图形的相似与位似 教师版
- 格式:docx
- 大小:167.55 KB
- 文档页数:5
北师大版数学九年级上册《位似图形》教案一. 教材分析北师大版数学九年级上册《位似图形》是学生在学习了相似图形的基础上,进一步研究位似图形的性质和应用。
本节课的内容包括位似图形的定义、位似比、位似变换等,通过这些内容的学习,使学生能够理解位似图形的概念,掌握位似变换的方法,并能够运用位似图形的性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了相似图形的性质,对图形的相似性有一定的认识。
但是,对于位似图形的概念和性质,以及位似变换的方法,可能还比较陌生。
因此,在教学过程中,需要通过具体的实例和活动,帮助学生理解和掌握位似图形的性质和应用。
三. 教学目标1.理解位似图形的概念,掌握位似比的概念和计算方法。
2.掌握位似变换的方法,能够运用位似图形的性质解决实际问题。
3.培养学生的空间想象能力,提高学生的数学思维能力。
四. 教学重难点1.位似图形的概念和性质。
2.位似比的概念和计算方法。
3.位似变换的方法和应用。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等教学方法,通过具体的实例和活动,引导学生探究位似图形的性质和应用,激发学生的学习兴趣,培养学生的空间想象能力和数学思维能力。
六. 教学准备1.准备相关的教学实例和图片。
2.准备教学课件和板书设计。
3.准备练习题和作业。
七. 教学过程1.导入(5分钟)通过展示一些相关的实例和图片,引导学生回顾相似图形的性质,为新课的学习做好铺垫。
2.呈现(15分钟)介绍位似图形的定义和性质,通过具体的实例和活动,引导学生探究位似比的概念和计算方法,以及位似变换的方法。
3.操练(15分钟)通过一些练习题,帮助学生巩固位似图形的性质和应用,提高学生的解题能力。
4.巩固(10分钟)通过一些综合性的练习题,帮助学生巩固位似图形的性质和应用,提高学生的综合运用能力。
5.拓展(10分钟)通过一些拓展性的问题和活动,激发学生的学习兴趣,提高学生的数学思维能力。
人教版九年级上册数学27.3《图形的位似》教学设计
一、教学目标
1、知识目标:
(1)了解图形的位似概念,及其和相似图形的区别,会判断简单的位似图形和位似中心。
(2)理解位似图形的性质,掌握位似图形的画法。
2、能力目标:
(1)能利用位似将一个图形放大或缩小,解决一些简单的实际问题。
(2)培养学生综合分析问题、解决问题的能力,进一步提高学生利用图形的变换解决问题的能力和小组合作、探究学习的能力,促进良好的数学思维习惯和应用意识的形成。
(3)发展学生的合情推理能力和初步的逻辑推理能力。
3、情感目标:
(1)通过较多的社会背景素材的展现,使学生亲身经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习内容的现实性、应用性、挑战性。
(2)进一步体验合作互助、解决难题的情感,感受数学创造的乐趣,增进学好数学的信心。
二、教学重点和难点
教学重点:图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。
教学难点:图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。
三、教学过程
三、合作交流
1.学生观察位似图形,归纳概念
观察两个四边形都有哪些特征,试归纳。
(2)等边三角形ABC
4. 哪些图形是位似图形并指出位似。
九年级数学导学案课题: 4.8.1图形的位似学习目标 1.理解位似多边形的定义及相关性质。
2.理解相似多边形与位似多边形的联系与区别。
3.初步了解能利用图形的位似将一个图形放大或缩小的理论依据。
.学习重点 1.理解位似多边形的定义及相关性质。
2.能利用图形的位似将一个图形放大或缩小。
学习过程一、自主学习1. 什么的相似多边形?2. 相似三角形的判定定理有哪些?二、合作探究1、以下五幅图片是形状相同的图形,取图中相对应的两点A、B,它们的连线经过镜头中心P吗?换其他的对应点试一试,还有类似规律吗?2、如图两个相似五边形,设直线AA′与BB′相交于点O,那么CC′,DD′,EE′是否也都经过O?知识点:(1)如果两个相似多边形每组对应点A、A′所在的直线都经过同一个点O,且OA′=k·OA(k≠0),那么这样的两个多边形叫做,点O叫做。
(2)位似多边形上任意一对对应点到位似中的班级:姓名:日期:次数:距离之比k等于(3)、课本P113图4-37也是五边形。
三、互动展示(学生在独立思考的基础上小组交流,并选代表展示)1、已知△ABC,已点O为位似中心作△DEF,使它与△ABC位似,并且相似比为2。
思考:满足条件的△DEF可以再点O的另一侧吗?四、达标测试1、判断正误:(1)位似多边形一定是相似多边形。
(2)相似多边形一定是位似多边形(3)两个位似多边形每一对对应点到位似中心的距离之比为2︰3,则两个多边形的面积之比为4︰9。
(4)两个位似多边形的对应边互相平行或在同一直线上。
2.判断一下两组多边形是否是位似多边形。
3、画一个任意四边形ABCD,在它的内部任取一点O,一点O为位似中心,画一个四边形A′B′C′D′,使它与四边形ABCD位似,且相似比为21。
第2题五、课堂小结与反思你通过本节课的探索解决了哪些问题?还有那些困惑?有哪些新的发现、想法?六、课堂延伸、布置作业、预习思考1、必做题:课本P115习题4.13第1、2、3题。
九年级数学上册4.8.1 图形的位似教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册4.8.1 图形的位似教案(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册4.8.1 图形的位似教案(新版)北师大版的全部内容。
课题:4。
8。
1 图形的位似教学目标:1.了解位似多边形的有关概念,会判断简单的位似图形及位似中心. 2.能够利用位似将一个图形放大或缩小,并能解决一些简单的实际问题.3.经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习的实用性,体会学习数学的快乐. 教学重、难点:重点:位似多边形的相关定义、性质的理解,绘制位似多边形方法的掌握. 难点:位似多边形的判断,从位似中心的不同方向绘制位似多边形. 课前准备:制作多媒体课件,图钉、橡皮筋、铅笔等. 教学过程:一、创设情境,导入新课导语:同学们,色彩斑谰的世界中有许多美丽的图形,它们有的是形状、大小都相同的全等形(多媒体出示图1);有的是形状相同,大小不同的相似图形(多媒体出示图2);有的不但是相似图形,而且所处的位置也特殊(多媒体出示图3),这样的两个图形是位似图形.你知道如何画位似图形吗?你知道位似图形有哪些性质吗?本节课就让我们一起来探究位似图形的性质与画法.【板书课题:4.8图形的位似(1)】处理方式:教师播放媒体课件,学生观察生活中的存在的全等形、相似形、位似形,体会数学来源于生活,在相似形的基础上感知位似图形.设计意图:通过用多媒体课件展示生活的的图片,引入本章的学习内容:位似图形.初步图1图2图3感知位似图形,引发学生思考位似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.二、探究学习,获取新知 活动1:美图赏析(多媒体出示)请同学们欣赏这幅海报,它是由一组形状相同的图片组成.在图片①和图片②上任取一组对应点A ,A ',试问A ,A '的连线是否经过镜头中心O ?OAA O '的值与哪两条线段的比相等?在图片上换其他的点还有类似的规律吗?处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)在图片①和图片②上任取一组对应点A ,A ',它们的连线是否经过镜头中心O ?(2)OAA O '的值与哪两条线段的比相等?设计意图:通过以上问题引导学生感悟出:图片①和图片②上任意一组对应点的连线都经过镜头中心O ,而且对应点A ,A '到镜头中心O 的距离比等于两个图形的相似比.便于引出位似图形的概念.活动2:动手连一连(多媒体出示)如图,是两个相似比为k 的相似五边形,设直线A A ' 与B B '相交于点O ,那么直线C C '、D D '、?OA OB OC OD OE ,,,,有什么关系?AO②A '①处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)直线CC'、DD'、EE'是否也都经过点O?(2)OA OB OC OD OEOA OB OC OD OE''''',,,,有什么关系?(多媒体演示三角形相似)设计意图:通过以上问题引导学生感悟出:直线CC'、DD'、EE'都经过点O,而且每一对应点到O的距离比等于两个图形的相似比.活动3:出示位似图形的概念(多媒体出示)一般地,如果两个相似多边形任意一组对应点P,P'所在的直线都经过同一点O,且有PO'=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.k就是这两个相似多边形的相似比.处理方式:教师利用多媒体出示位似多边形及位似中心的概念.强调相关要点,明确k就是这两个位似多边形的相似比.设计意图:了解位似多边形及位似中心的概念,感悟位似图形的性质.活动4:位似图形的性质(多媒体出示)请观察下列两组图形,回答问题:每组图形中两个图形是否是位似图形?若是位似图形,请找出位似中心,对应边有什么特处理方式:学生先观察、连线、测量、计算,小组内交流,教师启发引导:①如何判断两②③个图形是否位似?如果两个图形位似,位似中心与两个图形;②每组对应点到位似中心的距离之比与对应边的比有什么关系?学生交流展示①、②位似,且相似比等于对应点到位似中心的距离之比,③相似但不位似;位似中心可能在对应点的同侧,也可能在它们之间.教师板书:位似图形的对应点的连线经过位似中心,且到位似中心的距离之比等于相似比;位似中心可能在对应点的同侧,也可能在它们之间;对应线段平行或在同一条直线上.设计意图:通过观察图形、猜想、测量、计算、验证结论,提高学生分析、归纳能力,体会分类的思想,进而掌握位似的性质,位运用位似放大或缩小图形做好铺垫.三、例题解析,应用新知例1 如图,已知△ABC ,DEF , 使它与△ABC 位似,且相似比为2.处理方式:给学生留时间,让学生先独立思考,并尝试到黑板展示,其余同学在练习本上完成,并进行相互点评,学生之间对比,教师提问作图依据及利用多媒体课件规范解题步骤,最后启发引导在O 点的另一侧作图,强调知识的应用及逆向思维.解:如图,⑴画射线OA ,OB ,OC ;⑵在射线OA ,OB ,OC 上分别取点D ,E ,F ,使OD =2OA ,OE =2OB ,OF =2OC ;⑶顺次连接D ,E ,F ,得△DEF ;则△DEF 与△ABC 位似,且相似比为2.设计意图:通过例题提供应用位似的性质的一个具体情境,加深学生位似图形的理解,掌握作图技巧,提高作图能力.让学生体会用所学的知识来解决问题的意识.导语:所作△DEF 与△ABC 位似,且相似比为2,即△ABC 被放大.利用位似的知识你能将任意图形进行放大或缩小吗?O · C B AFEDOCBA满足条件的△DEF 可以在点O 的另一侧吗?F 'E 'D '处理方式:教师演示并利用多媒体课件展示具体步骤,1.将两根长短相同的橡皮筋系在一起,联结处形成一个结点. 2.选取一个图形,在图形外取一点.3.将系在一起的橡皮筋的一端固定在定点,把一只铅笔固定在橡皮筋的另一端. 4.拉动铅笔,使两根橡皮筋的结点沿所选图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新的图形.请同学们来完成“做一做”:用橡皮筋放大图形.对学生进行分组,学生根据操作步骤合作完成对已知图形的放大.设计意图:通过动手操作,拓展学生的思路,结合放大或缩小不规则图形的方法,让学生通过操作、思考,讨论,加深对前面知识的理解,感悟各种不同方法之间的内在联系,体会位似在生活中的应用.四、巩固训练,落实新知1.已知点O 在△ABC 内,以点O 为位似中心画一个三角形,使它与△ABC 位似,且相似比为12.2.如图,请把下面的五角星图样放大,使得放大前后的相似比为1∶2.要把图形放大其他的倍数应怎么办?要缩CO ·AB3.请观察:以下每组图中的两个多边形是位似多边形吗?若是,请指出位似中心.处理方式:给学生留足时间,让学生先独立完成,选代表到黑板展示,同学间相互点评.设计意图:通过练习让学生理解位似图形,能应用位似知识解决相似图形中的相关问题.五、回顾反思,提炼升华通过这节课的学习,你学习了哪些知识?你有什么收获?你有什么发现、探索? 先想一想,再分享给大家.处理方式:学生畅谈自己的收获!教师强调:⒈位似多边形的相关概念、性质,及放大、缩小图形的方法.⒉位似多边形一定是相似多边形,但相似多边形不一定位似.⒊图形变换包括:全等变换:平移、旋转、对称;位似变换.设计意图:使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.六、达标检测,反馈提高活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)⒈如果两个相似多边形任意一组对应顶点P ,P '所在的 ,那么这样的两个相似多边形叫做位似多边形,这个点叫做 .⒉如图,通过小孔点O 蜡烛在竖直的屏幕上形成倒立的实像,像的长度BD =2cm ,OA =20cm ,OB =5cm ,则蜡烛的长度为 .⒊已知,如图,A B ''∥AB ,B C ''∥BC ,且OA ':A A '=4:3,则△ABC 与 是位似图形,位似比为 ;△OAB 与 是位似图形,位似比为 .处理方式:,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本 115页 习题4。
1.(2013北京,15,5)已知023a b =≠,求代数式()225224a b a b a b -⋅--的值. 线段的比、黄金分割与比例的性质2(2011山东省潍坊市,题号8,分值3)8、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( )A . 215-B .215+C . 3D .23(2013山东省聊城,11,3分)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,下列结论不正确的是( )A.BC=2DEB. △ADE ∽△ABCC. ACAB AE AD = D. ADE ABC S S ∆∆=3 4(2013四川省资阳市,10,3分)如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是A .63B .123C .183D .2435(2013湖北随州,14,4分)如图,点D,E 分别在AB 、AC 上,且∠ABC=∠AED 。
若DE=4,AE=5,BC=8,则AB 的长为______________。
10 (第10题图)N M D A CB6相似三角形的性质(2013重庆,12,4分)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△ABC与△DEF的面积之比为_______7(2013浙江省衢州,15,4分)如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则□ABCD中的面积为.(用a的代数式表示)8(2013山东省荷泽市,16(1),6)(1)如图,∠DAB=∠CAE,请你再补充一个条件____________,使得△ABC∽△ADE,并说明理由.9(湖南株洲市6,20题)((本题满分6分)如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)、求证:△COM∽△CBA;(2)、求线段OM的长度.10(2013湖南娄底,25,10分)如图13,在△ABC中,AB=AC,∠B=30︒,BC=8,D在边BC上,E在线段DC 上,DE =4,△DEF 是等边三角形,边DF 交边AB 于点M ,边EF 交边AC 于点N .(1)求证:△BMD ∽△CNE ;(2)当BD 为何值时,以M 为圆心,以MF 为半径的圆与BC 相切?(3)设BD =x ,五边形ANEDM 的面积为y ,求y 与x 之间的函数解析式(要求写出自变量x 的取值范围);当x 为何值时,y 有最大值?并求y 的最大值.11(2013山东泰安,17,3分)如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合,若AB=2,BC=3,则△FC B '与△B 'DG 的面积之比为( )A.9:4B.3:2C.4:3D.16:912(2013山东省荷泽市,18,10)如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF 的顶点都在格点上,P 1,P 2,P 3,P 4,P 5是△DEF 边上的5个格点,请按要求完成下列各题:(1)试证明三角形△ABC 为直角三角形;(2)判断△ABC 和△DEF 是否相似,并说明理由;BD E C NAFM(3)画一个三角形,它的三个顶点为中的3个格点并且与△ABC相似;(要求:用尺规作图,保留痕迹,不写作法与证明)13(2013安徽,22,12分)如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG 与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;解:(2)求证:DG平分∠EDF;证:(3)连接CG,如图2,若△BDG与△DFG相似,求证:B G⊥CG.证:14(2013山东泰安,28,10分)如图,E是矩形ABCE的边BC上一点,EF⊥AE,EF分别交AC、CD于点M、F,BG⊥AC,垂足为G,BG交AE于点H。
专题21 图形的相似与位似核心知识点精讲1.理解掌握比例线段的相关概念;2.理解掌握比例的性质、黄金分割点等定义; 3.理解掌握平行线分线段成比例定理; 4.理解掌握什么是相似多边形、位似图形。
考点1 比例线段1.比例线段的相关概念如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项。
在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段 若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项,线段的d 叫做a ,b ,c 的第四比例项。
如果作为比例内项的是两条相同的线段,即cbb a =或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项。
2.比例的性质 (1)基本性质①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔2(2)更比性质(交换比例的内项或外项)dbc a =(交换内项) ⇒=d c b a acb d =(交换外项)abc d =(同时交换内项和外项) (3)反比性质(交换比的前项、后项): (4)合比性质: (5)等比性质: 3.黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分nmb a =dc b a =割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB 考点2 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。
推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
23.5 位似图形1.会用位似法把一个多边形按比例放大或缩小.2.理解位似法画相似图形的原理,能正确选择位似中心画相似图形.重点位似的概念以及利用位似将一个图形放大或缩小. 难点比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律.一、情境引入相似与轴对称、平移、旋转一样,是图形的一个基本变换.要把一个图形放大或缩小,又要保持其形状不变.就是要画相似图形,现在我们先从画相似多边形开始.现在要把五边形ABCDE 放大到1.5倍,即是要画一个五边形A′B′C′D′E′,要与五边形ABCDE 相似且相似比为1.5.现在我们来动手做一做,同学们按以下步骤画出所需的多边形: 画法是:1.任取一点O.2.以O 为端点作射线OA ,OB ,OC ,OD ,OE.3.在射线OA ,OB ,OC ,OD ,OE 上分别取点A′,B ′,C ′,D ′,E ′使OA′∶OA=OB′∶OB=OC′∶OC=OD′∶OD=OE′∶OE=1.5.4.连结A′B′,B′C′,C ′D ′,D ′E′,A ′E ′,即得到所要画的多边形.二、探究新知教师结合课件引导学生动手操作,分析,得出位似变换定义及相关概念. 思考:用刻度尺和量角器量一量,看看上面的两个多边形是否相似? 上面的两个多边形相似.(学生回答) 你能否用演绎推理说明其中的理由?A′B′AB =B′C′BC =C′D′CD =D′E′DE =A′E′AE=1.5. 再用量角器量它们的对应角,看看是否相等呢?也可以用平行线的性质推出各对应角是相等的,所以五边形A′B′C′D′E′就相似于五边形ABCDE.位似变换的定义:如上面的画法,两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的相似叫做位似,点O 叫做位似中心.放映电影时,胶片和屏幕上的画面就形成一种位似关系,它们的位似中心是放映机上的凸透镜的光心.利用位似的方法,可以把一个多边形放大或缩小.位似中心也可以取在多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.三、练习巩固教师课件展示练习题1,2,3,分小组讨论,小组抢答展示,教师点评.1.如图,△OAB和△OCD是位似图形,AB与CD平行吗?为什么?第1题图第2题图2.如图,以点O为位似中心,将△ABC放大为原来的两倍.【教学说明】第1小题可根据位似的三要素得出对应线段平行;第2小题可有两种情况,画出其中一种即可.3.如图,图中的小方格都是边长为1的正方形,△ABC与△A1B1C1是以点O为位似中心的位似图形,它们的顶点都是在小正方形的顶点上.①画出位似中心点O;②求出△ABC与△A1B1C1的相似比;③以点O为位似中心,再画一个△A2B2C2,使它与△ABC的相似比等于1.5.四、小结与作业小结学生试述,这节课你学到了什么?还有哪些疑惑?布置作业从教材相应练习和“习题23.5”中选取.本课从学生动手画图入手,引入新课,提出问题,猜想,并加以证明,归纳位似的概念,探究位似图形的性质和画法,培养学生良好的数学学习习惯和严谨科学的学习态度.第24章 圆一、与圆有关的中档题:与圆有关的证明(证切线为主)和计算(线段长、面积、三角函数值、最值等)1. 如图,BD 为⊙O 的直径,AC 为弦,AB AC =,AD 交BC 于E ,2AE =,4ED =. (1)求证:ABE ADB △∽△,并求AB 的长;(2)延长DB 到F ,使BF BO =,连接FA ,判断直线FA 与⊙O 的位置关系,并说明理由.1.解:AB AC =,ABC C ∴=∠∠C D =∠∠,ABC D ∴=∠∠. 又BAE DAB =∠∠,ABE ADB ∴△∽△. AB AEAD AB∴=. ()()224212AB AD AE AE ED AE ∴==+=+⨯=.AB ∴=(舍负).(2)直线FA 与O 相切.连接OA .BD 为O 的直径,90BAD ∴=∠.在Rt ABD ∆中,由勾股定理,得BD ====1122BF BO BD ∴===⨯=. 2AB =,BF BO AB ∴==.(或BF BO AB OA ∴===,AOB ∴∆是等边三角形,F BAF ∠=∠.60OBA OAB ∴∠=∠=︒,30F BAF ∠=∠=︒.)90OAF ∴=∠.OA ∴⊥AF .又点A 在圆上,∴直线FA 与O 相切.2. 已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E ,过点D 作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求DF 的长; (3)求图中阴影部分的面积.2.(1)证明:连接DO .∵ABC ∆是等边三角形 ,∴∠C =60°,∠A =60°, ∵OA =OD , ∴OAD ∆是等边三角形. ∴∠ADO =60°. ∵DF ⊥BC ,∴∠CDF =30°.∴∠FDO =180°-∠ADO -∠CDF = 90°.∴DF 为⊙O 的切线.(2)∵OAD ∆是等边三角形,∴CD =AD =AO =21AB =2. Rt CDF ∆中,∠CDF =30°,∴CF =21CD =1. ∴DF =322=-CF CD . (3)连接OE ,由(2)同理可知E 为CB 中点,∴2=CE .∵1=CF ,∴1=EF . ∴233)(21=⋅+=DF OD EF S FDOE直角梯形. ∴ππ323602602=⨯=DOES 扇形.∴π32233-=-DOE FDOE S S 扇形直角梯形.3、如图,已知圆O 的直径AB 垂直于弦CD 于点E ,连接CO 并延长交AD 于点F ,且CF AD ⊥.(1)请证明:E 是OB 的中点; (2)若8AB =,求CD 的长.3、(1)证明:连接AC ,如图CF AD ⊥,AE CD ⊥且CF AE ,过圆心OAC AD ∴=,AC CD =,ACD ∴△是等边三角形. 30FCD ∴∠=在Rt COE △中,12OE OC =,12OE OB ∴=∴点E 为OB 的中点(2)解:在OCE t ∆R 中8AB =,142OC AB ∴==又BE OE =,2OE ∴=3241622=-=-=∴OE OC CE 243CD CE ∴==4.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC = 60︒,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作OC CD ⊥交PQ 于点D .FEDCBOACEBODF A(1)求证:△CDQ 是等腰三角形; (2)如果△CDQ ≌△COB ,求BP :PO 的值.4. (1)证明:由已知得∠ACB =90°,∠ABC =30°,∴∠Q =30°,∠BCO =∠ABC =30°. ∵CD ⊥OC ,∴∠DCQ =∠BCO =30°,∴∠DCQ =∠Q ,∴△CDQ 是等腰三角形. (2)解:设⊙O 的半径为1,则AB =2,OC =1,AC =121=AB ,BC =3. ∵等腰三角形CDQ 与等腰三角形COB 全等,∴CQ =BC =3.∵AQ =AC +CQ =1+3,AP =23121+=AQ , ∴BP =AB -AP =2332312-=+- PO =AP -AO =2131231-=-+, ∴BP ∶PO =3.5. 已知:如图, BD 是半圆O 的直径,A 是BD 延长线上的一点,BC ⊥AE ,交AE 的延长线于点C , 交半圆O 于点E ,且E 为DF 的中点. (1)求证:AC 是半圆O 的切线;(2)若662AD AE ==,,求BC 的长.5.解:(1)连接OE , ∵E 为DF 的中点,∴DE EF =. ∴ OBE CBE ∠=∠.∵OE OB =,∴OEB OBE ∠=∠.∴ OEB CBE ∠=∠.∴OE ∥BC. ∵BC ⊥AC , ∴∠C=90°. ∴ ∠AEO =∠C =90°. 即OE ⊥AC . 又OE 为半圆O 的半径,∴ AC 是半圆O 的切线. (2)设O 的半径为x ,∵OE AC ⊥,∴222(6)(62)x x +-=. ∴3x =. ∴12AB AD OD OB =++=. ∵OE ∥BC ,∴AOE ABC △∽△.∴AO OE AB BC =. 即9312BC= ∴4BC =.6.如图,ABC △内接于⊙O ,过点A 的直线交⊙O 于点P ,交BC 的延长线于点D ,且AB 2=AP ·AD (1)求证:AB AC =;(2)如果60ABC ∠=,⊙O 的半径为1,且P 为弧AC 的中点,求AD 的长.OPDCB6.解:(1)证明:联结BP .∵ AB 2=AP·AD ,∴ AB AP =ADAB.∵ ∠BAD=∠PAB,∴ △ABD ∽△APB , ∴ ∠ABC =∠APB,∵∠ACB =∠APB, ∴ ∠ABC =∠ACB.∴ AB=AC.(2)由(1)知AB=AC . ∵∠ABC=60°,∴△ABC 是等边三角形.∴∠BAC=60°, ∵P 为弧AC 的中点,∴∠AB P =∠PAC=12 ∠A BC=30°,∴∠BAP=90°, ∴ BP 是⊙O 的直径, ∴ BP=2, ∴ AP =12 BP=1,在Rt △PAB 中,由勾股定理得 AB 2= BP 2-AP 2=3, ∴ AD =AB2AP=3.7.如图,在△ABC 中,∠C =90°, AD 是∠BAC 的平分线,O 是AB 上一点, 以OA 为半径的⊙O 经过点D .(1)求证: BC 是⊙O 切线;(2)若BD =5, DC =3, 求AC 的长. 7.(1)证明: 如图1,连接OD .∵ OA =OD , AD 平分∠BAC , ∴ ∠ODA =∠OAD , ∠OAD =∠CAD .∴ ∠ODA =∠CAD . ∴ OD //AC . ∴ ∠ODB =∠C =90︒. ∴ BC 是⊙O 的切线. 图1(2)解法一: 如图2,过D 作DE ⊥AB 于E .∴ ∠AED =∠C =90︒. 又∵ AD =AD , ∠EAD =∠CAD ,∴ △AED ≌△ACD .∴ AE =AC , DE =DC =3.在Rt △BED 中,∠BED =90︒,由勾股定理,得 BE =422=-DE BD . 图2设AC =x (x >0), 则AE =x .在Rt △ABC 中,∠C =90︒, BC =BD +DC =8, AB =x +4, 由勾股定理,得x 2 +82= (x +4) 2. 解得x =6. 即 AC =6. 解法二: 如图3,延长AC 到E ,使得AE =AB .∵ AD =AD , ∠EAD =∠BAD ,∴ △AED ≌△ABD .∴ ED =BD=5.在Rt △DCE 中,∠DCE =90︒, 由勾股定理,得 CE =422=-DC DE . ………… ……………5分D在Rt △ABC 中,∠ACB =90︒, BC =BD +DC =8, 由勾股定理,得 AC 2 +BC 2= AB 2.即 AC 2 +82=(AC +4) 2.解得 AC =6.8.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD⊥AB 于E ,连结AC 、OC 、BC.(1)求证:∠ACO=∠BCD;(2)若BE=2,CD=8,求AB 和AC 的长.8、证明:(1)连结BD ,∵AB 是⊙O 的直径,CD⊥AB,∴. ∴∠A=∠2.又∵OA=OC,∴∠1=∠A.∴∠1=∠2.即:∠ACO=∠BCD.解:(2)由(1)问可知,∠A=∠2,∠AEC=∠CE B.∴△ACE∽△CBE.∴.CEAEBE CE =∴CE 2=BE·AE. 又CD=8,∴CE=DE=4.∴AE=8.∴AB=10.∴AC=.548022==+CE AE9.如图,已知BC 为⊙O 的直径,点A 、F 在⊙O 上,BC AD ⊥,垂足为D ,BF 交AD 于E ,且BE AE =.(1)求证:AF AB =; (2)如果53sin =∠FBC ,54=AB ,求AD 的长.9.解:(1)延长AD 与⊙O 交于点G .∵ 直径BC ⊥弦AG 于点D ,∴ . ∴ ∠AFB =∠BAE .∵ AE =BE ,∴ ∠ABE =∠BAE .∴ ∠ABE =∠AFB . ∴ AB =AF . (2)在Rt △EDB 中,sin ∠FBC =53=BE ED . 设ED =3x ,BE =5x ,则AE =5x ,AD =8x ,在Rt △EDB 中,由勾股定理得BD =4x . 在Rt △ADB 中,由勾股定理得BD 2+AD 2=AB 2.∵ AB =45,∴ 222)54()8()4(=+x x .AB=GBABCDEO GFOG FH A BC DECBA∴ x =1(负舍).∴ AD =8x =8.10.如图,已知直径与等边ABC ∆的高相等的圆O 分别与边AB 、BC 相切于点D 、E ,边AC 过圆心O 与圆O 相交于点F 、G 。
《位似图形》说课稿各位老师,下午好,今天我说课的课题《位似图形》是北师大版九年级上册第四章第8节的内容。
《位似图形》是属于数学课程标准第三学段“空间与图形”的重要内容之一。
而这一章节是整个图形与变换板块的基础,在结构上起着承上启下的作用。
而图形的位似是图形的相似的延伸和深化,是在学生已经掌握了相似图形相关知识和具备一定图形研究法的基础上,再来研究图形的位似,进一步对相似强化理解,更为相似三角形的应用作了一定的铺垫。
本节课的重点是:充分了解位似图形及其有关概念,并用作位似图形的方法,将一个图形放大或缩小。
从学生的认知过程角度来看,概念学习是接受一个新事物的起始阶段,也是后期应用的基础阶段,特别是对于图形的概念学习,尤其要注重概念的生成过程和基本含义。
而利用作位似图形的方法,将一个图形放大或者缩小,本质上是位似图形性质的应用,它是一个集动手与动脑一体的活动,也是本课的技能目标,因此,确立本课重点为以上两项。
本节课的难点在于能根据位似图形的性质,利用作位似图形的方法,将任意一个几何图形放大或者缩小。
理由是在实践教学中,由于学生认知水平的不同,往往不能很好的抓住图形的性质特征,从而实际应用位似图形的性质将图形放大或者缩小的时候,就会遇到拦路虎。
基于上述两点的分析,我确立了本课的教学目标为:1.理解位似图形的概念,掌握位似图形的性质。
2.在直角坐标系中,探索并了解将一个多边形的顶点坐标分别扩大或缩小相同倍数时,所得到的图形与原多边形位似。
3.利用位似图形的性质,掌握作位似图形的方法,并学会对图形放大或者缩小,进一步培养学生数学应用意识和动手操作的良好习惯。
下面说说我的设计思路:(1)设计理念本节课的主要采用启发式教学法。
整个教学过程力求从位似图形概念的得出,到位似图形性质的探索和应用,一方面做到放手让学生围绕所提出的问题进行观察,讨论,交流,另一方面又时刻给予必要指导,从而真正体现数学教学是数学活动的教学,是教师,学生间合作和互动的过程。
图形的相似与位似教师版
一、选择题
1.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.
1【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.
2如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()
A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE
2解:过点D作DH⊥BC,∵AD=1,BC=2,∴CH=1,DH=AB===2,∵AD∥BC,∠ABC=90°,∴∠A=90°,∵DE⊥CE,∴∠AED+∠BEC=90°,∵∠AED+∠ADE=90°,∴∠ADE=∠BEC,∴△ADE∽△BEC,∴,设BE=x,则AE=2,即,解得x=,∴,∴CE=,故选B.
3如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()
A.1:3 B.1:4 C.1:5 D.1:25
3解:∵DE∥AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴=,∵DE∥AC,∴
==,∴=,∴S△BDE与S△CDE的比是1:4,故选:B.
5如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为.
5解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,
∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,
∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,
∴EF=CF+CE=3=6,故答案为:6.
二、填空题
1.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.
1【解答】解:∵∠BCD=∠A,∠B=∠B,∴△DCB≌△CAB,
∴=,∴=,∴BD=.故答案为.
2.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5
5,则BD 的长为_______.
2连接AC ,过点D 作BC 边上的高,交BC 延长线于点H .在Rt △ABC 中,AB =3,BC =4,∴AC =5,又CD =10,DA =55,可知△ACD 为直角三角形,且∠ACD =90°,易证△ABC
∽△CHD ,则CH =6,DH =8,∴BD =
三解答题
1在△ABC 中,P 为边AB 上一点.
(1) 如图1,若∠ACP =∠B ,求证:AC 2=AP ·AB ;(2) 若M 为CP 的中点,AC =2, ① 如图2,若∠PBM =∠ACP ,AB =3,求BP 的长;
② 如图3,若∠ABC =45°,∠A =∠BMP =60°,直接写出BP 的长.
1【解析】(1)证明:∵∠ACP =∠B ,∠BAC =∠CAP ,∴△ACP ∽△ABC ,∴AC :AB =AP :AC ,∴AC 2=AP ·AB ;(2)①如图,作CQ ∥BM 交AB 延长线于Q ,设BP =x ,则P Q =2x ∵∠PBM =∠ACP ,∠P AC =∠CAQ ,∴△APC ∽△ACQ ,由AC 2=AP ·AQ 得:22=(3-x )(3+x ),∴x =5即BP =5;
②如图:作CQ ⊥AB 于点Q ,作CP 0=CP 交AB 于点P 0,
∵AC =2,∴AQ =1,CQ =BQ ,
设P 0Q =PQ =1-x ,BP -1+x ,
∵∠BPM =∠CP 0A ,∠BMP =∠CAP 0,∴△AP 0C ∽△MPB ,∴00AP P C MP BP
=,
∴MP ∙ P 0C =2012P C ==AP 0 ∙BP =x -1+x ),解得x
∴BP -11.
2如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N 分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.
(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;
(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD 分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM 与PN的数量关系,并加以证明.
2【解答】解:
(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中
,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,
∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,
∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,
∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,
∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.
∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.
(3)PM=kPN ∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.
∵点P、M、N分别为AD、AB、DE的中点,
∴PM=BD,PN=AE.
∴PM=kPN.。