当前位置:文档之家› 电磁场的数学基础

电磁场的数学基础

电磁场复习要点复习资料

电磁场复习要点 主要内容(章节) 1.1 1.2 1.3 1.4 1.5 1.7.1 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.1 3.2 3.3 3.5 4.1 4.2 4.3 4.5 思考题 2.2 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.16 3.2 3.3 3.4 3.9 3.10 3.15 3.17 3.18 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 习题 1.12 1.13 1.15 1.16 1.19 1.20 1.27 1.28 2.7 2.8 2.9 2.11 2.12 2.13 2.15 2.17 2.21 2.23 3.2 3.3 3.4 3.7 3.8 3.9 3.15 3.23 4.4 4.9 4.10 4.11 选择或填空 1. 在相同场源条件下,电介质中的电场强度是真空中电场强度的( A )。 A. r ε1倍 B. r ε倍 C. 0 1ε倍 D. 0ε倍 2. 静电场中试验电荷受到的作用力与试验电荷电量成( A )关系。 A. 正比 B. 反比 C. 平方 D. 平方根 3. 两点电荷所带电量大小不等,则电量大者所受作用力( C ) A .更大 B .更小 C .与电量小者相等 D .大小不定 4. 空间电场的电场强度为z e y e e E z y x 684ρρρρ++= V/m ,点A 的坐标为(0, 2, 0),点B 的坐标为(2, 4, 0),则A 与B 两点间的电压AB U 为( B )。 A. 40 V B. 56 V C. 64 V D. 48 V 5. 平板电容器的电容量与极板面积成( B ),与板间距离成( )。 A. 正比/正比 B. 正比/反比 C. 反比/正比 D. 反比/反比 6. 线性媒质中,电位移矢量的定义为( A ) A. P E D ρρρ+=0ε B. P E D ρρρ+=ε C. P E D ρρρ+= D. P E D ρρρ0ε+= 7. 静电场保守性的积分表达形式是( C )。 A. 0=????C l d E ρρ B. ??=?S S d E 0ρρ C. ?=?C l d E 0ρρ D. ?=?b a l d E 0ρρ 8. 静电场中以D ρ表示的高斯通量定理,其积分式中的总电荷应该是( C )。 A. 整个场域中的自由电荷 B. 整个场域中的自由电荷和极化电荷 C. 仅由闭合面所包的自由电荷 D. 仅由闭合面所包的自由电荷和极化电荷

带电粒子在均匀电磁场中的运动

目 录 一、引言 ........................................................................................ 1 二、认识等离子体 ........................................................................ 1 三、单粒子轨道运动 .................................................................... 5 3.1带电粒子在均匀电场中的运动学特性 .. (5) 3.1.10v 与E 垂直或平行时带电粒子的运动轨迹 (5) 3.1.20v 与E 成任一夹角时带电粒子的运动轨迹 (5) 3.2带电粒子在均匀磁场中的运动学特性 .......................... 6 3.2.1洛伦兹力 .. (6) 3.2.2粒子的初速度0v 垂直于B ...................................... 7 3.2.3粒子的初速度0v 与B 成任一夹角时 (8) 3.3带电粒子在均匀电磁场中的运动学特性 (10) 3.3.10v 、E 和B 两两相互垂直 (10) 3.3.20v 与E 成任一夹角,B 垂直它们构成的平面 (12) 四、小结 ...................................................................................... 16 参考文献 .. (16)

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终 端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?g g B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角速 度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 平行双线传输线与一矩形回路共面,如题图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

带电粒子在电磁场中运动的对称美赏析

带电粒子在电磁场中运动的对称美赏析 文/朱欣 大自然奇妙而又神秘的对称美普遍存在于各种物理现象、物理过程和物理规律中.从某种意义上讲,物理学的每一次重大突破都有美学思想在其中的体现.用对称性思想去审题,从对称性角度去分析和解决问题,将给人耳目一新的感觉.本文通过对带电粒子在电磁场中的运动问题的分析,体会其中的美学思想和对称美的感受. 一、一片绿叶 例1 如图1所示,在xOy平面内有很多质量为m、电量为e的电子,从坐标原点O不断以相同的速率v0沿不同方向平行xOy平面射入第Ⅰ象限.现加一垂直xOy平面向里、磁感应强度为B的匀强磁场,要求这些入射电子穿过磁场都能平行于x轴且沿x轴正方向运动.求符合条件的磁场的最小面积.(不考虑电子之间的相互作用) 图1 解析如图2所示,电子在磁场中做匀速圆周运动,半径为R=mv0/eB.在由O点射入第Ⅰ象限的所有电子中,沿y轴正方向射出的电子转过1/4圆周,速度变为沿x轴正方向,这条轨迹为磁场区域的上边界.下面确定磁场区域的下边界. 图2 设某电子做匀速圆周运动的圆心O′和O点的连线与y轴正方向夹角为θ,若离开磁场时电子速度变为沿x轴正方向,其射出点(也就是轨迹与磁场边界的交点)的坐标为(x、y).由图中几何关系可得 x=Rsinθ,y=R-Rcosθ, 消去参数θ可知磁场区域的下边界满足的方程为 x2+(R-y)2=R2(x>0,y>0). 这是一个圆的方程,圆心在(0,R)处.磁场区域为图中两条圆弧所围成的面积.磁场的最小面积为 S=2×((1/4)πR2-(1/2)R2)=(π-2)m2v02/(2e2B2). 欣赏由两条圆弧所围的磁场区域像一片嫩绿的树叶,青翠欲滴! 二、一朵梅花 例2 如图3所示,两个共轴的圆筒形金属电极,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感应强度大小为B.在两极间加上电压,使两筒之间的区域内有沿半径向外的电场.一质量为m、带电量+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速度为零.如果该粒子经过一段时间的运动之后恰好又回到出发点

电磁场课后习题答案

一 习题答案(第二章) 2.4 由E =-?? 已知?=+2ax b 得2E a =-??=- x ax 根据高斯定理:0 .E ?= ρ ε得 电荷密度为: 00.E ==? -2a ρεε 2.6 取直角坐标系如图所示,设圆盘位于xoy 平面,圆盘中心与坐标原点重合 方法1: 由 ' 04s s ds R ρ?=πε? 在球坐标系求电位值,取带点坐标表示源区

2'''0 00 4a s π ρ?=πε? ? 02s z ρ?= ?ε 因此,整个均匀带电圆面在轴线上P 点出产生的场强为 001 z>0 21 z<02s z s z ???ρ??ε?? =-??=? ? ?ρ?+??ε??a E -a 方法2 :(略) 2.7 当r>a (球外)时, 10 .E ?= ρε 221.(.)0E ??==? r r E r r 10.E ∴=? =0ρε 当r

2 22242()33x a y z a ??-++= ??? 由此可见,零电位面是以点(4 a /3,0,0)为球心,2 a /3为半径的球面。 2.20 由高斯定理.s D dS q =? 由 00r x r x D E E =εε=εεa 得 0() x qd E s x d =ε+a 由0 .d x U E dx =? 得 0ln 2qd U s = ε 由 q C U = 得 0ln 2 s C d ε= 2.22 由于d a ,球面的电荷可看作均匀分布的 先计算两导体球的电位1?、2?: 则112...d a a d E dr E dr E dr ∞ ∞ ?==+??? 112001144d a d q q q r r ∞ +???? = -+- ? ?πεπε???? 12 0044q q a d = + πεπε '''212...d a a d E dr E dr E dr ∞ ∞ ?==+??? 212001144d a d q q q r r ∞ +???? = -+- ? ?πεπε???? 120044q q d a = +πεπε 得 1122014P P a == πε,1221 01 4P P d ==πε

电磁场与电磁波复习资料

一、名词解释 1.通量、散度、高斯散度定理 通量:矢量穿过曲面的矢量线总数。(矢量线也叫通量线,穿出的为正,穿入的为负) 散度:矢量场中任意一点处通量对体积的变化率。 高斯散度定理:任意矢量函数A的散度在场中任意一个体积内的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。 2.环量、旋度、斯托克斯定理 环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。其物理意义随 A 所代表的场而定,当 A 为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。 旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。 斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。 3.亥姆霍兹定理 在有限区域 V 内的任一矢量场,由他的散度,旋度和边界条件(即限定区域 V 的闭合 面S 上矢量场的分布)唯一的确定。 说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度 4.电场力、磁场力、洛仑兹力电场力: 电场力:电场对电荷的作用称为电力。 磁场力:运动的电荷,即电流之间的作用力,称为磁场力。 洛伦兹力:电场力与磁场力的合力称为洛伦兹力。 5.电偶极子、磁偶极子 电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。 磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。 6.传导电流、位移电流 传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。 位移电流:电场的变化引起电介质内部的电量变化而产生的电流。 7.全电流定律、电流连续性方程 全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面内穿过的全部电流的代数和。

带电粒子在电磁场中的运动(二轮专题)

1、如图所示,在纸面内建立直角坐标系xOy,第一、二象限存在着垂直纸面向里的匀强磁场,磁感应强度大小为B。质量均为m、电荷量分别为+q和一q的两个粒子(不计重力),从坐标原点O以相同的速度v先后射人磁场,v方向与x轴成θ=30°角,带正、负电的粒子在磁场中仅受洛仑兹力作用,则 A.带负电的粒子回到x轴时与O点的距离为 B.带正电的粒子在磁场中运动的时间为 C.两粒子回到x轴时的速度相同 D.从射入到射出磁场的过程中,两粒子所受洛仑兹力的总冲量相同 2、如图所示,S处有一电子源,可向纸面内任意方向发射电子,平板MN垂直于纸面,在纸面内的长度L =9.1cm,中点O与S间的距离d=4.55cm,MN与SO直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B=2.0×10-4T,电子质量m=9.1×10-31kg,电量e=-1.6×10-19C,不计电子重力。电子源发射速度v=1.6×106m/s的一个电子,该电子打在板上可能位置的区域的长度为l,则 A.θ=90°时,l=9.1cm B.θ=60°时,l=9.1cm C.θ=45°时,l=4.55cm D.θ=30°时,l=4.55cm 3、如图所示,竖直平行线MN、PQ间距离为a,其间存在垂直纸面向里的匀强磁场(含边界PQ),磁感应强度为B,MN上O处的粒子源能沿不同方向释放比荷为q/m的带负电粒子,速度大小相等、方向均垂直磁场.粒子间的相互作用及重力不计.设粒子速度方向与射线OM夹角为θ ,当粒子沿θ=60°射入时,恰好垂直PQ射出.则 A.从PQ边界射出的粒子在磁场中运动的最短时间为 B.沿θ=120°射入的粒子,在磁场中运动的时间最长 C.粒子的速率为 D.PQ边界上有粒子射出的长度为

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

河南理工大学2011电磁场与电磁波考试复习资料

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通 量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 2211()()()3r r r r r r r r r ????===??由此说明了矢量场的散度与坐标的选择无关。 1. 在直角坐标系证明 0A ????= 2. ()[()()()]()()()0y x x x z z x y z x y z y y x x z z A A A A A A A e e e e e e x y z y z z x x y A A A A A A x y z y z x z x y ????????????? =++?-+-+-??????????????????=-+-+-=????????? 1. 简述亥姆霍兹定理并举例说明。 2. 亥姆霍兹定理研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。 例静电场 s D ds q ?=∑?? 0D ρ??= 有源 0l E dl ?=? 0E ??= 无旋 1. 已知 R r r '=-,证明R R R R e R ' '?=-?==。 2. 证明 x y z x y z R R R x x y y z z R e e e e e e x y z R R R ''' ???---?=++=++??? R '?= …… R =-? 1. 试写出一般电流连续性方程的积分与微分形式 ,恒定电流的呢?

带电粒子在电磁场中的运动

带电粒子在电磁场中的运动 须熟练掌握带电粒子在匀强电场、匀强磁场中受力运动的动力学公式,灵活根据运动求解受力以及根据受力情况求解运动。 一、带电粒子在电场中的运动 1.带电粒子的加速 带电粒子在电场中受到电场力的作用且初速度方向和电场方向在一条直线上(初速度也可以为零),若不考虑重力,则粒子做匀变速直线运动,给出的物理量可能会有电场强度E 、电势差U 、粒子运动位移d ,总结其运动规律: (1)外力: 加速度: (2)速度 ① 利用动能定理(功能关系)求解 ② 利用力和运动的关系求解 2.带电粒子的偏转 带电粒子以初速度v 0垂直于电场线进入匀强电场中, 受到与速度方向垂直的电场力的作用而做类平抛运动。若不考虑重力,给出的物理量可能会有电场强度E 、电势差U 、电场宽度d ,其运动规律应该用类平抛运动来分析处理,利用运动和力的合成和分解的方式,总结运动规律: (1)沿初速度方向作匀速直线运动,运动时间: (2)垂直于初速度方向(沿电场力方向)作初速度为零的匀加速直线运动 ① 加速度: ② 离开电场时的偏移量(沿电场方向的位移): ③ 离开电场时的偏转角(出射速度的方向): 带电粒子能否飞出偏转电场,关键是看带电粒子在电场中的侧移量y 。如质量为m ,带电荷量为q 的粒子以速度v 0射入板长为l 、板间距为d 的匀强电场中,要使粒子飞出电场,则应该满足t = 时,y = ,若t = 时,y > ,则粒子打在板上,不能飞出电场。 由此可见,临界条件“刚好射出(或射不出)”这一临界状态很重要(y=0.5d )。 V 0 E E

①这类问题首选方法是用v-t图像对带电体的运动进行分析; ② 然后利用动力学知识分段求解,重点分析各段时间内的加速度、运动性质、每段运动时间与交变电场的周期T之间的关系。 要注意的一点是!!! 认真读题,带电粒子在电场中未必只会做匀变速直线运动和类平抛运动,也有可能根据外界条件(比如有斜面、圆轨道等)作其他运动,这时候可以考虑把电场力类比于重力分析。 二、带电粒子在磁场中的运动 1.匀速直线运动 当时该带电粒子在匀强磁场中作匀速直线运动。 2.匀速圆周运动 当带电粒子沿磁场方向进入匀强磁场,由于在匀强磁场中受到的 (左手定则)始终与运动方向,因此该力不改变带电粒子速度的大小,且该力为带电粒子提供了作运动的。给出 了带电粒子的电荷量为q、质量为m、初速度v以及匀强电场的场强B,总结的运 动规律为: ①粒子做匀速圆周运动的轨道半径: ②粒子圆周运动的周期:角速度: 带电粒子在磁场中作匀速圆周运动的分析 研究带电粒子在磁场中作匀速圆周运动的问题,应遵循“一找圆心,二找半径,三 找周期或时间”的基本方法和规律,确定半径和周期后再结合匀速圆周运动的运动 规律求解待求解问题。 ①圆心的确定 带电粒子在磁场中作匀速圆周运动,其运动轨迹必为一段圆弧,找圆心的基本思维是——圆心必定在与速度方向垂直的直线上。 a.已知入射方向和出射方向:如何确定? b.已知入射点和出射点:如何确定? a b ②半径的确定和计算 半径一般可以利用几何关系根据三角形的知识求解,注意以下两个特点: a.φ=α=2θ,φ为速度的偏向角,α 为弦切角。 b.θ+θ’=180°,相对的弦切角相等,和相邻

计算电磁学入门基础介绍

计算电磁学入门基础介绍 一. 计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ①可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ②可以作为近似解和数值解的检验标准; ③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。 二. 电磁问题的分析过程 电磁工程问题分析时所经历的一般过程为: 三. 计算电磁学的分类 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

电磁场与电磁波课后习题与答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨 道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?g g B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质的极化强度、体积和表面上单位长度的极化电荷。 解 介质棒距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=? ,求回路中的感应电动势。

电磁场与电磁波复习材料(填空题答案)

电磁场与电磁波复习材料 填空 1.在均匀各向同性线性媒质中,设媒质的介电常数为,则电位移矢量D和电场E满足的方程为:D=εE。 2.设线性各向同性的均匀媒质中电位为,媒质的介电常数为,电荷体密度为V,电位 所满足的方程为▽2?=ρV/ε。 V/ε。 3.时变电磁场中,坡印廷矢量的数学表达式为S=E╳H。 4.在理想导体的表面,电场强度的切向分量等于零。 5.矢量场A(r)穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生全反射。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于零。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合右手螺旋关 系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用磁失位函数的旋度来表示。 11.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度B和磁场H满足的方程为:B=μH。 2 12.设线性各向同性的均匀媒质中,0 称为拉普莱斯方程。 13.时变电磁场中,数学表达式SEH称为坡印延矢量。 14.在理想导体的表面,电场强度的切向分量等于零。 15.表达式 ArdS S称为矢量场A(r)穿过闭合曲面S的通量。 16.电磁波从一种媒质入射到理想导体表面时,电磁波将发生全反射。 17.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于零。 18.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互垂直。19.对横电磁波而言,在波的传播方向上电场、磁场分量为零。 20.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 磁矢位函数的旋度来表示。 21.静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的,这

高中物理专题复习—带电粒子在电磁场中的运动(含答案)

高中物理专题复习—带电粒子在电磁场中的运 动(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

带电粒子在电磁场中的运动 [P 3.]一、考点剖析: 带电粒子在电场中的运动比物体在重力场中的运动要丰富得多,它与运动学、动力学、功和能、动量等知识联系紧密,加之电场力的大小、方向灵活多变,功和能的转化关系错综复杂,其难度比力学中的运动要大得多。 带电粒子在磁场中的运动涉及的物理情景丰富,解决问题所用的知识综合性强,很适合对能力的考查,是高考热点之一。带电粒子在磁场中的运动有三大特点:①与圆周运动的运动学规律紧密联系②运动周期与速率大小无关③轨道半径与圆心位置的确定与空间约束条件有关,呈现灵活多变的势态。 因以上三大特点,很易创造新情景命题,故为高考热点,近十年的高考题中,每年都有,且多数为大计算题。 带电粒子在电磁场中的运动: 若空间中同时同区域存在重力场、电场、磁场,则使粒子的受力情况复杂起来;若不同时不同区域存在,则使粒子的运动情况或过程复杂起来,相应的运动情景及能量转化更加复杂化,将力学、电磁学知识的转化应用推向高潮。 该考点为高考命题提供了丰富的情景与素材,为体现知识的综合与灵活应用提供了广阔的平台,是高考命题热点之一。 [P 5.]二、知识结构 [P 6.]三、复习精要:

d U UL v L md qU at y 加421212 2022= ??==L y dU UL mdv qUL v at v v tan y 222000= ====加φ1、带电粒子在电场中的运动 (1) 带电粒子的加速 由动能定理 1/2 mv 2=qU (2) 带电粒子的偏转 带电粒子在初速度方向做匀速运动 L =v 0t t=L/ v 0 带电粒子在电场力方向做匀加速运动F=q E a =qE/m 带电粒子通过电场的侧移 偏向角φ (3)处理带电粒子在电场中的运动问题的一般步骤: ①分析带电粒子的受力情况,尤其要注意是否要考虑重力、电场力是否是恒力等 ②分析带电粒子的初始状态及条件,确定粒子作直线运动还是曲线运动 ③建立正确的物理模型,进而确定解题方法 ④利用物理规律或其它解题手段(如图像等)找出物理量间的关系,建立方程组 2、带电粒子在磁场中的运动 带电粒子的速度与磁感应线平行时,能做匀速直线运动; 当带电粒子以垂直于匀强磁场的方向入射,受洛伦兹力作用,做匀速圆周运动。当带电粒子在磁场中做匀速圆周运动,洛仑兹力充当向心力时,其余各力的合力一定为零. r mv qvB 2= qB mv R = qB m T π2= 带电粒子在磁场中的运动常因各种原因形成多解,通常原因有:①带电粒子的电性及磁场方向的不确定 性,②粒子运动方向的不确定性及运动的重复性,③临界状态的不唯一性等。 3.带电粒子在复合场中的运动 t

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)

分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2 如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN 线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN 上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向

[整理]年电磁场与电磁波复习资料.

一、名词解释 通量、散度、高斯散度定理环量、旋度、斯托克斯定理亥姆霍兹定理 电场力、磁场力、洛仑兹力电偶极子、磁偶极子 传导电流、位移电流 全电流定律、电流连续性方程电介质的极化、极化矢量 磁介质的磁化、磁化矢量

介质中的三个物态方程 静态场、静电场、恒定电场、恒定磁场 静电场的位函数满足的泊松方程、拉普拉斯方程对偶定理、叠加原理、唯一性定理 电磁波、平面电磁波、均匀平面电磁波 电磁波的极化 损耗正切 正常色散介质、非正常色散介质 相速、群速

色散介质、耗散介质 趋肤效应、趋肤深度 全反射、全折射 二、简答题 1.散度和旋度均是用来描述矢量场的,它们之间有什么不同? 2.写出直角坐标系下的散度、旋度和梯度公式 3.亥姆霍兹定理的描述及其物理意义是什么? 4.分别叙述麦克斯韦方程组微分形式的物理意义 5.解释坡印廷矢量及其物理意义、坡印廷定理及其物理意义 6.试写出静电场基本方程的微分形式,并说明其物理意义。

7.请说明镜像法、分离变量法、有限差分法 8.叙述什么是镜像法?其关键和理论依据各是什么? 9.举例说明电磁波的极化的工程应用 10.试写出波的极化方式的分类,并说明它们各自有什么样的特点。 11.简述唯一性定理,并说明其物理意义 12.说明自由空间中均匀平面电磁波的传播特性 13.说明平面电磁波在非理想介质中的传播特性 14.试论述介质在不同损耗正切取值时的特性 15.说明复数折射率的实部/虚部对电磁波传播的影响

16.试论述介质的色散带来电磁波传播和电磁波接收的影响,在通信系统中一般采取哪些有效的措施 17.两正交接地导体板构成的角形区域内有点电荷5 q (c),如图示。若拟用“镜像法”求解该角形区域内的电场分布,试正确标出镜像电荷的位置和电荷量大小。 18.如图所示,一个点电荷q 放在 60的接地导体角域内的点)0 ,1,1(处。请画出所有镜像电荷的位置和 大小? 19. 用有限差分法求图中各个节点的电位,请列出各个节点电位的方程组。 0V 0V 100V 20、如图所示的矩形截面的长导体槽,宽为4h,高为3h,顶板与两侧绝缘,顶板的电位为10V,其余的

电磁场与电磁波第四版谢处方课后答案

电磁场与电磁波(第四版)谢处方 课后答案 第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ; (8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ = ==A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1235 02 x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502 x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123 PP P ?是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e

带电粒子在电磁场中的运动(自己整理)20181217

带电粒子在电磁场中的运动 2.一台质谱仪的工作原理如图所示.大量的甲、乙两种离子 飘入电压力为U 0的加速电场,其初速度几乎为0,经过加速后,通过宽为L 的狭缝MN 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场中,最后打到照相底片上。已知甲、乙两种离子的电荷量均为+q ,质量分别为2m 和m ,图中虚线为经过狭缝左、右边界M 、N 的甲种离子的运动轨迹.不考虑离子间的相互作用. (1)求甲种离子打在底片上的位置到N 点的最小距离x ; (2)在图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d ; (3)若考虑加速电压有波动,在(0–U U ?)到(0U U +?)之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L 满足的条件.

3如图所示,空间有相互平行、相距和宽度也都为L的Ⅰ、Ⅱ两区域,Ⅰ、Ⅱ区域内有垂直于纸面的匀强磁场,Ⅰ区域磁场向内、磁感应强度为B0,Ⅱ区域磁场向外,大小待定。现有一质量为m,电荷量为-q的带电粒子,从图中所示的一加速电场中的MN板附近由静止释放被加速,粒子经电场加速后平行纸面与Ⅰ区磁场边界成45°角进入磁场,然后又从与Ⅰ区右边界成45°角射出。 (1)求加速电场两极板间电势差U,以及粒子在Ⅰ区运动时间t1; 时,则粒子经过Ⅰ区的最高点和经过Ⅱ区 (2)若Ⅱ区磁感应强度也是B 的最低点之间的高度差是多少; (3)为使粒子能返回Ⅰ区,Ⅱ区的磁感应强度B应满足什么条件,粒子 从左侧进入Ⅰ区到从左侧射出Ⅰ区需要的最长时间。 4.如图所示,半径为R的圆形匀强磁场区域Ⅰ与x轴相切于坐标系的原点O,磁感应强度为B1,方向垂直于纸面向外,磁场区域Ⅰ右侧有一长方体加速管,加速管底面宽度为2R,轴线与x轴平行且过磁场区域Ⅰ的圆心,左侧的电势比右侧高。在加速管出口正下方距离D点为R处放置一长度为d=3R的荧光屏EF,荧光屏与竖直方向成θ=60°角,加速管右侧存在方向垂直于纸面向外的匀强磁场区域Ⅱ,磁感应强度为B2。在O点处有一个粒子源,能沿纸面向y>0的各个方向均匀地发射大量质量为m、带电荷量为q且速率相同的粒子,其中沿y轴正方向射入磁场的粒子,恰能沿轴线O2O3进入长方体加速管并垂直打在荧光屏上(不计粒子重力及其相互作用)。 (1)求粒子刚进入加速管时的速度的大小和加速电压U; (2)求荧光屏上被粒子打中的区域长度; (3)若要让从加速管BO3区域出来的粒子全部打中荧光屏,磁场 Ⅱ的磁感应强度大小应满足什么条件?

电磁场基础知识

磁悬浮列车由于地面导轨中排列的 线圈磁场和车身下部的超导线圈磁 场之间的磁力作用而悬浮在导轨之 上约1cm处.列车前进的动力则是 通过地面导轨线圈中磁场极性的交 替变化来获得的.磁悬浮列车具有 无噪音、高速度、节能等优点. 第11章 变化的电磁场 静止电荷在周围空间激发静电场,运动的电荷则既产生电场也产生 磁场.在电场和磁场都恒定不变的情况下,电场和磁场相对独立,可以分 别研究. 电场和磁场的实质是统一的电磁场,电场变化必然激发磁场,同样, 磁场的变化也会激发电场.历史上,人们对于电场和磁场的联系首先是通 过法拉第电磁感应定律认识到的,在此基础上麦克斯韦提出了涡旋电场 和位移电流假说,并进一步总结出电磁学的基本规律──麦克斯韦方程 组.这一理论在爱因斯坦建立狭义相对论的过程中起了桥梁作用,反过来, 又使人们认识到了电磁场的相对性与统一性. 电磁感应现象在实际中有着广泛的应用.例如变压器、电动机、发电 机以及磁卡的刷卡设备、无线通讯中电磁波的发射和接收等都利用了电 磁感应原理. §11-1 电磁感应 11-1-1 法拉第电磁感应定律 1820年丹麦物理学家奥斯特发现通电导线周围存在磁场,即电流会 产生磁场.按照对称性的思想,人们自然要问,反过来,磁场是否可以产生 电流呢?显然,这会是获得电流的一种实际方法.为此,英国实验物理学

246 第11章 变化的电磁场 家法拉第进行了长达十年的研究,最终在1831年发现了电磁感应现象并总结出电磁感应定律. 如图11?1所示.法拉第的实验可以归结为两类:一类是磁铁(或载流线圈)与不含电源的闭合线圈之间发生相对运动;另一类是线圈之间无相对运动,但载流线圈中有电流变化.在这两类实验中,都会在其附近的不含电源的闭合回路(称为探测线圈A )中产生电流.法拉第发现这两类实验的共同特点是:只要通过回路面积的磁通量的变化ΔΦ (而不是磁通量Φ )不为零,则探测线圈中就有电流产生.这个电流称为感应电流,这类现象称为电磁感应现象(这一名称是法拉第类比静电感应得来的).感应电流的产生,说明回路中有电动势存在,称为感应电动势.由于感应电动势与回路的开闭状态以及回路的电阻无关,所以感应电动势比感应电流更能反映电磁感应的本质. 上述实验结果表明,回路中感应电动势的大小与穿过回路面积的磁通量(常常简称为回路的磁通量)的时间变化率成正比(k 为比例系数) ε=k t d d Φ 仔细分析以上实验结果,还可以得出感应电动势 方向的规律:闭合回路中感应电流的方向,总是使它所 产生的磁通量反抗回路中磁通量的变化.这就是楞次 定律. 如果规定了回路的绕行正方向,并按右手螺旋法则确定该回路面积的法线方向,则由定义,穿过该回路 的磁通量为Φ=?∫∫B S d S .由此可知B 的数值、回路面积S 的大小以及B 与回路面积的法线方向e n 之间夹角的改变,都将引起Φ 变化.考虑到楞次定律,ε 的方向是与d Φ /d t 相反的,如图11?2所示. 在SI 制中,法拉第电磁感应定律表示成下面的数学形式 图 11-1 两类电磁感应现象 图11-2 楞次定律确定电动势的方向

相关主题
文本预览
相关文档 最新文档