晶体缺陷和强度理论
- 格式:docx
- 大小:24.37 KB
- 文档页数:6
非晶合金的强度研究及进展非晶合金,又称金属玻璃,由于具有优异的物理、化学、光学、磁学和力学性能,受到人们的普遍关注,成为材料领域的研究热点之一。
大量的研究与开发工作表明,非晶合金材料在许多实用性能方面具有十分明显的优势,具有良好的应用前景。
非晶合金研究的进展,不仅突破了长期以来金属合金只能以结晶态形式凝固这一传统认识,丰富了合金液固相变理论,而且在合金的非晶形成能力、非晶合金的相结构及其相演化过程、非晶合金的性能等方面的研究都取得了大量成果。
1非晶合金的发展历史自从1960 年首次用熔体快速凝固方法制备出Au-Cu 非晶合金以来,在随后的30 年里,大量的非晶合金已经被制备出来。
众所周知,在1990年以前可以用105K/s 的冷却速率制备出Fe 基、Co 基和Ni 基非晶合金,但这些合金的厚度都小于50 µm,其中,作为特例的贵金属基Pd-Ni-P 和Pt-Ni-P 合金系,其临界冷却速度也在103 K/s 的数量级。
在1974 年Chen对Pb-T-P(T=Ni, Co, Fe)合金进行了系统的研究并制备出了厚度为 1 mm 的非晶合金。
在1982 年,可以制备出临界尺寸较大的Au55 Pd22.5 Sb22.5非晶合金。
虽然在大块非晶合金的研究中取得了突出的进展,但是这些合金的成本昂贵,在长达十几年的时间内,利用非贵金属制备大块非晶合金的愿望始终未能实现,使非晶合金的应用范围受到很大限制。
上世纪八十年代后期,日本学者 A. Inoue(井上明久)领导的课题组首先在非贵金属系大块非晶合金制备方面取得了突破,并受到同行的关注。
自从1988 年以来,发现可以用更低的临界冷却速率制备出新的多组元合金体系,包括Mg 基、Zr基、Fe 基、Pd基[、La 基、Ti基和Ni 基合金体系。
由于发现了具有很强的非晶形成能力的合金体系,使得在临界冷却速度低于102 K/s 的条件下,用一般的工艺方法(铜模铸造方法等)即可获得三维尺寸在毫米以上量级的大块非晶合金。
合金材料的晶体缺陷与强度合金作为一种重要的材料,具有较高的强度和优异的性能,广泛应用于各个领域。
然而,在合金的制备过程中,晶体缺陷是无法避免的。
晶体缺陷的存在对合金的性能会产生一定的影响,并直接关系到合金的强度。
本文将对合金材料的晶体缺陷与强度进行探讨。
一、晶体缺陷的种类及其影响晶体缺陷是指晶体结构中存在的与完美晶体结构不一致的部分。
合金材料中常见的晶体缺陷有点缺陷、面缺陷和体缺陷。
这些晶体缺陷会导致合金中的原子位置发生错位或者空隙,从而改变了合金的原子排列和结构。
1. 点缺陷点缺陷是指晶体中某个位置的原子缺失或者替代。
常见的点缺陷有原子间隙、空位和固溶体原子替代等。
点缺陷的存在会导致原子结构的不均匀,增加晶体网络的不规则性,从而降低了合金的强度。
2. 面缺陷面缺陷是指晶体中某个平面上的原子排列出现错误,例如层错和晶界。
面缺陷会对合金的强度和韧性产生显著影响。
层错会导致晶体中局部应力集中,容易引发晶体的滑移和断裂,从而降低了合金的强度。
晶界则会导致晶体结构的边界变得复杂,阻碍了晶体的位错运动,增加了合金的强度和硬度。
3. 体缺陷体缺陷是指晶体内部出现的空隙、间隙等缺陷。
这些缺陷会导致晶体结构的不完整,增加晶体中的缺陷密度,并对合金的机械性能产生明显的影响。
体缺陷的存在会导致合金的变形行为变得复杂,从而影响了合金的强度和可塑性。
二、晶体缺陷与强度的关系晶体缺陷的存在对合金的强度产生重要影响。
晶体缺陷会导致原子结构的不均匀,且增加合金中的位错密度,从而使合金的屈服强度、抗拉强度和硬度等机械性能发生变化。
1. 位错的产生与强度位错是晶体缺陷中最常见的一种形式。
在合金中,位错的产生与晶体的滑移运动密切相关。
当合金受到外力作用时,位错会迅速增多,通过滑移运动来平衡应力。
位错密度增加会导致合金的强度增加,抵抗外力的作用。
2. 晶界的作用晶界是晶体缺陷中较为明显的一种形式,也是合金中强度影响较大的因素之一。
晶界会阻碍原子的位错运动并改变其运动路径,增加了合金的塑性变形阻力,从而提高了合金的屈服强度和硬度。
晶体缺陷和材料性能晶体缺陷是一种常见的材料学现象,它能够影响材料的力学、电学、热学等性能。
在材料科学中,深入了解晶体缺陷对材料性能的影响是非常重要的。
本文将介绍晶体缺陷的种类和其影响力学、电学、热学性能的机制。
一、晶体缺陷的种类晶体缺陷通常可以分为点缺陷、线缺陷和面缺陷三种:1.点缺陷:最简单的点缺陷是晶格中离子交换,如阴离子被阳离子占据。
空穴和插入的离子也属于点缺陷。
空穴是空出一个或多个原子位置的缺陷,它们造成晶体中电子和磁性的变化。
插入的离子是不同元素的原子,它们插入到晶体中取代其它原子位置。
2.线缺陷:线缺陷是晶格中的一条线,它与晶体中其它原子排列方式不同。
位错是最常见的线缺陷。
每个位错都是从一个或多个失配的原子重叠开始,其结果会改变晶体的物理特性。
3.面缺陷:面缺陷是晶体表面的缺陷,如晶界和小角度晶界。
晶界是两个或多个晶体的边界,它们对材料的物理和化学性质有很大影响。
小角度晶界也是晶界,它是两个晶体在晶界处缓慢旋转而形成的。
由于晶界存在,会导致晶体的力学和电学性质发生改变。
二、晶体缺陷对材料性能的影响晶体缺陷能够影响材料的力学、电学、热学等性能。
下面将介绍晶体缺陷对各种性能的影响机制:1.力学性能:晶体缺陷会影响材料的塑性、强度和韧性等机械性能。
在弹性形变的情况下,位错和其他线缺陷产生的内应力可以改变晶体的力学性质。
当材料受到应力时,点缺陷会导致晶体内部出现位移和形变。
靠近晶体表面的缺陷,比如晶界和表面缺陷,可以作为裂纹的萌芽点,从而引起材料的断裂。
2.电学性能:电学性能是指材料的导电性、电阻率等性质。
晶体缺陷可以对材料的电学性能产生显著影响。
二硫化钼(MoS2)是一种典型的半导体,在晶体中的点缺陷和线缺陷会导致其导电性变得更好或更差。
此外,晶体缺陷还可以影响材料的光谱特性、介电常数和色散等方面的性质。
3.热学性能:晶体缺陷还可以影响材料的热学性能,如热容量、导热性等。
点缺陷和线缺陷可以改变晶体的热传导和物理吸收特性。
非晶合金的强度研究及进展非晶合金,又称金属玻璃,由于具有优异的物理、化学、光学、磁学和力学性能,受到人们的普遍关注,成为材料领域的研究热点之一。
大量的研究与开发工作表明,非晶合金材料在许多实用性能方面具有十分明显的优势,具有良好的应用前景。
非晶合金研究的进展,不仅突破了长期以来金属合金只能以结晶态形式凝固这一传统认识,丰富了合金液固相变理论,而且在合金的非晶形成能力、非晶合金的相结构及其相演化过程、非晶合金的性能等方面的研究都取得了大量成果。
1非晶合金的发展历史自从1960 年首次用熔体快速凝固方法制备出Au-Cu 非晶合金以来,在随后的30 年里,大量的非晶合金已经被制备出来。
众所周知,在1990年以前可以用105K/s 的冷却速率制备出Fe 基、Co 基和Ni 基非晶合金,但这些合金的厚度都小于50 µm,其中,作为特例的贵金属基Pd-Ni-P 和Pt-Ni-P 合金系,其临界冷却速度也在103 K/s 的数量级。
在1974 年Chen对Pb-T-P(T=Ni, Co, Fe)合金进行了系统的研究并制备出了厚度为 1 mm 的非晶合金。
在1982 年,可以制备出临界尺寸较大的Au55 Pd22.5 Sb22.5非晶合金。
虽然在大块非晶合金的研究中取得了突出的进展,但是这些合金的成本昂贵,在长达十几年的时间内,利用非贵金属制备大块非晶合金的愿望始终未能实现,使非晶合金的应用范围受到很大限制。
上世纪八十年代后期,日本学者 A. Inoue(井上明久)领导的课题组首先在非贵金属系大块非晶合金制备方面取得了突破,并受到同行的关注。
自从1988 年以来,发现可以用更低的临界冷却速率制备出新的多组元合金体系,包括Mg 基、Zr基、Fe 基、Pd基[、La 基、Ti基和Ni 基合金体系。
由于发现了具有很强的非晶形成能力的合金体系,使得在临界冷却速度低于102 K/s 的条件下,用一般的工艺方法(铜模铸造方法等)即可获得三维尺寸在毫米以上量级的大块非晶合金。
目前人们所研究的大块非晶合金体系中,Pd系、La 系和Zr系多组元合金具有优秀的非晶形成能力,其中美国Johnson 课题组开发的Zr-Ti-Cu-Ni-Be 和日本Inoue 课题组开发Pd-Ni-Cu-P 合金的非晶形成能力最好。
但Pd系合金价格昂贵,La 系合金性能较差,这两类非晶合金难以被广泛应用。
Zr系大块非晶合金具有良好的性能和应用前景。
镍基大块非晶合金在力学性能和抗腐蚀性能等方面有突出的表现,缺点是其非晶形成能力不够优秀,目前还难以制备成大尺寸的大块非晶合金样品。
近年来Cu基合金又成为大块非晶合金研究的另一个热点。
此外二元大块非晶合金的制备方面也取得了进展。
2非晶态材料具有三个基本特征①只存在小区间内的短程序,而没有任何长程序;波矢 k不再是一个描述运动状态的好量子数。
②它的电子衍射、中子衍射和 X射线衍射图是由较宽的晕和弥散的环组成;用电子显微镜看不到任何由晶粒间界、晶体缺陷等形成的衍衬反差。
③任何体系的非晶态固体与其对应的晶态材料相比,都是亚稳态。
当连续升温时,在某个很窄的温区内,会发生明显的结构变化,从非晶态转变为晶态,这个晶化过程主要取决于材料的原子扩散系数、界面能和熔解熵。
3非晶合金的性能作为一种新开发出来的先进材料,非晶合金具有优异的力学性能、耐磨损性能、耐腐蚀性能和特殊的磁学性能等,因此,有极好的应用前景。
在力学性能方面,合金的力学性能指标中最重要的是强度和塑性。
新型非晶合金的抗张强度要大于同类晶态合金,如Mg 基非晶合金室温下的抗张强度大大超过抗张强度最大的晶态Mg 基合金。
Zr基大块非晶合金的显微硬度为 6 GPa,强度可达 3 GPa,弹性变形能力可达 2 %,其强度已接近工程陶瓷材料。
大块非晶合金中不存在晶体中的滑移,在高温下具有很大的粘滞流动性,可在所谓的过冷液相区进行超塑性变形,这是一般超塑性晶态合金所无法实现的。
非晶合金是亚稳液态结构的固态金属,在电导方面表现为金属性,但有很高的电阻值,而且电阻与温度的关系与普通合金不同。
Fe-TM-B(TM 为过渡族金属)大块非晶不但具有高强度、抗腐蚀性,还有优良的软磁性能。
通过碳掺杂及晶化的方法,可由大块非晶合金得到大块纳米晶材料,这些纳米晶材料表现了出优良的力学性质、硬软磁性能及高的催化性能。
另外,大块非晶还具有耐磨、抗疲劳、抗腐蚀等优良的性能。
最近,制备出的Ti 基、Mg 基大块非晶合金具有轻型、抗辐照、高强度的优点,在航天领域有很好的应用前景。
从以上大块非晶合金的性能不难看出这种新材料的工业潜力及应用前景。
Johnson 教授将Zr基大块非晶合金应用到了高尔夫球运动器材中,并使之产业化。
此外,大块非晶合金作为穿甲弹芯材料的研究已经引起了各国的关注,有望成为新一代穿甲弹芯材料。
晶体的主要特征是其中原子(或分子)的规则排列,但实际晶体中的原子排列会由于各种原因或多或少地偏离严格的周期性,于是就形成了晶体的缺陷,晶体缺陷的存在,破坏了完美晶体的有序性,引起晶体内能U和熵S增加。
按缺陷在空间的几何构型可将缺陷分为点缺陷、线缺陷、面缺陷和体缺陷。
点缺陷1、点缺陷定义由于晶体中出现填隙原子和杂质原子等等,它们引起晶格周期性的破坏发生在一个或几个晶格常数的限度范围内,这类缺陷统称为点缺陷。
这些空位和填隙原子是由热起伏原因所产生的,因此又称为热缺陷。
2、空位、填隙原子和杂质空位:晶体内部的空格点就是空位。
由于晶体中原子热运动,某些原子振动剧烈而脱离格点跑到表面上,在内部留下了空格点,即空位。
填隙原子:由于晶体中原子的热运动,某些原子振动剧烈而脱离格点进入晶格中的间隙位置,形成了填隙原子。
即位于理想晶体中间隙中的原子。
杂质原子:杂质原子是理想晶体中出现的异类原子。
3、几种点缺陷的类型弗仑克尔缺陷:原子(或离子)在格点平衡位置附近振动,由于非线性的影响,使得当粒子能量大到某一程度时,原子就会脱离格点,而到达邻近的原子空隙中,当它失去多余动能后,就会被束缚在那里,这样产生一个暂时的空位和一个暂时的填隙原子,当又经过一段时间后,填隙原子会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去。
若晶体中的空位与填隙原子的数目相等,这样的热缺陷称为弗仑克尔缺陷。
肖特基缺陷:空位和填隙原子可以成对地产生(弗仑克尔缺陷),也可以在晶体内单独产生。
若脱离格点的原子变成填隙原子,经过扩散跑到晶体表面占据正常格点位置,则在晶体内只留下空位,而没有填隙原子,仅由这种空位构成的缺陷称之为肖特基缺陷.形成填隙原子时,原子挤入间隙位置所需的能量比产生肖特基缺陷空位所需的能量大,一般地,当温度不太高时,肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多。
杂质原子:实际晶体中存在某些微量杂质。
一方面是晶体生长过程中引入的;另一方面是有目的地向晶体中掺入的一些微量杂质。
当晶体存在杂质原子时,晶体的内能会增加,由于少量的杂质可以分布在数量很大的格点或间隙位置上,使晶体组态熵的变化也很大。
因此温度T下,杂质原子的存在也可能使自由能降低。
(F=U-TS)当杂质原子取代基质原子占据规则的格点位置时,形成替位式杂质,如图a;若杂质原子占据间隙位置,形成间隙式杂质。
对一定晶体,杂质原子是形成替位式杂质还是间隙式杂质,主要取决于杂质原子与基质原子几何尺寸的的相对大小及其电负性。
杂质原子比基质原子小得多时,形成间隙式杂质;替位式杂质在晶体中的溶解度也决定于原子的几何尺寸和化学因素。
线缺陷1、线缺陷的定义:当晶格周期性的破坏发生在晶体内部一条线的周围则称为线缺陷,通常又称之为位错。
它是由于应力超过弹性限度而使晶体发生范性形变所产生的,从晶体内部看,它就是晶体的一部分相对于另一部分发生滑移,以致在滑移区的分界线上出现线状缺陷。
2、位错的基本类型:常见的位错有两种形式:刃位错和螺位错。
刃位错:亦称棱位错。
其特点是:原子的滑移方向与位错线的方向相垂直。
螺位错:特点:是原子的滑移方向与位错线平行,且晶体内没有多余的半个晶面。
垂直于位错线的各个晶面可以看成由一个晶面以螺旋阶梯的形式构成。
当晶体中存在螺位错时,原来的一族平行晶面就变成为以位错线为轴的螺旋面。
位错线的特征:1.滑移区与未滑移区的分界线;2.位错线附近原子排列失去周期性;3.位错线附近原子受应力作用强,能量高,位错不是热运动的结果;4.位错线的几何形状可能很复杂,可能在体内形成闭合线,可能在晶体表面露头,不可能在体内中断。
刃型位错的特点是位错线垂直于滑移矢量b;螺型位错的特点是位错线平行于滑移矢量b。
b又称为伯格斯(Burgers)矢量,它的模等于滑移方向上的平衡原子间距,它的方向代表滑移方向。
除此之外,还存在位错线于滑移矢量既不平行又不垂直的混合型位错。
混合位错的原子排列介于刃型位错和螺型位错之间,可以分解为刃型位错和螺型位错。
面缺陷1、面缺陷的定义:当晶格周期性的破坏发生在晶体内部一个面的周围则称为面缺陷。
2、常见的面缺陷的类型:层错:是由于晶面堆积顺序发生错乱而引入的面缺陷,又称堆垛层错。
小角晶界:具有完整结构的晶体两部分彼此之间的取向有着小角度θ的倾斜,在角θ里的部分是由少数几个多余的半晶面所组成的过渡区,这个区域称小角晶界。
体缺陷在体缺陷中比较重要的是包裹体。
包裹体是晶体生长过程中界面所捕获的夹杂物。
它可能是晶体原料中某一过量组分形成的固体颗粒,也可能是晶体生产过程中坩埚材料带入的杂质微粒。
强度理论在理论研究、工程应用和有效利用材料等方面都具有很重要的意义。
现在,强度理论或屈服准则和破坏准则在物理、力学、材料科学、地球科学和工程中得到广泛的应用,本文讲述了强度理论的概念,强度理论在不同方式下的分类,纳米金属材料的强度与Hall-Petch公式的关系以及强度理论的展望与应用。