§33 rn(euclid空间)上的可测函数和连续函数
- 格式:pdf
- 大小:160.75 KB
- 文档页数:5
可测函数与连续函数实变大作业2011/4/27可测函数与连续函数【摘要】:主要介绍几乎可测函数的定义与性质,及几乎处处有限的可测函数与连续函数的关系。
由于连续函数不是本章所学的内容,故不对其介绍。
【关键词】:可测函数、连续函数、关系这一章中主要学习了可测函数,这是一类新的函数,所以搞清它的性质及其与其它函数之间的关第是十分重要与必要的。
特别是我们十分熟悉的函数之间的关系。
一、基本概念1、几乎处处:给定一个可测集E,假如存在E的一个子集E1,m(E∖E1)=0,且使得性质P 在E1上处处成立,则称性质P在E上几乎处处成立。
2、可测函数:设E⊂ℝ是Lebesgue可测集,f是E上的实值函数。
假如对于任意实数CE(f>C)={x∈E:f(x)>C}都是可测集,则称f是E上的Lebesgue可测函数(简称f是E上的可测函数)。
3、几乎处处有限的可测函数:设E⊂ℝ是Lebesgue可测集,给定一个可测集E,存在E的一个子集E1,m(E∖E1)=0,f在E1上有限,假如对于任意实数CE(f>C)={x∈E:f(x)>C}都是可测集,则称f是E上几乎处处有限的的Lebesgue可测函数4、连续函数:设D⊂ℝ,f是定义于D的函数,x∈D,假如lim y→x,y∈D f(y)=f(x)则称f沿D在x连续;假如f沿D内任意一点都连续,则称f沿D连续。
5、预备定理、引理定理2.2设 f 是一个紧集, { f n}n≥1是一列沿 F连续的函数。
若{ f n}在 F上一致收敛于 f,则 f 也沿 F 连续。
定理2.3(Egoroff ) 设 f 和 f n (n ≥1) 都是测度有限的集 D 上的几乎处处有限的可测函数。
若 f n 在 D 上几乎处处收敛于 f ,则对任何 ε>0,有D 的闭子集 F ,使 m ( D − F )<ε,并且 f n 在 F 上一致收敛于 f 。
引理2.1 设 F 是 R 中的闭集,函数 f 沿 F 连续,则 f 可以开拓成 R 上的连续函数 f ∗,并且sup x∈R | f ∗(x )|=sup x∈R| f (x )|。
§3.3 n R 上的可测函数与连续函数教学目的 本节将考察欧氏空间上的可测函数和连续函数关系. 本节将证明重要的Lusin 定理, 它表明Lebesgue 可测函数可以用性质较好连续函数逼近. 这个结果在有些情况下是很有用的.本节要点 一方面, L 可测集上的连续函数是可测的, 另一方面, Lusin 定理表明, Lebesgue 可测函数可以用连续函数逼近. Lusin 定理有两个等价形式. 另外, 作为准备定理的Tietze 扩张定理本身也是一个很有用的结果.在§1.4我们已经给出了在nR 的任意子集上E 连续函数的定义. 这里先看两个例子. 例1 考虑1R 上的Dirichlet 函数=.1)(为无理数若为有理数若x x x D显然)(x D 在1R 上处处不连续. 若用Q 表示有理数的全体,则将)(x D 限制在Q 上所得到的函数Q D 在Q 上恒等于1. 故Q D 是Q 上的连续函数.(注意D 与Q D 是两个不同的函数). 这个例子表明若缩小了函数的定义域,不连续函数可能变成连续函数.例2 设k F F ,,1 是nR 上的k 个互不相交的闭集, ∪ki iFF 1==. 则简单函数∑==ki F i x I a x f i 1)()(是F 上的连续函数.证明 设,0F x ∈ 则存在0i 使得.00i F x ∈ 由于k F F ,,1 互不相交, 故∪0i i iFx ≠∉.由于∪0i i iF ≠是闭集, 因此.0),(00>=≠∪i i i F x d δ对任意,0>ε 当F x ∈并且δ<),(0x x d 时, 必有.0i F x ∈ 于是0)()(0=−x f x f .ε<因此)(x f 在0x 连续. 所以)(x f 在F 上连续(图3—1). ■图3—1定理1 设E 是nR 中的Lebesgue 可测集. f 是E 上的连续函数连续. 则f 是E 上Lebesgue 可测函数.证明 设∈a ,1R 记}.)(:{}{a x f E x a f E <∈=<我们证明, 存在nR 中的开集G , 使得.}{G E a f E ∩=< (1)事实上, 对任意},{a f E x <∈ 由于a x f <)(并且f 在x 连续, 故存在x 的邻域),(x x U δ,使得当),(x x U y δ∈并且E y ∈时, 成立.)(a y f < 即}.{),(a f E x U E x <⊂∩δ (2)令,),(}{∪a f E x xx U G <∈=δ则G 是开集. (2)式表明}.{a f E G E <⊂∩另一方面, 包含关系G E a f E ∩⊂<}{是显然的. 因此(1)式成立. (1)式表明对任意∈a ,1R }{a f E <是Lebesgue 可测集. 因此f 是E 上Lebesgue 可测函数. ■定理2 (Lusin 鲁津)设E 是nR 上的Lebesgue 可测集, f 是E 上a.e.有限的Lebesgue 可测函数. 则对任意,0>δ 存在E 的闭子集,δE 使得f 是δE 上的连续函数(即δE f 在δE 上连续), 并且.)(δδ<−E E m证明 分两步证明. (1) 先设f 是简单函数, 即,1∑==ki E i i I a f 其中k E E ,,1 是互不相交的L 可测集, .1∪ki i E E ==由§2.3定理6, 对任意给定的,0>δ 对每个,,,1k i = 存在XY 1F 0xδ+0x δ−0x 2F 3F 1a 2a 3ai E 的闭子集,i F 使得.,,1,)(k i kF E m i i =<−δ令,1∪ki i F E ==δ 则δE 是E 的闭子集, 并且.)())(()(11δδ<−≤−=−∑==ki i i k i i i F E m F E m E E m ∪由于∑==ki F i E i I a f1,δ由例2知f 是δE 上的连续函数.(2) 一般情形. 设f 是E 上的L 可测函数.不妨设f 是处处有限的.若令).1(,1ggf ff g −=+=则g 是有界可测函数, 并且f 连续当且仅当g 连续. 故不妨设f 有界. 由§3.1推论10, 存在简单函数列}{k f 在E 上一致收敛于f . 对任给的,0>δ 由已证的情形(1), 对每个k f 存在E 的闭子集kF , 使得k f 在k F 上连续,并且.2)(kk F E m δ<− 令,1∩∞==k k F E δ 则δE 是E 的闭子集,并且.)())(()(11δδ<−≤−=−∑∞=∞=k k k k F E m F E m E E m ∪由于每个k f 都在δE 上连续并且}{k f 在δE 上一致收敛于f , 因此f 在δE 上连续. ■例3 仍考虑例1中的Dirichlet 函数).(x D 设},,{21 r r Q =是有理数集. 对任意,0>δ 令.2,2(1111∪∞=++−−−=i i i i i r r R E δδδ则δE 是闭集, 并且.2)2,2()2,2()(11111111δδδδδδδ==−−≤−−=−∑∑∞=++∞=∞=++i ii i i i i i i i i i r r m r r m E R m ∪由于δE 中不含有理数, 因此)(x D 在δE 恒为零. 所以)(x D 在δE 上连续.下面我们将给出鲁津定理另一种形式. 为此, 先作一些准备.引理3 若⊂B A ,n R 是两个闭集并且,∅=∩B A ∈b a ,,1R .b a <则存在nR 上的一个连续函数f , 使得,a fA= b fB=并且∈≤≤x b x f a ,)(n R .证明 容易证明, 若A 是闭集, 则),(A x d 作为x 的函数在nR 上连续, 并且0),(=A x d 当且仅当A x ∈(见第一章习题第34题). 因此, 若令.),(),(),(),()(A x d B x d A x bd B x ad x f ++=容易验证f 满足所要求的性质.■定理4 (Tietze 扩张定理)设F 是nR 中的闭子集, f 是定义在F 上的连续函数. 则存在n R 上的连续函数,g 使得,f gF= 并且.)(sup )(sup x f x g Fx R x n∈∈=证明 先设.sup +∞<=∈M f Fx 令},3{M f M A −≤≤−=}.3{M f MB ≤≤= 则B A ,是两个闭集并且.∅=∩B A 由引理3, 存在nR 上的连续函数,1g 使得,31Mg A−= .31Mg B=并且 ∈≤x Mx g ,3)(1.n R .,32)()(1F x M x g x f ∈≤−对函数1g f −应用引理3, 注意此时g f −的上界是.32M 因此存在nR 上的一个连续函数2g , 使得∈⋅≤x M x g ,3231)(2.n R.,323232)()(221F x M M g x g x f ∈=⋅≤−−这样一直作下去, 得到nR 上的一列连续函数},{k g 使得∈⋅≤−x M x g k k ,3231)(1,n R ,,2,1 =k (4),,32)()(1F x M x g x f kki i ∈≤−∑= ,2,1=k . (5)由(4)知道级数∑∞=1)(k kx g在n R 上一致收敛. 记其和为),(x g 则)(x g 是n R 上的连续函数.而(5)表明在F 上).()(x f x g = 并且,323)()(111M Mx g x g k k k k =≤≤∑∑∞=−∞= ∈x .n R因此当f 有界时, 定理的结论成立.若)(x f 无界, 令),(tg )(1x f x −=ϕ 则≤)(x ϕ.2π由上面所证, 存在n R 上的连续函数,ψ 使得.ϕψ=F令)(tg )(x x g ψ=. 则g 是n R 上的连续函数并且.f gF=■定理5 (Lusin 鲁津) 设E 是n R 上的Lebesgue 可测集, f 是E 上a.e.有限的Lebesgue 可测函数. 则对任意,0>δ 存在n R 上的连续函数g ,使得.)})()(:({δ<≠∈x g x f E x m并且.)(sup )(sup x f x g Ex R x n∈∈≤证明 由定理2, 对任意,0>δ 存在E 的闭子集F , 使得f 在F 上连续并且.)(δ<−F E m 由定理4, 存在n R 上的连续函数,g 使得当F x ∈时, ).()(x f x g =并且.)(sup )(sup )(sup x f x f x g Ex Fx R x n∈∈∈≤=由于.)}()(:{F E x g x f E x −⊂≠∈ 因此.)()})()(:({δ<−≤≠∈F E m x g x f E x m ■思考题: 在直线上的情形, 用直线上开集的构造定理给出定理5的另一证明.小 结 本节考察了欧氏空间上的可测函数和连续函数关系.本节的主要结果是Lusin 定理(有两个等价形式). Lusin 定理表明, Lebesgue 可测函数可以用连续函数在某种意义下逼近. 由于连续函数的具有较好的性质, 比较容易处理, 因此这个结果在有些情况下是很有用的. 本节还证明了Tietze 扩张定理, 它也是一个很有用的结果. 习 题 习题三, 第29题—第31题.。
可测函数与连续函数【摘要】本文从是什么,为什么,怎么样三个角度出发,首先介绍了一些相关的基本概念,之后叙述了将可测函数与连续函数联系起来的必要性和实际方法。
【关键词】可测函数连续函数几乎处处逼近1.是什么——什么是可测函数第三章主要围绕可测函数展开,那么本文首先对可测函数进行一个简单的概述,同时对之后证明是需要用到的一些定义和引理进行描述。
1.1基本定义可测函数:设f ( x)是定义在可测集E< Rn 的实函数. 如果对于任何有限实数a, E [ f > a ]都是可测集,则称f ( x)为定义在E上的可测函数连续函数:设f ( x)是定义在集U ( x) ∩E< E [ f > a ] E上的有限函数,如果对Pε > 0, v 5 > 0,使得P x∈∪( x0 ; 5) ,有| f ( x) - f ( x0 ) | <ε,那么称函数f ( x)在点x0 处连续. 如果f ( x)在E中每一点都连续,则称f ( x)在E上连续.几乎处处:给定一个可测集E,假如存在E的一个子集,,且使得性质P在上处处成立,则称性质P在E上几乎处处成立。
几乎处处有限的可测函数:设,是定义于的函数,,假如则称沿在连续;假如沿内任意一点都连续,则称沿连续。
1.2基本定理定理3.3.1 设是一个紧集,是一列沿连续的函数。
若在上一致收敛于,则也沿连续。
定理3.3.2(Egoroff)设和都是测度有限的集上的几乎处处有限的可测函数。
若在上几乎处处收敛于,则对任何,有的闭子集,使,并且在上一致收敛于。
引理3.3.1设是中的闭集,函数沿连续,则可以开拓成上的连续函数,并且=。
引理3.3.2设是可测集上的简单函数。
则对任何,有沿连续的函数使。
2.为什么——为什么把可测函数与连续函数联系起来数学分析中,我们关注的是函数的分析性质:连续性,可微性,可积性。
但是一旦我们发现一个函数不连续,就认为这个函数性质不好,不再关心他。