2018高中数学第二章统计21随机抽样212系统抽样新人教B版3!
- 格式:doc
- 大小:90.50 KB
- 文档页数:6
2018版高中数学第二章统计2.1.2 系统抽样学案新人教B版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第二章统计2.1.2 系统抽样学案新人教B版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第二章统计2.1.2 系统抽样学案新人教B版必修3的全部内容。
2。
1.2 系统抽样1.理解系统抽样的概念.(重点)2.掌握系统抽样的一般步骤,会用系统抽样从总体中抽取样本.(重点)3.能用系统抽样解决实际问题.(难点)[基础·初探]教材整理系统抽样的概念阅读教材P52,完成下列问题.当总体元素个数很大时,样本容量就不宜太小,采用简单随机抽样,就显得费事.这时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.在系统抽样中,由于抽样的间隔相等,因此系统抽样也被称作等距抽样.1.判断(正确的打“√”,错误的打“×")(1)总体个数较多时可以用系统抽样.()(2)系统抽样的过程中,每个个体被抽到的概率不相等.()(3)用系统抽样从N个个体中抽取一个容量为n的样本,要平均分成n段,每段各有错误!个号码.()【答案】(1)√(2)×(3)×2.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20 B.2,6,10,14C.2,4,6,8 D.5,8,11,14【解析】将20分成4个组,每组5个号,间隔等距离为5。
2.1.2 系统抽样一、教学目标知识目标:1、正确理解系统抽样的概念2、掌握系统抽样的一般步骤3、正确理解系统抽样与简单的随机抽样的关系德育目标:通过数学活动,感受数学对实际生活的需要,体现现实世界与数学知识的联系。
二、教学重难点教学重点:1、正确理解系统抽样的概念2、掌握系统抽样的一般步骤3、体会系统抽样与简单的随机抽样的区别教学难点:1、能够灵活应用系统抽样的方法解决统计问题2、当总体个数N和样本个数n不能整除时如何处理三、教学过程(一)复习回顾简单随机抽样有哪两种常用方法?其操作步骤分别如何?1、抽签法:第一步将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第二步将号签放在一个容器中,并搅拌均匀.第三步每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.2、随机数表法:第一步将总体中的所有个体编号.第二步在随机数表中任选一个数作为起始数.第三步从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n 的样本.(二)引入新知情景一:了解某省农村家庭年平均收入情况.情景二:检测某电视机厂生产的某种型号的电视机的质量是否合格?当总体中的个体数很多时,用简单随机抽样抽取样本,操作上并不方便、快捷. 因此,在保证抽样的公平性,不降低样本的代表性的前提下,我们还需要进一步学习其它的抽样方法,以弥补简单随机抽样的不足.下面我们来学习另一种抽样方法——系统抽样(等距抽样)(三)知识探究思考1:某中学高一年级有12个班,每班50人,为了了解高一年级学生对老师教学的意见,教务处打算从年级600名学生中抽取60名进行问卷调查,那么年级每个同学被抽到的概率是多少?2:你能用简单随机抽样对上述问题进行抽样吗?具体如何操作?3:如果从600件产品中抽取60件进行质量检查,按照上述思路抽样应如何操作?操作如下:第一步,将这600件产品编号为1,2,3, (600)第二步,将总体平均分成60部分,每一部分含10个个体第三步,在第1部分中用简单随机抽样抽取一个号码(如8号).第四步,从该号码起,每隔10个号码取一个号码,就得到一个容量为60的样本.(如8,18,28, (598)(四)概念认识1、系统抽样的定义:将总体平均分成几部分,然后按照一定的规则,从每一部分抽取一个个体作为样本,这种抽样的方法叫做系统抽样。
2. 1.2 系统抽样2. 1.3 分层抽样2. 1.4 数据的收集【学习目标】1.理解并掌握系统抽样、分层抽样.2.会用系统抽样、分层抽样从总体中抽取样本.3.理解三种抽样的区别与联系.ET问题导学--------------------------- 知识点一系统抽样思考1当总体中的个体数较多时,为什么不宜用简单随机抽样?1段的个体编号怎样抽取?以思考2用系统抽样抽取样本时,每段各取一个号码,其中第后各段的个体编号怎样抽取?梳理系统抽样(1)定义:要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先规定的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法.⑵步骤:①先将总体的N个个体__________ •有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;N N N②确定分段间隔k,对编号进行_____________ •当n(n是样本容量)是整数时,取k=n;当n不是整数时,先从总体中___________ 剔除几个个体,再_______________ ,然后分段;③在第1段用 _____________ 确定第一个个体编号1(1 < k);④按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2 个个体编号_____________ ,再加k 得到第3 个个体编号 __________ ,依次进行下去,直到获取整个样本.知识点二分层抽样思考1当所研究的总体由差异明显的几部分组成时,还可用系统抽样吗?思考2 分层抽样的总体具有什么特性?思考3 系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样,这种说法对吗?梳理分层抽样(1) 定义一般地,当总体是由________________ 的几个部分组成时,往往选用分层抽样的方法.将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样. 分层抽样尽量利用了调查者对调查对象(总体)事先所掌握的各种信息,并充分考虑了保持样本结构与总体结构的一致性,这对提高样本的代表性是非常重要的.(2)分层抽样的实施步骤第一步,按某种特征将总体分成若干部分 (层).第三步,各层抽取的个体数= _____________________________________ . 第四步,依各层抽取的个体数,按 ____________________ 从各层抽取样本. 第五步,综合每层抽样,组成样本.知识点三三种抽样方法的比较知识点四数据收集的几种常见方式1做试验根据调查项目的要求来设计一些合适的试验,能够直接地获得样本数据. 试验时要注意准备好试验的用具(或组织好观测的对象)、指定专门的记录人员等.做试验的优点是:通常能得到可靠的数据资料;缺点是:花费人力、物力、时间较多.2. 查阅资料有些数据资料不容易直接调查得到, 这时可以通过查阅统计年鉴、图书馆文献等办法获得所需或相关的数据.3. 设计调查问卷做实际调查时往往要设计调查问卷.调查问卷一般由一组有目的、有系统、有顺序的题目组成.问题由调查人员根据调查的目的、项目进行设计.题型探究类型一系统抽样及应用第二步,计算抽样比•抽样比=样本容量总体中的个体数例1为了了解参加某种知识竞赛的 1 000名学生的成绩,从中抽取一个容量为50的样本, 那么采用什么抽样方法比较恰当?简述抽样过程.引申探究在本例中,如果总体是1 002 ,其余条件不变,又该怎么抽样?反思与感悟当总体中的个体数不能被样本容量整除时,需要在总体中剔除一些个体.由于剔除方法采用简单随机抽样,所以即使是被剔除的个体,在整个抽样过程中被抽到的机会和其他个体是一样的.跟踪训练1 某工厂有1 003 名工人,从中抽取10 人参加体检,试用系统抽样进行具体实施.类型二分层抽样及应用命题角度1 分层抽样适用情形判定例2 某地区有高中生2 400 人,初中生10 900 人,小学生11 000 人.当地教育部门为了1%的学生进行了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取调查,你认为应当怎样抽取样本?反思与感悟分层抽样实质是利用已知信息尽量使样本结构与总体结构相似.在实际操作时,并不排斥与其他抽样方法联合使用.跟踪训练2 某单位有员工500人,其中35岁以下的有125人,35岁〜49岁的有280人,50岁以上的有95人.为了调查员工的身体状况,要从中抽取一个容量为100的样本,如何进行抽取?命题角度2 分层抽样具体实施步骤例3 某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人员有32人.教育部门为了了解在职人员对学校机构改革的意见,要从中抽取一个容量为20的样本,请利用分层抽样的方法抽取,写出抽样过程.反思与感悟在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体容量之比.跟踪训练3某单位最近组织了一次健身活动,活动小组分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占110%.登山组的职工占参加活动总人数的-,且该组中青年人占50%中年人占40%老年人占410%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取200人进行抽查,试确定:(1) 游泳组中,青年人、中年人、老年人分别所占的比例;(2) 游泳组中,青年人、中年人、老年人分别应抽取的人数.当堂训练i检测员每io分钟从匀速传递的新产品生产流水线上抽取一件新产品进行某项指标检测,这样的抽样方法是()A.系统抽样法B.抽签法C.随机数法D.其他抽样方法2•交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查•假设四个社区驾驶员的总人数为N其中甲社区有驾驶员96人•若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43 ,则这四个社区驾驶员的总人数N为()A. 101 B . 808 C . 1 212 D . 2 0123. 为了调查某省各城市PM2.5的值,按地域把36个城市分成甲、乙、丙三组,对应的城市数分别为6,12,18.若用分层抽样的方法抽取12个城市,则乙组中应抽取的城市数为4•某班级有50名学生,现要采用系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号为1〜50号,并均匀分组,第一组1〜5号,第二组6〜10号,…,第十组46〜50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________________________________ 的学生•5.一批产品中有一级品100个,二级品60个,三级品40个,分别用系统抽样法和分层抽样法从这批产品中抽取一个容量为20的样本.规律与方法1系统抽样有以下特点:(1) 适用于总体容量较大的情况;(2) 剔除多余个体及第一段抽样都要用简单随机抽样,因而与简单随机抽样有密切联系;(3) 是等可能抽样,每个个体被抽到的可能性都是N其中N为总体容量,n为样本容量;⑷是不放回抽样.在抽样时,只要第一段抽取的个体确定了,后面各段中要抽取的个体依照事先确定好的规律就自动地被抽出,因此简单易行.2•总体容量小时,用简单随机抽样;总体容量大时,用系统抽样;总体差异明显时,用分层抽样•在实际抽样中,为了使样本具有代表性,通常要同时使用几种抽样方法.答案精析问题导学知识点一思考1 因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀”,从而使样本的代表性不强.思考2 用简单随机抽样抽取第1 段的个体编号.在抽取第1 段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1 段抽取的号码依次累加间隔k.梳理(2) ①编号②分段随机重新编号③简单随机抽样④(+ k) (I + 2k).知识点二思考1 不可以.思考2 分层抽样的总体由差异明显的几部分构成,也就是说当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样.思考3 不对,因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取是按事先确定好的规则进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样.梳理(1)差异明显(2)各层总的个体数X抽样比简单随机抽样.知识点三抽样过程中每个个体被抽取的概率相等从总体中逐个不放回抽取简单随机抽样是基础样本容量较小将总体分成均衡的几部分,按规则关联抽取用简单随机抽样抽取起始号码总体中的个体数较多,样本容量较大将总体分成几层,按比例分层抽取用简单随机抽样或系统抽样对各层抽样总体由差异明显的几部分组成题型探究类型一例1 解适宜选用系统抽样,抽样过程如下:(1) 随机地将这1 000名学生编号为1,2,3, (1000)(2) 将总体按编号顺序均分成50 个部分,每部分包括20 个个体.(3) 在第一部分的个体编号1,2,3 ,…,20中,利用简单随机抽样抽取一个号码I.⑷以I为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:I ,1 + 20,I + 40,…,I + 980.引申探究解(1) 将每个学生编一个号,由1 至1002.⑵利用随机数法剔除2个号.⑶将剩余的1 000名学生重新编号1至1000.(4)按编号顺序均分成50个部分,每部分包括20个个体.⑸在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码I.⑹以I为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:I ,1 + 20,I + 40,…,I + 980.跟踪训练1 解(1)将每个工人编一个号,由0001至1003.(2)利用随机数法找到3个号将这3名工人剔除.⑶将剩余的1 000名工人重新编号0001至1000.⑷分段,取间隔k= 1 00。
2.1.2 系统抽样整体设计教材分析当总体中个体比拟多,抽签法与随机数表法用于选取样本就比拟烦琐,而且也不能保证样本代表性,所以本节课将要学习又一种新抽样方法——系统抽样.在教学时教师不仅要让学生了解系统抽样概念,而且还要让学生掌握如何进展系统抽样,以及在进展系统抽样时所要注意一些事项,如怎样进展分段,应该分成多少段,分段时如总体个数不能被样本容量整除怎么办等等.在教学中要教会学生会比拟各种方法适用范围与各自优缺点,并会根据实际情况选择恰当抽样方法,且在讲解系统抽样时必须紧扣“每个个体被抽取概率是相等〞理论依据.黑格尔说:“教师是学生心目中‘权威人物’,是儿童心目中最神圣偶像.〞因此,我们教师在教学中要建立民主师生关系,要有意突破常规,让学生敢于在课堂上表现自己,教师也要善于表扬他们.教学时,教师要让学生充分发挥自己潜能,培养他们会对现有知识独立钻研创新精神,并培养他们会用现有知识合理辐射数学思维,得出一些具有个人特色正确结论.三维目标了解系统抽样概念及抽样步骤,会用系统抽样从总体中抽取样本,能运用所学知识判断、分析与选择抽取样本方法.能从现实生活或其他学科提出有价值数学问题,并能加以解决,培养学生运用统计思想表达思考与解决现实世界中问题能力,让学生感受数学美学价值在于鲜活实际应用,立志于学习与研究数学,最大限度地用数学知识效劳于社会,同时自身也能获得最正确生存环境.重点难点教学重点:系统抽样应用.教学难点:对系统抽样中“系统〞思想理解;对样本随机性理解.课时安排1课时教学过程导入新课当总体中个体数比拟多时,采用抽签法或随机数表法那么比拟烦琐,那么该如何抽样?如:某校高一年级共有20个班,每班有50名学生.为了了解高一学生视力状况,从这1 000人中抽取一个容量为100样本进展检查,应该怎样抽取?学生思考,交流讨论,然后代表发言,教师修改总结.推进新课新知探究1.将总体平均分成几个局部,然后按照一定规那么,从每个局部中抽取一个个体作为样本,这样抽样方法称为系统抽样〔systematic sampling〕.2.假设要沉着量为N总体中抽取容量为n样本,系统抽样步骤为:〔1〕采用随机方式将总体中N 个个体编号;〔2〕将编号按间隔k 分段,当n N 是整数时,取k=n N ;当n N 不是整数时,从总体中剔除一些个体,使剩下总体中个体个数N′能被n 整除,这时取k=nN ,并将剩下总体重新编号; 系统抽样与简单随机抽样联系:将总体均分后每一局部进展抽样时,采用是简单随机抽样.系统抽样优点是简便易行,当对总体构造有一定了解时,充分利用已有信息对总体中个体进展排队再抽样,可提高抽样效率;当总体中个体存在一种自然编号时,便于施行系统抽样法.系统抽样缺点是在不了解样本总体情况下,所抽出样本具有一定偏差.〔3〕在第一段中用简单随机抽样确定起始个体编号l ;〔4〕按照一定规那么抽取样本,通常将编号为l,l+k,l+2k,…,l+(n-1)k 个体抽出.应用例如〔多媒体出示题目,学生思考〕例1 一条流水线生产某种产品,每天都可生产128件这种产品,我们要对一周内生产这种产品作抽样检验,方法是抽取这一周内每天下午2点到2点半之间下线8件产品作检验.这里采用了哪种抽取样本方法分析:此抽样选用了“等时〞抽样,与“等间距〞类似而作出判断.解:系统抽样.点评:解决此题要弄清楚目前所学两种抽样概念与特点.例2 某校为了了解全校住校生对学校食堂意见,打算从全校1 000名住校生中抽取50名进展调查,用系统抽样法进展抽取,并写出过程.分析:根据系统抽样步骤可解此题.解:首先将这1 000名学生从1开场进展编号,然后按号码顺1000=20,再从号码1~20第一段中序均分成50段,每段个体数为50用简单随机抽样抽取一个号码,假设抽到是9号,然后从9 开场,每隔20个号码抽取一个,这样就得到容量为50样本编号:9、29、49、…、989,这样,我们就得到一个容量为50样本,这种抽样方法就是系统抽样.N是整数.点评:此题“分段〞比拟方便,因为分段间隔k=n例3 某单位在岗职工共624人,为了调查工人用于上班途中所用时间,决定抽取10%工人进展调查,如何采用系统抽样方法完成这一抽样?分析:总体中每一个个体,都必须等可能地入样.为了实现“等距〞入样,且又等概率,应先剔除,再“分段〞,后定起始数.解:抽样过程如下:〔1〕先将在岗工人624人,用随机方式编号〔如按出生年月日编号〕:000,001,002, (623)〔2〕由题知应抽取62人作为样本,因为624不能被62整除,所以应从总体中剔除4个,将余下620人按编号顺序补齐000,001,002,…,619,并分成62个段,每段10人.〔3〕在第一段000,001,002,…,009这十个编号中,随机定一个起始号l 〔如006〕.〔4〕最后编号为006,016,026,…,59610名工人就为所要抽取样本.点评:1.系统抽样步骤可概括为:〔1〕编号〔采用随机方式将总体中个体编号,为简便起见,有时可直接利用个体所带号码,如考生准考证号、街道上各户门牌号,等等〕.n N 〔N 为总体中个体数,n 为样本容量〕是整数时, k=n N ;当n N 不是整数时,通过从总体中剔除一些个体,使剩下个体数N′能被n 整除,这时k=nN 〕. 〔3〕确定起始个体编号l 〔在第一段用简单随机抽样确定起始个体编号l 〕.〔4〕按照事先确定规那么.......抽取样本〔通常是将l 加上间隔k ,得第二个编号l+k ,再将〔l+k 〕加上k ,得第三个编号l+2k ,这样继续下去,直至获取整个样本〕.“事先确定规那么〞说明不一定按“通常〞方法〔即将l 加上间隔k ,得第二个编号l+k ,再将〔l+k 〕加上k ,得第三个编号l+2k ,这样继续下去,直至获取整个样本〕来抽取样本.2.学生解答,归纳步骤后由学生修改整理,教师巡视点拨,对整理较好同学进展及时表扬或鼓励,激发学生自信.思考:在用系统抽样方法抽样过程中,会用怎样“规那么〞来取除起始号以外其他编号呢?看例4.例4 一个总体中有100个个体,随机编号为0、1、2、 (99)依编号顺序平均分成10个小组,组号依次为1、2、3、…、10,现用系统抽样方法抽取一个容量为10样本,规定如果在第1组随机抽取号码为m,那么在第k(k≥2)组中抽取号码个位数字与m+k个位数字一样.假设m=6,那么第7组中抽取号码为__________________.分析:此题与课本中总结“通常〞方法〔即每隔10抽出一个号码〕有所不同,挖掘点在于条件“第一个号码m之后,在第k组中抽取号码个位数字与m+k个位数字一样〞.解:因为,第1组号码0~9;第2组号码10~19;第3组号码20~29;依次下去第7组中抽取号码十位数字是6.此题要求“在抽取了第一个号码m之后,在第k组中抽取号码个位数字与m+k 个位数字一样〞限制了各组抽出号码个位数.利用m及k值,求出m+k个位数字,即此题中由m=6,k=7得m+k=13,显然,m+k=13个位数字是3,故从第7组中抽取号码是63.所有被抽出号码依次为:6,18,29,30,41,52,63,74,85,96.它们“不等距〞.点评:此题是福建2004年高考卷第15〔文〕题,如果按照系统抽样经历做法“等间距〞做此题话,那么不达.一位教育专家曾指出:学习如果过分地依赖学习者经历或感情世界,即通过纯粹经历积累,而不是通过认知活动对经历进展加工,那么学习将会出现危机,因此必须重视人思维教育.所以,我们在教学时要留足够时间给学生探究,充分暴露学生思维,让学生自己打破思维中过多“经历〞束缚,展示学生创造性学习思维活动过程.知能训练课本本节练习.解答:1.系统抽样中总体与样本比必须是整数,而1 252被50整除余2,因此必须随机剔除2人.应选A.2.具体步骤为:第一步,将1 003名学生,用随机方式编号〔如按出生年月日编号〕:0000,0001,0002,…,1 002.第二步,由题知:应抽取20名学生作为样本,因为1 003不能被20整除,所以应从总体中随机剔除3名学生,将余下1 000名学生按编号顺序补齐为0000,0001,0002,…,0999,并分成20个段,每段50名学生.第三步,在第一段0000,0001,0002,…,0049这50个编号中,随机定一个起始号l〔如0006〕.第四步,编号为0006,0056,0106,…,095620名学生就是所要抽取样本.3.可选择在某个年级进展,如选择高一年级.先将所有学生随机地进展编号;然后将他们分成m段,每段n人〔如总人数不能被均分,可随机地剔除几个人再分〕;再从第一段随机抽取一个号码〔如l〕;那么编号为l,l+n,l+2n,…,l+(m-1)n学生就是需要.最后测量这些学生两臂平展长度及身高,再分别计算两组数据平均数.课堂小结〔先让一位同学总结,其他同学补充,教师完善,并用多媒体展示出来〕(1)系统抽样适用于总体中个数较多情况,因为这时采用简单随机抽样显得不方便.(2)系统抽样与简单随机抽样之间存在着密切联系,即在将总体中个体均分后每一段进展抽样时,采用是简单随机抽样.(3)与简单随机抽样一样,系统抽样也属于等概率抽样.作业为了了解某地参加英语口语水平测试5 027名学生成绩,从中抽取了200名学生成绩进展统计分析,请写出运用系统抽样抽取样本步骤.解:具体步骤为:第一步,将参加计算机水平测试5 027名学生用随机方式编号〔如按准考证编号〕0000,0001, (5026)第二步,由题知:应抽取200人作为样本,因为5 027不能被200整除,所以应从总体中剔除27个,将余下5 000人按编号顺序补齐0000,0001,…,4999,分成200个段,每段25人.第三步,在第一段0000,0001,…,0024这25个编号中,随机定一个起始号l〔如0022〕.第四步,编号为0022,0047,…,4997工人就为所要抽取样本.设计感想由于这局部内容比拟简单,所以整节课以学生为主,尤其是根底在中下游学生,要激发他们学习积极性,从而活泼课堂气氛,使每个学生都全身心投入,动脑、举例.。
教学难点:当不是整数,如何实施系统抽样.教学过程1)某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(2)请归纳系统抽样的定义和步骤.(3)系统抽样有什么特点?讨论:(1)可以将这500名学生随机编号1—500,分成50组,每组10人,第1组是1—10,第二组11—20,依次分下去,然后用简单随机抽样在第1组抽取1人,比如号码是2,然后每隔10个号抽取一个,得到2,12,22, (492)这样就得到一个容量为50的样本.这种抽样方法称为系统抽样.(2)一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.其步骤是:1°采用随机抽样的方法将总体中的N个个体编号;2°将整体按编号进行分段,确定分段间隔k(k∈N,l≤k);3°在第1段用简单随机抽样确定起始个体的编号l(l∈N,l≤k);4°按照一定的规则抽取样本.通常是将起始编号l加上间隔k 得到第2个个体编号(l+k),再加上k得到第3个个体编号(l+2k),这样继续下去,直到获取整个样本.说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.(3)系统抽样的特点是:1°当总体容量N 较大时,采用系统抽样;2°将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[n N].3°预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.2.某校高中三年级的295名学生已经编号为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.分析:按1∶5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号.解:抽样过程是:(1)按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成59组,每组5人,第一组是编号为1—5的5名学生,第2组是编号为6—10的5名学生,依次下去,59组是编号为291—295的5名学生;(2)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(l≤5);(3)按照一定的规则抽取样本.抽取的学生编号为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,…,288,293.例2 为了了解参加某种知识竞赛的1 003名学生的成绩,请用系统抽样抽取一个容量为50的样本.分析:由于501003不是整数,所以先从总体中随机剔除3个个体.步骤:(1)随机地将这1003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数 1 000能被样本容量50整除,然后再重新编号为1,2,3, (1000)(3)确定分段间隔.501000=20,则将这1 000名学生分成50组,每组20人,第1组是1,2,3,…,20;第2组是21,。
2.1.2 系统抽样预习讲义P52,试探并完成以下问题(1)系统抽样的概念是什么?(2)系统抽样适用范围是什么?[新知初探]1.系统抽样的概念将整体分成均衡的假设干部份,然后依照预先制定的规那么,从每一部份抽取一个个体,取得所需要的样本的抽样方式.2.系统抽样的适用范围适用于样本容量较大,且个体之间无明显不同的情形.[小试身手]1.某报告厅有50排座位,每排有60个座位(编号1~60),一次报告会坐满了观众,会后留下座号为18的所有观众进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案:C2.为了解1 200名学生对学校教改实验的意见,学校打算从中抽取一个容量为30的样本,考虑采纳系统抽样,那么分段的距离k为( )A.40 B.30C.20 D.12答案:A3.乡镇卫生院要从某村72名年龄在60岁以上的老人中,用系统抽样的方式抽取9人,了解心脏功能情形,医生把老人们编号为01~72号,此刻医生已经确信抽取了03号,那么其余被抽到的编号为_______________________________________________.解析:由系统抽样知,每段中有8人,已知在第一段当选的03号,那么下面的各段中依次选的号码应为3+8=11,11+8=19,19+8=27,27+8=35,35+8=43,43+8=51,51+8=59,59+8=67.答案:11,19,27,35,43,51,59,67系统抽样的概念[典例] 某商场欲通过检查部份发票及销售记录来快速估量每一个月的销售金额,采纳如下方式:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方式是( )A .抽签法B .随机数法C .系统抽样法D .以上都不对[解析] 上述抽样方式是将发票平均分成假设干组,每组50张,从第一组抽出了15号,以后各组抽15+50n (n ∈N *)号,符合系统抽样的特点.[答案] C系统抽样的判定方式(1)第一看是不是在抽样前明白整体是由什么组成,多少个个体.(2)再看是不是将整体分成几个均衡的部份,并在每一个部份中进行简单随机抽样.(3)最后看是不是等距抽样.[活学活用]一个整体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,…,10.现用系统抽样方式抽取一个容量为10的样本,规定若是在第1组中随机抽取的号码为m ,那么在第k 组中抽取的号码的个位数字与m +k 的个位数字相同.假设m =6,那么在第7组中抽取的号码是________.解析:由题意知,假设m =6,那么在第7组中抽取的号码的个位数字与13的个位数字相同,而第7组中编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.答案:63系统抽样的设计[典例] (1)50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得距离数k =80050=16,即每16人抽取一人.在1~16中随机抽取一个数,若是抽到的是7,那么从33~48这16个数中应取的数是________.(2)某装订厂平均每小时大约装订图书360册,要求查验员每小时抽取40册图书,查验其质量状况,请你设计一个抽样方案.[解析] (1)因为采纳系统抽样方式,每16人抽取一人,1~16中随机抽取一个数抽到的是7,因此在第k 组抽到的是7+16(k -1),因此从33~48这16个数中应取的数是7+16×2=39.答案:39(2)解:第一步:把这些图书分成40个组,由于36040=9,因此每一个小组有9册书; 第二步:对这些图书进行编号,编号别离为0,1, (359)第三步:从第一组(编号为0,1,…,8)的书顶用简单随机抽样的方式,抽取1册书.比如说,其编号为k ;第四步:按顺序抽取编号别离为下面的数字的图书:k ,k +9,k +18,k +27,…,k +39×9.如此总共就抽取了40个样本.系统抽样的4个步骤(1)编号(在保证编号的随机性的前提下,能够直接利用个体所带有的号码).(2)分段(确信分段距离k ,注意剔除部份个体时要保证剔除的随机性和客观性).(3)确信起始个体编号l (在第1段采纳简单随机抽样来确信).(4)依照事前确信的规那么抽取样本(一般是将l 加上k ,取得第2个个体编号l +k ,再将l +k 加上k ,取得第3个个体编号l +2k ,如此继续下去,直到获取整个样本).[活学活用]某校高中二年级有253名学生,为了了解他们的视力情形,预备按1∶5的比例抽取一个样本,试用系统抽样方式进行抽取,并写出进程.解:(1)先把这253名学生编号000,001,…,252; (2)用随机数表法任掏出3个号,从整体中剔除与这3个号对应的学生;(3)把余下的250名学生从头编号1,2,3, (250)(4)分段.取分段距离k =5,将整体均分成50段,每段含5名学生;(5)以第一段即1~5号中随机抽取一个号作为起始号,如l .(6)从后面各段中依次掏出l +5,l +10,l +15,…,l +245这49个号.如此就按1∶5的比例抽取了一个样本容量为50的样本.[层级一 学业水平达标]1.教师从全班50名同窗中抽取学号为3,13,23,33,43的五名同窗了解学习情形,其最可能用到的抽样方式为( )A .简单随机抽样B .抽签法C .随机数法D .系统抽样解析:选D 从学号上看,相邻两号老是相差10,符合系统抽样的特点.2.某单位有840名职工,现采纳系统抽样方式抽取42人做问卷调查,将840人按1,2,…,840随机编号,那么抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14解析:选B 由系统抽样概念可知,所分组距为84042=20,每组抽取一个,因为包括整数个组,因此抽取个体在区间[481,720]的数量为(720-480)÷20=12.3.某班级有52名学生,要从中抽取10名学生调查学习情形,假设采纳系统抽样方式,那么此班内每一个学生被抽到的机遇是________.解析:52名学生中每名学生被抽到的机遇均等,且均为1052=526.答案:5264.某学校高一年级有1 003名学生,为了解他们的视力情形,预备按1∶100的比例抽取一个样本,试用系统抽样方式进行抽取,并写出进程.解:由于整体容量不能被样本容量整除,需先剔除3名学生,使得整体容量能被样本容量整除,取k =1 00010=100,然后再利用系统抽样的方式进行.(1)将每位同窗由0001至1003编号.(2)利用随机数表法剔除3名同窗.(3)将剩余的1 000名学生从头编号1至1 000.(4)分段,取距离k =1 00010=100,将整体均分为10组,每组含有100名学生. (5)从第一段即001到100号中随机抽取一个号l .(6)按编号将l,100+l,200+l ,…,900+l 共10个号选出.这10个号所对应的学生组成所需样本.[层级二 应试能力达标]1.以下抽样实验中,最适宜用系统抽样法的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .从某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样解析:选C A 整体有明显层次,不适宜用系统抽样法;B 样本容量很小,适宜用随机数法;D 整体容量很小,适宜用抽签法.2.以下抽样不是系统抽样的是( )A .体育教师让同窗们随机站好,然后按1~5报数,并规定报2的同窗向前一步走B .为了调查“地沟油事件”,质检人员从传送带上每隔五分钟抽一桶油进行查验C .五一期间麦当劳的工作人员在门口发放50份优惠券D .《唐山大地震》试映会上,影院领导通知每排(每排人数相等)28号观众留下来座谈解析:选C C 中,因为事前不明白整体,抽样方式不能保证每一个个体按事前规定的规那么入样,因此不是系统抽样.3.学校为了了解某企业1 203名职工对公司餐厅建设的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,那么分段的距离k 为( )A .40B .30.1C .30D .12解析:选C 因为1 203除以40不是整数,因此先随机去掉3个人,再除以40,取得每一段有30个人,那么分段的距离k 为30.4.某机构为了了解参加某次公事员考试的12 612名考生的成绩,决定采纳系统抽样的方式抽取一个容量为200的样本,那么从整体中随机剔除个体的数量是( )A .2B .12C .612D .2 612解析:选B 因为12 612=200×63+12,系统抽样时分为200组,每组63名,因此从整体中随机剔除个体的数量是12.5.某厂将从64名员工顶用系统抽样的方式抽取4名参加2016年职工劳技大赛,将这64名员工编号为1~64,假设已知编号为8,24,56的员工在样本中,那么样本中另外一名员工的编号是________.解析:由系统抽样的知识知,将64名员工对应的编号分成4组,每组16个号码,由题意8,24,56在样本中,知8,24,56别离是从第1,2,4组中抽取的,那么第3组中抽取的号码是8+2×16=40.答案:406.假设整体含有1 645个个体,采纳系统抽样的方式从中抽取一个容量为35的样本,那么编号后编号应分为________段,分段距离k =________,每段有________个个体.解析:由N =1 645,n =35,知编号后编号应分为35段,且k =N n =1 64535=47,那么分段距离k =47,每段有47个个体.答案:35 47 477.已知标有1~20号的小球20个,假设咱们的目的是估量整体号码的平均值,即20个小球号码的平均数.实验者从中抽取4个小球,以这4个小球号码的平均数估量整体号码的平均值,按下面方式抽样(按小号到大号排序):(1)以编号2为起点,系统抽样抽取4个球,那么这4个球的编号的平均值为________;(2)以编号3为起点,系统抽样抽取4个球,那么这4个球的编号的平均值为________.解析:20个小球分4组,每组5个.(1)假设以2号为起点,那么另外三个球的编号依次为7,12,17,4球编号平均值为2+7+12+174=9.5. (2)假设以3号为起点,那么另外三个球的编号依次为8,13,18,4球编号平均值为3+8+13+184=10.5. 答案:(1)9.5 (2)10.58.为了了解参加某种知识竞赛的20个班的1 000名学生(每一个班50人)的成绩,要抽取一个样本容量为40的样本,应采纳什么抽样方式比较适当?简述抽样进程.解:系统抽样的方式比较适当.系统抽样的进程:(1)别离将每一个班的50名学生随机地编号为1,2,3, (50)(2)在第一个班的学生编号中,利用简单随机抽样抽取两个编号,如15,34;(3)将其余19个班的编号为15和34的学生成绩掏出,如此,所有的编号为15和34的40名学生的成绩确实是所要抽取的样本.9.一个整体中的1000个个体编号为0,1,2,…,999,并依次将其分成10组,组号为0,1,2,…,9.要用系统抽样方式抽取一个容量为10的样本,规定若是在第0组随机抽取的号码为x,那么依次错位地掏出后面各组的号码,即第k 组中抽取号码的后两位数为x+33k的后两位数.(1)当x=24时,写出所抽取样本的10个号码;(2)假设所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.解:(1)当x=24时,按规那么可知所抽取样本的10个号码依次为:024,157,290,323,456,589,622,755,888,921.(2)当k=0,1,2,…,9时,33k的值依次为:0,33,66,99,132,165,198,231,264,297.又抽取的样本的10个号码中有一个的后两位数是87,从而x能够是:87,54,21,88,55,22,89,56,23,90.因此x的取值范围是{21,22,23,54,55,56,87,88,89,90}.。
系统抽样教学设计
一.教学重点:1.理解系统抽样的概念
2.掌握系统抽样的步骤和方法
二.教学难点:系统抽样的方法和步骤
三.学习目标:系统抽样的方法和步骤
四.教学过程:
问题:某中学高一年级有12个班,每班有50人,为了了解高一年级学生对老师教学的意见,教务处打算从年级600名学生在抽取60名学生进行问卷调查,那么该年级每个学生被抽到的概率是多少?
1.思考应如何抽取,教师给出具体步骤,引出系统抽样的概
念
2.引导总结归纳系统抽样的步骤
3.练习教材
4.例题教材
5.思考判断教材练习
五.布置作业。
2.1.2 系统抽样(建议用时:45分钟)[学业达标]一、选择题1.在10 000个号码(编号为0000~9999)中,有关部门按照随机抽样的方式确定后2位数字是68的号码为中奖号码.这种确定中奖号码的方法是( )A.抽签法B.系统抽样法C.随机数表法D.其他抽样法【解析】 根据系统抽样的概念知应选B.【答案】 B2.中央电视台“动画城节目”为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样的方法抽取,每段容量为( )A.10B.100C.1 000D.10 000【解析】 将10000个个体平均分成10段,每段取一个,故每段容量为1000.【答案】 C二、填空题3.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第61组抽出的号码为________.【解析】 分段间隔是3 000150=20,由于第一组抽出号码为11,则第61组抽出号码为11+(61-1)×20=1 211.【答案】 1 2114.一个总体中有100个个体,随机编号为00,01,02,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.【解析】 由题意知第7组中的数为“60~69”10个数.由题意知m =6,k =7,故m +k =13,其个位数字为3,即第7组中抽取的号码的个位数为3,综上知第7组中抽取的号码为63.【答案】 63三、解答题5.某校有2 008名学生,从中抽取20人参加体检,试用系统抽样进行具体实施.【解】 (1)将每个人随机编一个号由0 001至2 008;(2)利用随机数表法找到8个号将这8名学生剔除;(3)将剩余的2 000名学生重新随机编号0 001至2 000;(4)分段,取间隔k =200020=100,将总体平均分为20段,每段含100个学生; (5)从第一段即为0 001号到0 100号中随机抽取一个号l ;(6)按编号将l,100+l,200+l ,…,1900+l 共20个号码选出,这20个号码所对应的学生组成样本.[能力提升]1.从2 015名学生中选取50名学生参加数学竞赛,若采用下面方法选取:先用简单随机抽样从2 015人中剔除15人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 015人中,每个人入选的机会( )A.都相等,且为502 015B.不全相等C.均不相等D.都相等,且为140【解析】 因为在系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,本题要先剔除15人,然后再分组,在剔除过程中,每个个体被剔除的机会相等,所以每个个体被抽到包括两个过程,一是不被剔除,二是被选中,这两个过程是相互独立的,所以,每个人入选的机会都相等,且为502 015. 【答案】 A2.一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其均分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x ,那么依次错位地得到后面各组的号码,即第k 组中抽取的号码的后两位数为x +33k 的后两位数.(1)当x =24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x 的取值范围.【解】 (1)由题意此系统抽样的间隔是100,根据x =24和题意得,24+33×1=57,第二组抽取的号码是157;由24+33×2=90,则在第三组抽取的号码是290,…故依次是24,157,290,323,456,589,622,755,888,921.(2)由x +33×0=87得x =87,由x +33×1=87得x =54,由x +33×3=187得x =88…, 依次求得x 值可能为21,22,23,54,55,56,87,88,89,90.。
高中数学第二章统计 2.1 随机抽样教材习题点拨新人教B版必修3练习A1.什么是简单随机抽样?解:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.2.在一般“调查”时,为什么要进行抽样调查?解:做一般“调查”最好是对每一个个体逐一进行“调查”,但这样做有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取的机会均等的前提下从总体中抽取部分个体,进行抽样调查.3.如果想了解你所在班上同学喜欢听数学课的比例,计划抽取8名同学做调查.请你用抽签法抽取一个样本.解:(1)将班内60名同学的学号1,2,…,60分别写在相同的60X纸片上.(2)将60X纸片放在一个容器里均匀搅拌之后,就可以抽样.(3)抽出一X纸片,记下上面的,然后均匀搅拌,继续抽取第2X纸片,记下这个,重复这个过程,直到取得8个时终止.(4)于是,和这8个对应的同学就构成了一个简单随机样本.练习B1.某居民区有730户居民,居委会计划从中抽取25户调查其家庭收入状况,你能帮助居委会抽出一个简单随机样本吗?解:随机数表法:(用教材第87页的随机数表)(1)将730户居民编号为001,002, (730)(2)给出的随机数表是5个数一组,使用各个5位数组的后3位,从各个数组中任选一个后3位小于或等于730的数作为起始,如从第2行的第6组开始,取出572作为25户中的第1个代号;(3)继续向右读,每组后3位符合要求的数取出,前面已经取出的跳过,到行末转下一行从左向右继续读,得数据:572,483,459,073,242,372,048,088,600,636,171,247,303,422,421,183,546,385,120,042 ,320,500,219,225,059.编号为以上所选的25个的居户被选中.2.使用计算器或计算机制作一X1 000个一位数的随机数表,并检查0~9这10个数在表中出现的可能性是否相同?解:相同.练习A1.什么是系统抽样?系统抽样有什么优点?解:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.系统抽样的优点:它很好地解决了当总体容量和样本容量都较大时,用简单随机抽样不方便的问题.2.从编号为1~900的总体中用系统抽样的办法抽取一个容量为9的样本.解:按编号顺序分成9组,每组100个号,先在第一组用简单随机抽样方式抽出k(1≤k≤100)号,其余的k+100n(n=1,2,…,8)也被抽到,即可得所需样本.练习B1.某批产品共有1 563件,产品按出厂顺序编号,为从1~1 563.检测员要从中抽取15件产品作检测,请你给出一个系统抽样方案.解:S1 将产品的调整为0001,0002,0003, (1563)S2 从总体中剔除3件产品(剔除方法可用随机数表法),将剩下的1 560件产品重新编号(分别为0001,0002,…,1560),并分成15段;S3 在第一段0001,0002,...,0104,这104个编号中用简单随机抽样抽出一个(如0003)作为起始,则各段对应编号分别为0003,0107,0211, (1459)S4 将编号为0003,0107,0211,…,1459的个体抽出,即得到一个容量为15的样本.2.要考察某商场2003年的日销售额,从一年时间中抽取52天的销售额作为样本,请给出你的系统抽样方案.并说说你的抽样方案的优点和不足.解:S1 用随机数表法从365天中随机剔除1天;S2 将其余的364天编号,为001,002,003,…,364,并将依次分为52段;S3 在第一段001,002,…,007这7个中用抽签法选取一个,如002;S4 将为002,009,016,…,359的日期找出,组成样本.该抽样方案的优点是:抽取的样本能代表总体;缺点是:所抽取的日期与日常用的日期相比规律性差,不便于该方案的操作.练习A1.某校高一学生共500名,经调查,喜欢数学的学生占全体学生的30%,不喜欢数学的人数占40%,介于两者之间的学生占30%.为了考查学生的期中考试的数学成绩,如何用分层抽样抽取一个容量为50的样本.解:由题意知喜欢数学的学生有150人,不喜欢数学的有200人,介于两者之间的有150人.三个层次的学生人数之比为3∶4∶3.所以应抽喜欢数学的学生15人,不喜欢数学的学生20人,介于两者之间的学生15人.用随机数表法抽样分别从对应的部分抽取相应的人数即可.2.某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人.为了调查员工的身体健康状况,从中抽取100名员工,用分层抽样应当怎样抽取?解:S1 确定抽样比100500=15,所以不到35岁的应抽取125÷5=25(人),35~49岁的应抽取280÷5=56(人),50岁以上的应抽取95÷5=19(人);S2 用简单随机抽样法或系统抽样法分别抽取不到35岁的25人,35~49岁的56人;50岁以上的19人.这些人便组成了我们要抽取的样本.3.某大学就餐中心为了了解新生的饮食习惯,以分层抽样的方式从1 500名新生中抽取200名进行调查,新生中的南方学生有500名,北方学生有800名,西部地区的学生有200名,应如何抽取?解:由题意知南方学生有500名,北方学生有800名,西部地区的学生有200名.样本容量与总体容量的比为200∶1 500=2∶15.所以应抽取南方学生约67名,北方学生约106名,西部地区的学生约27名.用分层抽样法分别从对应的部分抽取相应的人数即可.练习B某市电视台在因特网上征集电视节目的现场参与观众,报名的共有12 000人,分别来自4个城区,其中东城区2 400人,西城区4 605人,南城区3 795人,北城区1 200人.用分层抽样的方式从中抽取60人参加现场节目,应当如何抽取?解:从12 000人中抽取60人,抽取比例为12 000∶60=200∶1,所以应在东城区抽取 2 400÷200=12(人),在西城区抽取 4 605÷200≈23(人),在南城区抽取 3 795÷200≈19(人),在北城区抽取1 200÷200=6(人).用系统抽样法分别从对应的部分抽取相应的数即可.练习A1.想一想怎样可以得到你所在班级同学的身高数据.解:设计调查问卷请每位同学填写自己的身高,然后汇总即可.2.你还能想到哪些可以得到数据资料的途径?解:如:教材或教材提供的数据;课堂数据(它们是在教室中收集的,主要与班上的学生有关,而不问结论是否对于更大的群体也成立).练习B为了了解中学生如何度过课余时间,请你设计一份关于中学生课余活动的调查问卷,实际调查后写出调查分析报告.解:提示:在设计调查问卷时,设计的题目意思要明确,覆盖面要广,不要有答题倾向即可.习题2-1A1.为了考察某地10 000名高一学生的体重情况,从中抽出了200名学生做调查.这里的总体、个体、样本、样本容量各指什么?为什么我们一般要从总体中抽取一个样本,通过样本来研究总体?解:统计的总体是指该地10 000名高一学生的体重;个体是指这10 000名学生中每一名学生的体重;样本是指这10 000名学生中抽出的200名学生的体重;样本容量为200.若对每一个个体逐一进行“调查”,有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取机会均等的前提下从总体中抽取部分个体,进行抽样调查.2.要从编号为1~100的100道选择题中随机抽取20道题组成一份考卷,请你用抽签法给出考题的编号.解:(1)编号1~100;(2)制作大小相同的号签,并写上;(3)放入一个大容器,均匀搅拌;(4)依次抽取20个签(注意每次都要均匀搅拌),具有这20个编号的题组成一份考卷.3.某商店有590件货物,要从中选出50件货物做质量检查,请你用随机数表法给出一个抽样方案.解:(1)将590件货物编号为001,002, (590)(2)给出的随机数表是5个数一组,使用各个5位数组的中间3位,从各个数组中任选中间3位小于或等于590的数作为起始,如从第3行的第4列数037开始,取出037作为590件货物中的第1个代号;(3)继续向右读,将每组中间3位符合要求的数取出,已取出重复的跳过,到行末转下一行从左向右继续读,得数据:037,104,460,463,317,290,030,042,142,237,318,154,038,212,404,132,…,编号为以上所选的50个的货物被选中,即得到一个容量为50的样本.4.故宫博物院某天接待游客10 000人(假设把他们编号为0~9 999),如果要从这些游客中随机选出10名幸运游客,请你用系统抽样的方式给出幸运游客的编号.解:按编号顺序分成10组,每组1 000个号,先在第1组用简单随机抽样方式取出k(0≤k≤999)号,其余的k+1 000n(n=1,2,…,9)也被抽到,即可得到所需样本.5.一支田径队中有男运动员56人,女运动员42人,用分层抽样的方式从全队中抽取28名运动员.解:从男运动员中抽16人,女运动员中抽12人.6.某市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家.为了了解商店的销售情况,要从中抽取21家商店进行调查,请你用分层抽样的方式进行抽取.解:大型商店、中型商店、小型商店分别抽取2家、4家、15家.习题2-1B1.某公园为了考察每天游览的人数,从一年中要抽取30天进行统计,请你分别用随机数表法、系统抽样法、分层抽样法给出样本,并根据样本比较这3种抽样方式.解:方法1:随机数表法S1 将一年的365天编号为001,002, (365)S2 在教材第一节提供的随机数表中任选一数作为开始,任选一方向作为读数方向,比如,选第1行第6个数“5”,向右读;S3 从数“5”开始,向右读,每次读取3位,凡不在001~365中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到30个符合要求的;S4 以上对应的日期就是抽取的对象.方法2:系统抽样法S1 将365天用随机方式编号;S2 从总体中剔除5天(剔除方法可用随机数表法),将剩下的360天重新编号(分别为001,…,360),并分成30段;S3 在第一段001,…,012这12个编号中用简单随机抽样抽出一个(如003)作为起始;S4 将编号为003,015,027,…,351的日期抽出,组成样本.方法3:分层抽样法S1 将一年分为春、夏、秋、冬四个层次;S2 在每个层次中用随机数表法抽取8天;S3 4×8=32,再用抽签法剔除2天,剩下的30天组成样本.点拨:3种抽样方法的共同点是每个个体被抽到的可能性均相等.2.随着互联网络的发展与普及,网络调查方式的使用越来越多.你能比较一下传统的调查方式与网络调查方式的优劣吗?解:网络调查省时、省力,但有时也不具备代表性.如调查农业方面的问题,应该调查农民,但农民上网的人数很少;传统调查方式虽费时、费力,但针对性强.。
第二章 2.1 2.1.2系统抽样A 级 基础巩固一、选择题1.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为导学号 95064338( C )A .50B .40C .25D .20[解析] 根据系统抽样的特点可知分段间隔为1 00040=25,故选C . 2.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为导学号 95064339( C )A .7B .9C .10D .15[解析] 从960人中用系统抽样方法抽取32人,则抽样距为k =96032=30, 因为第一组号码为9,则第二组号码为9+1×30=39,…,第n 组号码为9+(n -1)×30=30n -21,由451≤30n -21≤750,即151115≤n ≤25710,所以n =16,17,…,25,共有25-16+1=10(人).3.湖南卫视《爸爸去哪儿》节目组为热心观众给予奖励,要从2 014名小观众中抽取50名幸运小观众.先用简单随机抽样从2 014人中剔除14人,剩下的2 000人再按系统抽样方法抽取50人,则在2 014人中,每个人被抽取的可能性导学号 95064340( C )A .均不相等B .不全相等C .都相等,且为251 007D .都相等,且为140[解析] 因为在系统抽样中,若所给的总体个数不能被样本容量整除,则应先剔除几个个体,本题先剔除14人,然后再分组,在剔除过程中,每个个体被剔除的机会相等.所以,每个个体被抽到的机会都相等,均为502 014=251 007.4.下列抽样中不是系统抽样的是导学号 95064341( C )A.从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i0,以后i0+5,i0+10(超过15则从1再数起)号入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验C.搞某一市场调查,规定在某一路段随机抽一个人进行询问,直到调查到事先规定调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈[解析]C中因为事先不知道总体,抽样方法不能保证每个个体按事先规定的可能性入样.故C不是系统抽样.5.总体容量为203,若采用系统抽样法进行抽样,当抽样间距为多少时不需要剔除个体导学号 95064342( D )A.4 B.5C.6 D.7[解析]∵203被7整除,∴选D.6.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是导学号 95064343( D )A.5、10、15、20、25 B.2、4、8、16、32C.1、2、3、4、5 D.7、17、27、37、47[解析]利用系统抽样,把编号分为5段,每段10袋,每段抽取一袋,号码间隔为10,故选D.二、填空题7.高三某班有学生56人,学生编号依次为1、2、3、…、56. 现用系统抽样的方法抽取一个容量为4的样本,已知编号为6、34、48的同学都在样本中,那么样本中另一位同学的编号应该是__20__.导学号 95064344[解析]由于系统抽样的样本中个体编号是等距的,且间距为56/4=14,所以样本编号应为6、20、34、48.8.将参加数学夏令营的100名同学编号为001、002、…、100.现采用系统抽样方法抽取一个容量为25的样本,且第一段中随机抽得的号码为004,则在046至078号中,被抽中的人数为__8__.导学号 95064345[解析] 抽样距为4,第一个号码为004,故001~100中是4的整数倍的数被抽出,在046至078号中有048、052、056、060、064、068、072、076,共8个.三、解答题9.一个体育代表队有200名运动员,其中两名是种子选手,现从中抽取13人参加某项运动.若种子选手必须参加,请用系统抽样法给出抽样过程.导学号 95064346[解析] (1)将除种子选手以外的198名运动员用随机方式编号,编号为001、002、 (198)(2)将编号按顺序每18个为一段,分成11段;(3)在第一段001、002、…、018,这十八个编号中用简单随机抽样法抽出一个(如010)作为起始号码;(4)将编号为010、028、046、…、190的个体抽出,与种子选手一起参加这项运动.B 级 素养提升一、选择题1.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为导学号 95064347( B )A .11B .12C .13D .14[解析] 根据系统抽样的等可能性可知,每人入选的可能性都是42840,由题设可知区间[481,720]的人数为240,所以编号落入区间[481,720]的人数为42840×240=12. 2.用系统抽样的方法从个体数为1 003的总体中,抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的可能性是导学号 95064348( C )A .11 000B .11 003C .501 003D .120[解析] 根据系统抽样的方法可知,每个个体入样的可能性相同,均为n N ,所以每个个体入样的可能性为501 003. 3.系统抽样又称为等距抽样,从N 个个体中抽取n 个个体为样本,先确定抽样间隔,即抽样距k =⎣⎢⎡⎦⎥⎤N n (取整数部分),从第一段1,2,…,k 个号码中随机抽取一个入样号码i 0,则i 0,i 0+k ,…,i 0+(n -1)k 号码均入样构成样本,所以每个个体的入样可能性是导学号 95064349( A )A .相等的B .不相等的C .与i 0有关D .与编号有关 [解析] 由系统抽样的定义可知,每个个体入样的可能性相等与抽样距无关,也与第一段入样号码无关,系统抽样所得样本的代表性与具体的编号有关,要求编号不能呈现个体特征随编号周期性变化,各个个体入样可能性与编号无关.4.从编号为1~60的60枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用系统抽样方法抽取5枚导弹的编号可能是导学号 95064350( C )A .1、3、4、7、9、5B .10、15、25、35、45C .5、17、29、41、53D .3、13、23、33、43[解析] 分段间隔为605=12,即相邻两个编号间隔为12,故选C . 二、填空题5.某学校有学生4 022人.为调查学生对2016年巴西里约奥运会的了解状况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是__134__.导学号 95064351[解析] 由于4 02230不是整数,所以应从4 022名学生中用简单随机抽样剔除2名,则分段间隔是4 02030=134. 6.一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为l ,那么依次错位地取出后面各段的号码,即第k 段中所抽取的号码的个位数为l +k 或l +k -10(l +k ≥10),则当l =6时,所抽取的10个号码依次是__6,17,28,39,40,51,62,73,84,95__.导学号 95064352[解析] 在第0段随机抽取的号码为6,则由题意知,在第1段抽取的号码应是17,在第2段抽取的号码应是28,依次类推,故正确答案为6,17,28,39,40,51,62,73,84,95.三、解答题7.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:导学号 95064353本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改;(3)何处是用简单随机抽样.[解析] (1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为30030=10,其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个);确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….(3)确定随机数字用的是简单随机抽样,取一张人民币,编码的后两位数为02.C 级 能力拔高1.一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9.要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x ,那么依次错位地得到后面各组的号码,即第k 组中抽取的号码的后两位数为x +33k 的后两位数.导学号 95064354(1)当x =24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x 的取值范围.[解析] (1)当x =24时,按规则可知所抽取样本的10个号码依次为:24,157,290,323,456,589,622,755,888,921.(2)当k =0,1,2,…,9时,33k 的值依次为0,33,66,99,132,165,198,231,264,297. 又抽取样本的10个号码中有一个的后两位数是87,从而x 可以为87,54,21,88,55,22,89,56,23,90.∴x 的取值范围是{21,22,23,54,55,56,87,88,89,90}.2.某位同学利用暑假期间准备搞一个社会实践调查,他打算从某小区内的120户居民中选出7户,他使用系统抽样的过程如下:导学号 95064355①编号:将120户居民从“1”到“120”随机地编号;②决定间隔:因120被7除余1,故可先从总体中随机地剔除1个个体,再将余下的1 19个个体重新随机地编号为1到199号,最后设定间隔为17;③随意使用一个起点,如38,然后推算出如下编号的居民为样本:38,55,72,89,106,123,140.由于123和140并不在实际编号内,故他准备重新选取第一个号码,但他爸爸却说没有问题,爸爸的说法有错误吗?需要重新选取号码吗?你帮他解释一下.[解析]所谓系统抽样的第一个号码,一般是在第一组内用简单随机抽样的方法选取的一个号码,然后再等距离地抽取,这样就保证了后面所有的号码都在已知的编号内.但在实际应用时却不一定是这样来确定第一个号码的,而是随机确定第一个号码的,如这个学生确定的38,如果这时再等距离地确定后续号码就会使号码超出已编号码,这个时候只要将超过的部分减去若干个间隔,然后再将之放到样本编号之中就可以了.例如,因123-17×7=4,140-17×7=21.故抽取的号码如下:4,21,38,55,72,89.106.因此这个学生的爸爸的说法并没有错.。