FA2004公司上海精密科学仪器有限JAC-1505P超声波清洗仪公司上海辰华仪器有限公司CHI832A电化学工作站.CHI104玻碳电极上海辰华仪器有限公司上海辰华仪器有限公司CHI115铂丝电极Ag-AgCl电极上海辰华仪器有限公司CHI电化学工作站参数设置 2.2.2-1.4 初始电位(E)(伏)0.3 终止电位(E)(伏)0.004 E )(伏)电位增量(0.1 )(伏)振幅(A0.03 (秒)脉冲宽度(W 0.06脉冲周期(P)(秒)10 )(秒)Q静止时间0.001灵敏度(伏2.2.3实验中使用的主要试剂试剂名称纯度生产厂家氯化镉分析纯上海试剂厂上海试剂厂分析纯硝酸铅.分析纯上海试剂厂氯化锌上海试剂厂分析纯乙酸上海试剂厂分析纯无水乙酸钠2.3实验准备2.3.1玻碳电极预处理用去离子水将玻碳电极在鹿皮上抛光表面3min,再使用A12O3粉乳浊液抛光表面3min,然后用蒸馏水超声清洗1min,晾干待用。
232标准溶液配制镉标准溶液:称取0.4575g氯化镉,放入烧杯中,加入去离子水溶解,冷却移入250m L容量瓶,定容,摇匀,倒入试剂瓶中备用。
此溶液浓度为-2。
1x10mol/L 硝酸铅,放入烧杯中,加入去离子水溶解,冷铅标准溶液:秤取0.8281g1250ml 容量瓶中,定容,摇匀,倒入试剂瓶中备用。
此溶液浓度为却转移入-2 X10°mol/L 氯化锌,放入烧杯中不,加入去离子水溶解,0.3408g锌标准溶液:秤取1冷却转移入250ml容量瓶中,定容,摇匀,倒入试剂瓶中备用。
此溶液浓度为-2 o x10mol/LPH缓冲溶液:称取无水乙酸钠32.5g加水稀释,使用乙酸溶液调节溶液,冷却,后移入为4.8250m L容量瓶,定容,摇匀,最后倒入试剂瓶中备用。