刚体转动惯量—报告模版
- 格式:doc
- 大小:73.50 KB
- 文档页数:6
刚体转动惯量的测定物本1001班张胜东(201009110024)李春雷(201009110059)郑云婌(201009110019)刚体转动惯量的测定实验报告【实验目的】1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。
2.用扭摆测定弹簧的扭转常数K和几种不同形状的物体的转动惯量,并与理论值进行比较。
3.验证转动定理和平行轴定理。
【实验仪器】(1)扭摆(转动惯量测定仪)。
(2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。
(3)天平。
(4)游标卡尺。
(5)HLD-TH-II转动惯量测试仪(计时精度0.001ms)。
【实验原理】1.扭摆扭摆的构造如图所示,在垂直轴1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。
在轴的上方可以装上各种待测物体。
垂直轴与支座间装有轴承,以降低磨擦力矩。
3 为水平仪,用来调整系统平衡。
将物体在水平面内转过一角度θ 后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。
根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即b M =-K θ (1) 式中,K 为弹簧的扭转常数,根据转动定律 M =I β式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 IM =β (2)令 LK=2ω ,忽略轴承的磨擦阻力矩,由(1)、(2)得 θωθθβ222-=-==I K dtd (3) 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
此方程的解为:θ=Acos(ωt +φ) (4)式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为KIT πωπ22==(5)由(5)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。
本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K 值。
刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握用游标卡尺和秒表等仪器的使用方法。
二、实验原理三线摆是由三根等长的悬线将一水平圆盘悬挂在一个固定的支架上构成的。
当圆盘绕中心轴 OO' 作扭转摆动时,圆盘的运动可以看作是圆盘绕通过其重心且垂直于盘面的轴线的转动和平动的合成。
设圆盘的质量为 m,半径为 R,对于通过其重心且垂直于盘面的轴线的转动惯量为Ic。
当圆盘扭转一个小角度θ 时,圆盘的势能变化为:ΔEp = mgh其中,h 为圆盘重心上升的高度。
由于θ 很小,所以可以近似认为:h ≈ Rθ²根据能量守恒定律,圆盘的势能变化等于其动能的变化,即:ΔEp =1/2 Iω²其中,ω 为圆盘的角速度。
又因为圆盘的摆动周期为 T,所以ω =2π/T。
联立上述式子可得:Ic =(mgR²T²) /(4π²h)实验中通过测量圆盘的质量 m、半径 R、摆动周期 T 以及圆盘扭转角度θ 对应的重心上升高度 h,即可计算出圆盘对于通过其重心且垂直于盘面的轴线的转动惯量 Ic。
三、实验仪器三线摆、游标卡尺、米尺、秒表、待测刚体(圆环、圆柱等)、托盘天平。
四、实验步骤1、用托盘天平测量圆盘和待测刚体的质量。
2、用游标卡尺测量圆盘和待测刚体的直径,分别测量多次,取平均值。
3、调整三线摆的悬线长度,使上下圆盘之间的距离约为 50cm 左右。
4、轻轻转动上圆盘,使圆盘作小角度的扭转摆动,用秒表测量圆盘摆动 50 个周期的时间,重复测量多次,取平均值,计算出摆动周期T。
5、将待测刚体放在圆盘上,使两者的中心轴线重合,按照上述方法测量系统(圆盘和待测刚体)的摆动周期 T'。
五、实验数据记录与处理1、圆盘质量 m =______ g,直径 D =______ cm,半径 R =D/2 =______ cm。
刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动惯量的测定实验报告引言刚体转动惯量是描述刚体在旋转过程中抵抗转动的性质,它是刚体围绕轴线旋转时所具有的惯性量。
在本实验中,我们通过测定刚体关于不同轴线的转动惯量,了解刚体转动惯量的概念与测定方法。
实验目的1.了解刚体转动惯量的概念与意义;2.学习刚体转动惯量的测定方法;3.实验测量刚体转动惯量,验证测定方法的正确性;4.掌握实验仪器的使用方法。
实验原理刚体转动惯量的定义为:$$I=\\Sigma m r^{2}$$其中,I为刚体的转动惯量,m为刚体质点的质量,r为质点到轴线的距离。
本实验主要使用转动盘进行转动惯量的测定。
转动盘由一个固定轴和一个可以转动的圆盘构成。
通过改变转动盘上的物体的位置,改变物体相对于固定轴的距离,可以测定不同轴线上刚体的转动惯量。
根据转动盘的平衡条件,可以得到刚体转动惯量的表达式:$$I=\\frac{T^{2} m}{4\\pi^{2}}$$其中,I为刚体的转动惯量,T为转动盘的周期,m为物体的质量。
实验步骤1.将转动盘调整到水平,固定好;2.在转动盘上放置圆柱体,使其与转动盘的轴线垂直;3.移动圆柱体,调整圆柱体相对于轴线的距离(例如:5cm、10cm、15cm等等),记录下距离;4.切换到计时功能,转动圆盘,记录下5次振动的周期;5.根据周期与距离的关系,计算刚体的转动惯量;6.将圆柱体移动到不同距离,重复步骤4-5,记录不同距离下的转动惯量;7.根据测得的数据,绘制出转动惯量与距离的曲线图。
数据处理与分析根据实验测得的数据,我们可以计算出不同距离下的刚体转动惯量。
将数据绘制成转动惯量与距离的曲线图,可以直观地观察到二者之间的关系。
根据实验原理推导的公式,我们可以利用线性回归的方法拟合出转动惯量与距离之间的关系,得到拟合直线的斜率即为刚体转动惯量的比例系数。
结论通过本实验,我们成功地测定了刚体转动惯量,并绘制了转动惯量与距离的曲线图。
实验结果与理论预期较为一致,验证了实验方法的正确性。
大学实验刚体惯量实验报告实验报告:刚体惯量实验引言:刚体的惯量是描述刚体对转动运动的抵抗能力的物理量,它的确定对于研究刚体的动力学性质具有重要意义。
本实验旨在通过测量刚体的转动惯量,探究刚体转动惯量与形状、质量分布等因素的关系,并验证刚体转动惯量的运动定理。
实验材料与装置:1. 刚体(我们选择了一个圆柱体作为刚体)2. 轴承3. 动态平衡仪4. 细线5. 计时器实验原理:刚体绕某个轴的转动惯量的定义为:I = Σmr²,其中m为刚体上每个质点的质量,r为质点到轴的垂直距离。
对于非连续物体,可以通过积分来求得惯量。
实验过程:1. 制备刚体:将刚体放在动态平衡仪的两端,调整使其保持平衡。
2. 测量刚体的质量:使用天平测量刚体的质量,并记录下来。
3. 测量转动轴的位置:使用尺子测量两个转动轴的位置,并记录下来。
4. 测量刚体的转动惯量:将刚体固定在转动轴上,并让其绕轴转动。
通过测量转动轴上的转动时间和角度,可以计算得到刚体的转动惯量。
实验结果与分析:根据实验数据,我们计算出了刚体的转动惯量,并将其与刚体的质量、形状等因素进行了比较。
通过分析比较,我们得到了以下结论:1. 质量分布对转动惯量的影响:我们固定了刚体的质量,但改变了质量分布。
在其他条件相同的情况下,我们发现质量分布越集中的刚体,其转动惯量越大。
这可以通过计算公式I = Σmr²进行证明。
2. 形状对转动惯量的影响:我们固定了刚体的质量分布,但改变了刚体的形状。
在其他条件相同的情况下,我们发现形状更加扁平的刚体,其转动惯量越大。
这可以看作是形状扁平化后,刚体的质量分布更加集中,从而导致转动惯量增加。
3. 刚体转动惯量的运动定理的验证:根据运动定理,刚体转动惯量的变化率等于刚体受到的外力矩。
通过实验可以验证这一定理。
我们使用了细线和计时器测量了刚体转动轴上的转动角速度和转动力矩,并计算了转动惯量的变化率。
实验结果与理论推导符合较好,验证了刚体转动惯量的运动定理。
刚体转动实验实验报告一、实验目的1、学习使用刚体转动实验仪测量刚体的转动惯量。
2、验证刚体转动定律和转动惯量的平行轴定理。
3、掌握数据处理和误差分析的方法。
二、实验原理1、刚体的转动惯量刚体绕固定轴转动时的转动惯量 I 等于刚体中各质点的质量 mi 与它们各自到转轴距离 ri 的平方的乘积之和,即:I =Σ mi ri²2、刚体转动定律刚体绕定轴转动时,刚体所受的合外力矩 M 等于刚体的转动惯量 I 与角加速度β的乘积,即:M =Iβ3、转动惯量的平行轴定理若刚体对通过质心 C 的轴的转动惯量为 Ic,对与该轴平行且相距为d 的另一轴的转动惯量为 Ip,则有:Ip = Ic + md²三、实验仪器刚体转动实验仪、秒表、砝码、游标卡尺、米尺等。
四、实验步骤1、调节刚体转动实验仪将实验仪调至水平状态,通过调节底座的螺丝,使实验仪上的气泡位于水准仪的中心。
调整塔轮和定滑轮之间的细线,使其处于紧绷状态,且与转轴垂直。
2、测量塔轮半径 R 和绕线轴半径 r使用游标卡尺分别测量塔轮的外半径 R1、内半径 R2,取平均值得到塔轮半径 R。
同样用游标卡尺测量绕线轴的半径 r。
3、测量刚体的质量 M 和形状尺寸用天平称出刚体的质量 M。
用米尺测量刚体的几何尺寸,如圆盘的直径、圆柱的长度和直径等。
4、测量空载时刚体的转动惯量在刚体上不添加砝码,轻轻转动刚体,使其在摩擦力矩的作用下做匀减速转动。
用秒表记录刚体转过一定角度θ所需的时间 t1。
5、测量加载砝码时刚体的转动惯量在绕线轴上逐渐添加砝码,使刚体在重力矩的作用下做匀加速转动。
用秒表记录刚体转过相同角度θ所需的时间 t2。
6、验证转动惯量的平行轴定理将两个相同的圆柱体对称地放置在刚体上,使其质心与转轴的距离分别为 d1 和 d2。
测量刚体在这种情况下转过相同角度θ所需的时间 t3。
五、实验数据记录与处理1、实验数据记录|实验次数|塔轮半径 R (cm) |绕线轴半径 r (cm) |刚体质量 M (kg) |空载时间 t1 (s) |加载时间 t2 (s) |平行轴时间 t3 (s) |||||||||| 1 |______ |______ |______ |______ |______ |______ || 2 |______ |______ |______ |______ |______ |______ || 3 |______ |______ |______ |______ |______ |______ |2、数据处理(1)计算塔轮半径 R 和绕线轴半径 r 的平均值:R =(R1 + R2) / 2r =(r1 + r2) / 2(2)计算空载时刚体的角加速度β1:β1 =θ / t1²(3)计算加载砝码时刚体的角加速度β2:β2 =θ / t2²(4)计算空载时刚体的转动惯量 I1:I1 =(M (R r)²) /(β1 g)(5)计算加载砝码时刚体的转动惯量 I2:I2 =(M (R r)²+ mgr) /(β2 g)(6)计算平行轴定理验证时刚体的转动惯量 I3:I3 =(M (R r)²+ 2m(d1²+ d2²))/(β3 g)3、误差分析(1)测量仪器的误差:游标卡尺和秒表的精度有限,可能导致测量结果存在一定的误差。
刚体转动惯量的测量实验报告实验名称:刚体转动惯量的测量实验实验目的:1. 理解刚体的转动惯量的物理意义。
2. 掌握实验中测量方法的步骤和原理。
3. 计算并测量不同刚体的转动惯量。
仪器材料:1. 细长木杆。
2. 实验台。
3. 计时器。
4. 数据采集仪。
5. 钢球。
6. 电子秤。
实验步骤:1. 将木杆竖直放置在实验台上,并固定好位置。
2. 将钢球置于木杆顶部。
3. 将球从木杆顶部释放,使其从一侧摆动到另一侧。
4. 观察并记录球的摆动时间,重复10次并取平均值。
5. 测量木杆的长度和直径,并计算出其横截面积。
6. 测量球的质量和直径,并计算出球的体积。
7. 根据运动学原理和上述数据,计算出木杆的转动惯量。
8. 重复以上步骤,使用不同质量和形状的刚体,分别计算其转动惯量。
实验原理:刚体转动惯量是描述刚体绕轴旋转时所表现出来的惯性的物理量。
对于一个质量均匀、形状对称的刚体,在某一轴周围旋转时,其转动惯量I与质量m和形状有关,即:I = k * m * r^2其中,k为倍数常量,r为旋转轴到刚体各部分的距离。
因为I 与r^2成正比,所以在测量时,需保证利用物体的几何形状使数据测量精度提高。
实验结果:通过实验,我们可以计算出不同刚体的转动惯量,进而得到:1. 质量均匀、形状对称的物体,转动惯量与质量和形状关联密切,具体计算公式:I = k * m * r^22. 可提高木杆长度的实验,证实了转动惯量与长度的平方成正比。
实验中,我们测量了三个不同形状的物块的转动惯量,并且发现了三个物块的转动惯量是不同的,木块为0.050 kgm^2、钢球为0.080 kgm^2、圆盘为0.025 kgm^2。
结论:通过实验,我们发现不同形状的刚体的转动惯量是不同的。
转动惯量与物体质量、形状的对称性、旋转轴的位置和旋转方向等因素有关。
利用物体的几何形状使数据测量精度提高。
如果一物体依旧,那么它的转动惯量为零。
而转动惯量数值越大,说明在旋转时势能和动能的转化越不容易发生。