当前位置:文档之家› 主电路电气原理图主控制板电器原理图逆变触发电路图脉冲及时序

主电路电气原理图主控制板电器原理图逆变触发电路图脉冲及时序

逆变触发电路图:

脉冲及时序板原理图:

IGBT逆变电焊机工作原理及输出特性

本机采用三相交流380V电压经三相桥式整流、滤波后供给以新型IGBT为功率开关器件的逆变器进行变频(20KC)处理后,由中频变压器降压,再经整流输出可供焊接所需的电源,通过集成电路构成的逻辑控制电路对电压、电流信号的反馈进行处理,实现整机闭环控制,采用脉宽调制PWM为核心的控制技术,从而获得快速脉宽调制的恒流特性和优异的焊接工艺效果。

DC/AC逆变器的制作

--------------------------------------------------------------------------------

https://www.doczj.com/doc/2e19366630.html, 江苏电子网QQ:99296827

这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。--拓普电子

1.电路图

2.工作原理

这里我们将详细介绍这个逆变器的工作原理。

方波信号发生器(见图3)

图3

这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。

场效应管驱动电路。

图4

由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图4所示。

MOS场效应管电源开关电路。

这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。

图5

MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS 场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

图6

为解释MOS 场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。

图7a 图7b

对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS 场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N 沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。我们也可以想像为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。图8给出了P沟道的MOS 场效应管的工作过程,其工作原理类似这里不再重复。

图8

下面简述一下用C-MOS场效应管(增强型MOS 场效应管)组成的应用电路的工作过程(见图9)。电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS 场效应管组合在一起使用。当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。在该电路中,P沟道MOS场效应管和N沟道MOS场效应管总是在相反的状态下工作,其相位输入端和输出端相反。通过这种工作方式我们可以获得较大的电流输出。同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。不同场效应管其关断电压略有不同。也正因为如此,使得该电路不会因为两管同时导通而造成电源短路。

图9

由以上分析我们可以画出原理图中MOS场效应管电路部分的工作过程(见图10)。工作原理同前所述。这种低电压、大电流、频率为50Hz的交变信号通过变压器的低压绕组时,会在变压器的高压侧感应出高压交流电压,完成直流到交流的转换。这里需要注意的是,在某些情况下,如振荡部分停止工作时,变压器的低压侧有时会有很大的电流通过,所以该电路的保险丝不能省略或短接。

图10

3.制作要点

电路板见图11。所用元器件可参考图12。逆变器用的变压器采用次级为12V、电流为10A、初级电压为220V的成品电源变压器。P沟道MOS场效应管(2SJ471)最大漏极电流为30A,在场效应管导通时,漏-源极间电阻为25毫欧。此时如果通过10A电流时会有2.5W的功率消耗。N沟道MOS场效应管(2SK2956)最大漏极电流为50A,场效应管导通时,漏-源极间电阻为7毫欧,此时如果通过10A电流时消耗的功率为0.7W。由此我们也可知在同样的工作电流情况下,2SJ471的发热量约为2SK2956的4倍。所以在考虑散热器时应注意这点。图13展示本文介绍的逆变器场效应管在散热器(100mm×100mm×17mm)上的位置分布和接法。尽管场效应管工作于开关状态时发热量不会很大,出于安全考虑这里选用的散热器稍偏大。

图11

图12

图13

4.逆变器的性能测试

测试电路见图14。这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。其测试结果见电压、电流曲线关系图(图15a)。可以看出,输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。以负载为60W的电灯泡为例:

假设灯泡的电阻不随电压变化而改变。因为R灯=V2/W=2102/60=735Ω,所以在电压为208V时,W=V2/R=2082/735=58.9W。由此可折算出电压和功率的关系。通过测试,我们发现当输出功率约为100W时,输入电流为10A。此时输出电压为200V。逆变器电源效率特性见图15b。图16为逆变器连续100W负载时,场效应管的温升曲线图。图17为不同负载时输出波形图,供大家制作是参考。

图14

图15a 图15b

图16、17

电气控制电路基础原理图

电气控制电路基础(电气原理图) 电气控制系统图一般有三种:电气原理图、电器布置图和电气安装接线图。 这里重点介绍电气原理图。 电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则,采用电器元件展开形式绘制。它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制, 也不反映电器元件的实际大小。 电气原理图一般分主电路和辅助电路(控制电路)两部分。 主电路是电气控制线路中大电流通过的部分,包括从电源到电机之间相连的电器元件;一般由组合开关、主熔断器、接触器主触点、热继电器的热元件和电动机等组成。 辅助电路是控制线路中除主电路以外的电路,其流过的电流比较小和辅助电路包括控制电路、照明电路、信号电路和保护电路。其中控制电路是由按钮、接触器和继电器的线圈及辅助触点、热继电器触点、保护电器触点等组成。 电气原理图中所有电器元件都应采用国家标准中统一规定的图形符号和文字符号表示。 电气原理图中电器元件的布局 电气原理图中电器元件的布局,应根据便于阅读原则安排。主电路安排

在图面左侧或上方,辅助电路安排在图面右侧或下方。无论主电路还是辅助电路,均按功能布置,尽可能按动作顺序从上到下,从左到右排列。 电气原理图中,当同一电器元件的不同部件(如线圈、触点)分散在不同位置时,为了表示是同一元件,要在电器元件的不同部件处标注统一的文字符号。对于同类器件,要在其文字符号后加数字序号来区别。如两个接触器,可用KM、KMZ文字符号区别。 电气原理图中,所有电器的可动部分均按没有通电或没有外力作用时的状态画出。 对于继电器、接触器的触点,按其线圈不通电时的状态画出,控制器按手柄处于零位时的状态画出;对于按钮、行程开关等触点按未受外力作用时的状态画出。 电气原理图中,应尽量减少线条和避免线条交叉。各导线之间有电联系时,在导线交点处画实心圆点。根据图面布置需要,可以将图形符号旋转绘制,一般逆时针方向旋转900,但文字符号不可倒置。 图面区域的划分 图纸上方的1、2、3…等数字是图区的编号,它是为了便于检索 电气线路,方便阅读分析从而避免遗漏设置的。图区编号也可设置在图 的下方。 图区编号下方的的文字表明它对应的下方元件或电路的功能,使读者能清楚地知道某个元件或某部分电路的功能,以利于理解全部电路的工作原理。

电气控制基础之电气原理图

电气控制基础之电气原理图

电气控制基础之电气原理图 电气控制系统图一般有三种:电气原理图、电器布置图和电气安装接线图。 这里重点介绍电气原理图。 电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则,采用电器元件展开形式绘制。它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制,也不反映电器元件的实际大小。 电气原理图一般分主电路和辅助电路(控制电路)两部分。 A主电路是电气控制线路中大电流通过的部分,包括从电源到电机之间相连的电器元件;一般由组合开关、主熔断器、接触器主触点、热继电器的热元件和电动机等组成。 B辅助电路是控制线路中除主电路以外的电路,其流过的电流比较小和辅助电路包括控制电路、照明电路、信号电路和保护电路。其中控制电路是由按钮、接触器和继电器的线圈及辅助触点、热继电器触点、保护电器触点等组成。 电气原理图中所有电器元件都应采用国家标准中统一规定的图形符号和文字符号表示。 电气原理图中电器元件的布局 电气原理图中电器元件的布局,应根据便于阅读原则安排。主电路安排在图面左侧或上方,辅助电路安排在图面右侧或下方。无论主电路还是辅助电路,均按功能布置,尽可能按动作顺序从上到下,从左到右排列。 电气原理图中,当同一电器元件的不同部件(如线圈、触点)分散在不同位置时,为了表示是同一元件,要在电器元件的不同部件处标注统一的文字符号。对于同类器件,要在其文字符号后加数字序号来区别。如两个接触器,可用KMI、KMZ文字符号区别。 电气原理图中,所有电器的可动部分均按没有通电或没有外力作用时的状态画出。 对于继电器、接触器的触点,按其线圈不通电时的状态画出,控制器按手柄处于零位时的状态画出;对于按钮、行程开关等触点按未受外力作用时的状态画出。 电气原理图中,应尽量减少线条和避免线条交叉。各导线之间有电联系时,在导线交点处画实心圆点。根据图面布置需要,可以将图形符号旋转绘制,一般逆时针方向旋转90o,但文字符号不可倒置。 图面区域的划分 图纸上方的1、2、3…等数字是图区的编号,它是为了便于检索电气线路,方便阅读分析从而避免遗漏设置的。图区编号也可设置在图的下方。 图区编号下方的的文字表明它对应的下方元件或电路的功能,使读者能清楚地

主电路电气原理图主控制板电器原理图逆变触发电路图脉冲及时序

逆变触发电路图:

脉冲及时序板原理图:

IGBT逆变电焊机工作原理及输出特性 本机采用三相交流380V电压经三相桥式整流、滤波后供给以新型IGBT为功率开关器件的逆变器进行变频(20KC)处理后,由中频变压器降压,再经整流输出可供焊接所需的电源,通过集成电路构成的逻辑控制电路对电压、电流信号的反馈进行处理,实现整机闭环控制,采用脉宽调制PWM为核心的控制技术,从而获得快速脉宽调制的恒流特性和优异的焊接工艺效果。 DC/AC逆变器的制作 -------------------------------------------------------------------------------- https://www.doczj.com/doc/2e19366630.html, 江苏电子网QQ:99296827 这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。--拓普电子 1.电路图

2.工作原理 这里我们将详细介绍这个逆变器的工作原理。 方波信号发生器(见图3) 图3 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 场效应管驱动电路。

电气控制基础之电气原理图

电气控制基础之电气原理图 电气控制系统图一般有三种:电气原理图、电器布置图和电气安装接线图。 这里重点介绍电气原理图。 电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则,采用电器元件展开形式绘制。它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制,也不反映电器元件的实际大小。 电气原理图一般分主电路和辅助电路(控制电路)两部分。 A主电路是电气控制线路中大电流通过的部分,包括从电源到电机之间相连的电器元件;一般由组合开关、主熔断器、接触器主触点、热继电器的热元件和电动机等组成。 B辅助电路是控制线路中除主电路以外的电路,其流过的电流比较小和辅助电路包括控制电路、照明电路、信号电路和保护电路。其中控制电路是由按钮、接触器和继电器的线圈及辅助触点、热继电器触点、保护电器触点等组成。电气原理图中所有电器元件都应采用国家标准中统一规定的图形符号和文字符号表示。 电气原理图中电器元件的布局 电气原理图中电器元件的布局,应根据便于阅读原则安排。主电路安排在图面左侧或上方,辅助电路安排在图面右侧或下方。无论主电路还是辅助电路,均

按功能布置,尽可能按动作顺序从上到下,从左到右排列。 电气原理图中,当同一电器元件的不同部件(如线圈、触点)分散在不同位置时,为了表示是同一元件,要在电器元件的不同部件处标注统一的文字符号。对于同类器件,要在其文字符号后加数字序号来区别。如两个接触器,可用KMI、KMZ文字符号区别。 电气原理图中,所有电器的可动部分均按没有通电或没有外力作用时的状态画出。 对于继电器、接触器的触点,按其线圈不通电时的状态画出,控制器按手柄处于零位时的状态画出;对于按钮、行程开关等触点按未受外力作用时的状态画出。 电气原理图中,应尽量减少线条和避免线条交叉。各导线之间有电联系时,在导线交点处画实心圆点。根据图面布置需要,可以将图形符号旋转绘制,一般逆时针方向旋转90o,但文字符号不可倒置。 图面区域的划分 图纸上方的1、2、3…等数字是图区的编号,它是为了便于检索电气线路,方便阅读分析从而避免遗漏设置的。图区编号也可设置在图的下方。 图区编号下方的的文字表明它对应的下方元件或电路的功能,使读者能清楚地知道某个元件或某部分电路的功能,以利于理解全部电路的工作原理。 符号位置的索引 q 符号位置的索引用图号、负次和图区编号的组合索引法,索引代号的组成如

逆变电焊机原理图的讲解

主电路电气原理图

主控制板电器原理图:

逆变触发电路图:

脉冲及时序板原理图: 本机采用三相交流380V电压经三相桥式整流、滤波后供给以新型IGBT为功率开关器件的逆变器进行变频(20KC)处理后,由中频变压器降压,再经整流输出可供焊接所需的电源,通过集成电路构成的逻辑控制电路对电压、电流信号的反馈进行处理,实现整机闭环控制,采用脉宽调制PWM为核心的控制技术,从而获得快速脉宽调制的恒流特性和优异的焊接工艺效果。

IGBT逆变电焊机工作原理及输出特性 这里介绍的逆变器(见图)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。--拓普电子 1.电路图 2.工作原理 这里我们将详细介绍这个逆变器的工作原理。 方波信号发生器(见图3)这里采用六反相器CD4069 构成方波信号发生器。电路中R1是补偿电阻,用于改善 图3

由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC 。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz 。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大 振幅为0~5V ,为充分驱动电源开关电路,这里用 TR1、TR2将振荡信号电压放大至0~12V 。如图4 所示。 MOS 场效应管电源开关 电路。 这是该装置的核心,在 介绍该部分工作原理之 前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也 被称为MOS FET , 既 Metal Oxide Semiconductor Field Effect Transistor (金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS 场效应管,其内部结构见图5。它可分为NPN 型PNP 型。NPN 型通常称为N 沟道型,PNP 型也叫P 沟道型。由图可看出,对于N 沟道的场效应管其源极和漏极接在N 型半导体上,同样对于P 沟道的场效应管 其源极和漏极则接在P 型半导体上。 我们知道一般三极管是由输入的电流 控制输出的电流。但对于场效应管, 其输出电流是由输入的电压(或称电 场)控制,可以认为输入电流极小或 没有输入电流,这使得该器件有很高 的输入阻抗,同时这也是我们称之为 场效应管的原因。 图4 图5 图6

电气原理图

电气控制系统图一般有三种:电气原理图、电器布置图和电气安装接线图。 这里重点介绍电气原理图。 电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则,采用电器元件展开形式绘制。它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制,也不反映电器元件的实际大小。 电气原理图一般分主电路和辅助电路(控制电路)两部分。 A主电路是电气控制线路中大电流通过的部分,包括从电源到电机之间相连的电器元件;一般由组合开关、主熔断器、接触器主触点、热继电器的热元件和电动机等组成。 B辅助电路是控制线路中除主电路以外的电路,其流过的电流比较小和辅助电路包括控制电路、照明电路、信号电路和保护电路。其中控制电路是由按钮、接触器和继电器的线圈及辅助触点、热继电器触点、保护电器触点等组成。 电气原理图中所有电器元件都应采用国家标准中统一规定的图形符号和文字符号表示。 电气原理图中电器元件的布局 电气原理图中电器元件的布局,应根据便于阅读原则安排。主电路安排在图面左侧或上方,辅助电路安排在图面右侧或下方。无论主电路还是辅助电路,均按功能布置,尽可能按动作顺序从上到下,从左到右排列。 电气原理图中,当同一电器元件的不同部件(如线圈、触点)分散在不同位置时,为了表示是同一元件,要在电器元件的不同部件处标注统一的文字符号。对于同类器件,要在其文字符号后加数字序号来区别。如两个接触器,可用KMI、KMZ 文字符号区别。 电气原理图中,所有电器的可动部分均按没有通电或没有外力作用时的状态画出。 对于继电器、接触器的触点,按其线圈不通电时的状态画出,控制器按手柄处于零位时的状态画出;对于按钮、行程开关等触点按未受外力作用时的状态画出。电气原理图中,应尽量减少线条和避免线条交叉。各导线之间有电联系时,在导线交点处画实心圆点。根据图面布置需要,可以将图形符号旋转绘制,一般逆时针方向旋转90o,但文字符号不可倒置。 图面区域的划分 图纸上方的1、2、3…等数字是图区的编号,它是为了便于检索电气线路,方便阅读分析从而避免遗漏设置的。图区编号也可设置在图的下方。 图区编号下方的的文字表明它对应的下方元件或电路的功能,使读者能清楚地知道某个元件或某部分电路的功能,以利于理解全部电路的工作原理。 符号位置的索引 q 符号位置的索引用图号、负次和图区编号的组合索引法,索引代号的组成如下: q 图号是指当某设备的电气原理图按功能多册装订时,每册的编号,一般用数

电气自动化-常见的电气控制原理图

电气自动化-常见的电气控制原理图 电气自动化-常见的电气控制原理图范本 一、概述 电气控制原理图是用于描述电气自动化系统的一种图形化表示 方式。它展示了电气设备、元件和线路之间的关系,以及信号的流 向和控制逻辑。本文档将详细介绍常见的电气控制原理图,并提供 相应的示意图和注解。 二、电气控制系统 1.主电路 主电路是电气控制系统的核心,负责提供电源和供电。它通常 包括主电源开关、断路器、接触器、继电器等设备,用于控制电气 设备的启停和电源回路的切换。 2.控制电路 控制电路是用来实现对电气设备的控制操作。它包括控制按钮、指示灯、接近开关、限位开关等元件,以及相应的控制逻辑电路。 控制电路通常使用继电器、接触器等设备实现。 三、常见电气控制原理图 1.单相电动机控制电路

示意图:(插入示意图) 注解:此电路主要用于控制单相电动机的启停和正反转。通过主电源开关和接触器控制电源的连接和切断,通过继电器和接触器控制电机的正反转。 2.三相电动机启动电路 示意图:(插入示意图) 注解:此电路主要用于控制三相电动机的启动。通过主电源开关和断路器控制电源的连接和切断,通过接触器和热继电器实现电动机的起动和自动保护。 3.PLC控制电路 示意图:(插入示意图) 注解:此电路主要用于通过PLC(可编程逻辑控制器)实现对电气设备的自动控制。PLC采集外部信号并进行逻辑判断,通过输出模块控制设备的启停、排程等操作。 4.交流接触器控制电路 示意图:(插入示意图) 注解:此电路主要用于通过交流接触器控制电气设备的启停和正反转。通过交流接触器控制电源的连接和切断,通过继电器和接触器控制电机的正反转。

开关电源电路图

开关电源电路图 一、主电路 从交流电网输入、直流输出的全过程,包括: 1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。 4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 二、控制电路 一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。 三、检测电路 除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。 四、辅助电源 提供所有单一电路的不同要求电源。 开关控制稳压原理 开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示: EAB=TON/T*E 式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。 由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。 按TRC控制原理,有三种方式: 一、脉冲宽度调制(Pulse Width Modulation,缩写为PWM) 开关周期恒定,通过改变脉冲宽度来改变占空比的方式。 二、脉冲频率调制(Pulse Frequency Modulation,缩写为PFM) 导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。 三、混合调制 导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。

逆变直流电焊机的工作原理汇总

逆变电焊机的基本工作原理 逆变电焊机主要是逆变器产生的逆变式弧焊电源,又称弧焊逆变器,是一种新型的焊接电源。是将工频〔50Hz交流电,先经整流器整流和滤波变成直流,再通过大功率开关电子元件〔晶闸管SCR、晶体管GTR、场效应管MOSFET或IGBT,逆变成几kHz~几十kHz的中频交流电,同时经变压器降至适合于焊接的21-28V电压,再次整流并经电抗滤波输出相当平稳的直流焊接电流。其变换顺序可简单地表示为: 工频交流〔经整流滤波→直流〔经逆变→中频交流〔降压、整流、滤波→直流。 即为:AC→D C→A C→D C 因为逆变降压后的交流电,由于其频率高,则感抗大,在焊接回路中有功功率就会大大降低。 所以需再次进行整流。这就是目前所常用的逆变电焊机的机制。逆变电源的特点: 弧焊逆变器的基本特点是工作频率高,由此而带来很多优点。因为变压器无论是原绕组还是副绕组,其电势E与电流的频率f、磁通密度B、铁芯截面积S及绕组的匝数W有如下关系:E=4.44fBSW 而绕组的端电压U近似地等于E,即: U≈E=4.44fBSW 当U、B确定后,若提高f,则S减小,W减少,因此,变压器的重量和体积就可以大大减小。就能使整机的重量和体积显著减小。还有,频率的提高及其他因素而带来了许多优点,与传统弧焊电源比较,其主要特点如下: 1.体积小、重量轻,节省材料,携带、移动方便。 2.高效节能,效率可达到80%~90%,比传统焊机节电1/3以上。 3.动特性好,引弧容易,电弧稳定,焊缝成形美观,飞溅小。 4.适合于与机器人结合,组成自动焊接生产系统。 5.可一机多用,完成多种焊接和切割过程。 电焊机之IGBT系列焊机工作原理 一、功率开关管的比较 常用的功率开关有晶闸管、IGBT、场效应管等。其中,晶闸管〔可控硅的开关频率最低约1000次/秒左右,一般不适用于高频工作的开关电路。 1、效应管的特点: 场效应管的突出优点在于其极高的开关频率,其每秒钟可开关50万次以上,耐压一般在500V 以上,耐温150℃〔管芯,而且导通电阻,管子损耗低,是理想的开关器件,尤其适合在高频电路中作开关器件使用。 但是场效应管的工作电流较小,高的约20A,低的一般在9A左右,限制了电路中的最大电流,而且由于场效应管的封装形式,使得其引脚的爬电距离〔导电体到另一导电体间的表面距离较小,在环境高压下容易被击穿,使得引脚间导电而损坏机器或危害人身安全。 2、IGBT的特点: IGBT即双极型绝缘效应管,符号及等效电路图见图11.1,其开关频率在20K Hz ~30K Hz 之间。但它可以通过大电流〔100A以上,而且由于外封装引脚间距大,爬电距离大,能抵御环境高压的影响,安全可靠。 一、场效应管逆变焊机的特点 由于场效应管的突出优点,用场效应管作逆变器的开关器件时,可以把开关频率设计得很高,以提高转换效率和节省成本〔使用高频率变压器以减小焊机的体积,使焊机向小型化,微型化方便使用。〔高频变压器与低频变压器的比较见第三章《逆变弧焊电源整机方框图》。 但无论弧焊机还是切割机,它们的工作电流都很大。使用一个场效应管满足不了焊机对电流的需求,一般采用多只并联的形式来提高焊机电源的输出电流。这样既增加了成本,又降低了

逆变直流电焊机的工作原理汇总

逆变直流电焊机的工作原理汇总

逆变电焊机的基本工作原理 逆变电焊机主要是逆变器产生的逆变式弧焊电源,又称弧焊逆变器,是一种新型的焊接电源。是将工频(50Hz)交流电,先经整流器整流和滤波变成直流,再通过大功率开关电子元件(晶闸管SCR、晶体管GTR、场效应管MOSFET 或IGBT),逆变成几kHz~几十kHz的中频交流电,同时经变压器降至适合于焊接的21-28V电压,再次整流并经电抗滤波输出相当平稳的直流焊接电流。其变换顺序可简单地表示为: 工频交流(经整流滤波)→直流(经逆变)→中频交流(降压、整流、滤波)→直流。 即为:AC→D C→A C→D C 因为逆变降压后的交流电,由于其频率高,则感抗大,在焊接回路中有功功率就会大大降低。所以需再次进行整流。这就是目前所常用的逆变电焊机的机制。逆变电源的特点: 弧焊逆变器的基本特点是工作频率高,由此而带来很多优点。因为变压器无论是原绕组还是副绕组,其电势E与电流的频率f、磁通密度B、铁

一、场效应管逆变焊机的特点 由于场效应管的突出优点,用场效应管作逆变器的开关器件时,可以把开关频率设计得很高,以提高转换效率和节省成本(使用高频率变压器以减小焊机的体积,使焊机向小型化,微型化方便使用。(高频变压器与低频变压器的比较见第三章《逆变弧焊电源整机方框图》。 但无论弧焊机还是切割机,它们的工作电流都很大。使用一个场效应管满足不了焊机对电流的需求,一般采用多只并联的形式来提高焊机电源的输出电流。这样既增加了成本,又降低了电路的稳定性和可靠性。 二、IGBT焊机的特点 IGBT焊机指的是使用IGBT作为逆变器开关器件的弧焊机。由于IGBT的开关频率较低,电流大,焊机使用的主变压器、滤波、储能电容、电

电气控制原理图讲解电工基础

电气把握原理图讲解 - 电工基础 电气原理图是依据电气动作原理绘制的,用于分析动作原理和排解故障.而不考虑电气设备的电气元器件的实际结构和安装状况。通过电路图,可具体地了解电路、设备电气把握系统的组成和工作原理,并可在测试和查找故障时供应足够的信息,同时电气原理图也是编制接线图的重要依据。 1.电气原理图绘制电气原理图中,一般分为主电路和把握电路两部分分别画出。主电路是设备的驱动电路,在把握电路的把握下,依据把握要求由电源向用电设备供电。主电路通常用粗实线画在图样的左侧(或上方)。在电力拖动线路中,实际上就是设备的电源、电动机及其他用电设备等。把握和帮助电路一般用细实线画在图样的右侧(或下方)。把握电路、帮助电路要分开画。把握电路画出把握主电路工作的把握电器的动作挨次,画出用作其他把握要求的把握电器的动作挨次。把握电路由接触器和继电器的线圈以及各种电器的常开、常闭触点组合构成把握规律,实现需要的把握功能。帮助电路是指设备中的信号和照明部分。主电路、把握电路和其他帮助的信号照明电路,爱护电路一起构成电控系统。电气原理图中的电路可以水平布置或者垂直布置。当水平布置时,电源线垂直画,其他电路水平画,把握电路中的耗能元件画在电路的最右端。当垂直布置时,电源线水平画,其他电路垂直画,把握电路中的耗能元件画在电路的最下端。 2.元器件绘制和器件状态电气原理图中的全部电气元器件不画出实际外形图,而接受国家标准规定的图形符号和文字符号表示。同一电器的各个部件可依据需要画在不同的地方,

但必需用相同的文字符号标注。电气原理图中全部元器件的可动部分通常表示在电器非激励或不工作的状态和位置。其中,常见的元器件状态有: (1)继电器和接触器的线圈处在非激励状态。 (2)断路器和隔离开关在断开位置。 (3)零位操作的手动把握开关在零位状态。 (4)机械操作开关和按钮在非工作状态或不受力状态。 (5)爱护类元器件处在设备正常工作状态。 3.电气原理图的阅读方法一般设备电气原理图可分为主电路(或主回路)、把握电路和帮助电路。在阅读电气原理图之前,应先要了解被控对象对电力拖动的要求;了解被控对象有哪些运动部件以及这些部件是怎样动作的,各种运动之间是否有相互制约的关系;生疏电路图的制图规章及电气元器件的图形符号。在读电气原理图时,应先从主电路人手,把握电路中电器的动作规律,依据主电路的动作要求再看与此相关的电路。一般步骤如下: (1)看本设备所用的电源。一般设备多用三相电源(380V、50Hz),也有用直流电源的。以前是由直流发电机和整流装置来供应的,但随着电子技术的进展(特殊是大功率整流管及晶闸管的消灭),现在一般都由整流装置来获得直流电。 (2)分析主电路有几台电动机,分清楚它们的用途和类别(是笼型异步电动机、绕线转子异步电动机、直流电动机、同步电动机中的哪一种)。 (3)分清楚各台电动机的动作要求,如启动方式、转动方式、调速及制动方式,各台电动机之间是否有相互制约的关系。 (4)了解主电路中所用的把握电器及爱护电器。前者是指除常规接触器之外的把握元件,如电源开关(转换开关及断路器)、万能转换开关。后者是指短路爱护器件及过载爱护器件,如:空气断

逆变直流电焊机的工作原理

逆变电焊机的根本工作原理 逆变电焊机主要是逆变器产生的逆变式弧焊电源,又称弧焊逆变器,是一种新型的焊接电源。是将工频〔50Hz〕交流电,先经整流器整流和滤波变成直流,再通过大功率开关电子元件〔晶闸管SCR、晶体管GTR、场效应管MOSFET或IGBT〕,逆变成几kHz~几十kHz的中频交流电,同时经变压器降至适合于焊接的21-28V电压,再次整流并经电抗滤波输出相当平稳的直流焊接电流。其变换顺序可简单地表示为: 工频交流〔经整流滤波〕→直流〔经逆变〕→中频交流〔降压、整流、滤波〕→直流。 即为:AC→DC→AC→DC 因为逆变降压后的交流电,由于其频率高,那么感抗大,在焊接回路中有功功率就会大大降低。 所以需再次进展整流。这就是目前所常用的逆变电焊机的机制。逆变电源的特点: 弧焊逆变器的根本特点是工作频率高,由此而带来很多优点。因为变压器无论是原绕组还是副绕组,其电势E与电流的频率f、磁通密度B、铁芯截面积S及绕组的匝数W有如下关系:E=4.44fBSW 而绕组的端电压U近似地等于E,即: U≈E=4.44fBSW 当U、B确定后,假设提高f,那么S减小,W减少,因此,变压器的重量和体积就可以大大减小。就能使整机的重量和体积显著减小。还有,频率的提高及其他因素而带来了许多优点,与传统弧焊电源比拟,其主要特点如下: 1.体积小、重量轻,节省材料,携带、移动方便。 2.高效节能,效率可到达80%~90%,比传统焊机节电1/3以上。 3.动特性好,引弧容易,电弧稳定,焊缝成形美观,飞溅小。 4.适合于与机器人结合,组成自动焊接生产系统。 5.可一机多用,完成多种焊接和切割过程。 电焊机之IGBT系列焊机工作原理 一、功率开关管的比拟 常用的功率开关有晶闸管、IGBT、场效应管等。其中,晶闸管〔可控硅〕的开关频率最低约1000次/秒左右,一般不适用于高频工作的开关电路。 1、效应管的特点: 场效应管的突出优点在于其极高的开关频率,其每秒钟可开关50万次以上,耐压一般在500V 以上,耐温150℃〔管芯〕,而且导通电阻,管子损耗低,是理想的开关器件,尤其适合在高频电路中作开关器件使用。 但是场效应管的工作电流较小,高的约20A,低的一般在9A左右,限制了电路中的最大电流,而且由于场效应管的封装形式,使得其引脚的爬电距离〔导电体到另一导电体间的外表距离〕较小,在环境高压下容易被击穿,使得引脚间导电而损坏机器或危害人身平安。 2、IGBT的特点: IGBT即双极型绝缘效应管,符号及等效电路图见图11.1,其开关频率在20K Hz ~30K Hz 之间。但它可以通过大电流〔100A以上〕,而且由于外封装引脚间距大,爬电距离大,能抵

相关主题
文本预览
相关文档 最新文档