转动惯量实验报告
- 格式:doc
- 大小:9.12 KB
- 文档页数:5
转动惯量实验报告数据转动惯量实验报告数据引言:转动惯量是物体抵抗改变自身旋转状态的性质,是描述物体旋转惯性的物理量。
本实验旨在通过测量不同物体的转动惯量,探究转动惯量与物体的质量和形状之间的关系。
实验装置与方法:本实验采用了转动惯量实验装置,包括一个旋转平台、一个转动惯量测量仪和不同形状的物体。
实验过程如下:1. 将旋转平台固定在水平桌面上,并调整水平仪使其保持水平。
2. 在旋转平台上放置待测物体,确保物体的质心与旋转轴重合。
3. 通过转动惯量测量仪测量物体的转动惯量。
4. 重复以上步骤,分别测量不同形状的物体的转动惯量。
实验结果与数据分析:在本次实验中,我们测量了三个不同形状的物体的转动惯量,分别是一个圆盘、一个长方体和一个球体。
实验数据如下表所示:物体形状质量(kg)半径/边长(m)转动惯量(kg·m²)圆盘 0.5 0.2 0.02长方体 0.3 0.15 0.006球体 0.2 0.1 0.004通过对实验数据的分析,我们可以得出以下结论:1. 质量对转动惯量的影响:在相同形状的物体中,质量越大,转动惯量越大。
这是因为转动惯量与物体的质量成正比。
2. 形状对转动惯量的影响:在相同质量的物体中,不同形状的物体的转动惯量不同。
从实验数据可以看出,圆盘的转动惯量最大,球体的转动惯量最小。
这是因为不同形状的物体分布质量的方式不同,影响了转动惯量的大小。
结论:通过本次实验,我们验证了转动惯量与物体的质量和形状之间的关系。
实验结果表明,转动惯量与物体的质量成正比,而与物体的形状有关。
这对于我们理解物体旋转运动的性质和特点具有重要意义。
进一步思考:1. 在实验中,我们只测量了三种不同形状的物体的转动惯量,是否可以得出普遍规律?是否还有其他因素会影响转动惯量?2. 如何通过实验测量物体的转动惯量时,减小误差的影响,提高测量结果的准确性?3. 转动惯量在日常生活中有哪些应用?如何利用转动惯量的性质来设计实用的工具或设备?总结:转动惯量是描述物体旋转惯性的物理量,与物体的质量和形状有关。
扭摆法测转动惯量实验报告一、引言转动惯量是描述物体转动惯性大小的物理量,也是描述物体对转动的抵抗程度。
本实验通过扭摆法测量物体的转动惯量,探究物体转动惯量与物体的质量分布、形状以及转轴位置之间的关系。
二、实验器材和原理实验器材:扭摆装置、圆盘、计时器、测量尺、螺旋测微器等。
实验原理:扭摆法是利用物体在一根固定转轴周围转动时的回复力矩与物体转动惯量之间的关系来测量转动惯量的方法。
根据牛顿第二定律,物体的转动惯量与物体所受到的力矩之间满足以下关系:I = τ/α其中,I为物体的转动惯量,τ为物体所受到的力矩,α为物体的角加速度。
三、实验步骤1. 将圆盘固定在扭摆装置上,确保转轴与圆盘中心对齐。
2. 给圆盘加上一个小角度的转动,释放后观察其回复振动,并记录回复振动的周期T。
3. 通过测量尺测量圆盘的半径r,并计算出圆盘的转动惯量I。
4. 重复实验步骤2和3,分别记录不同角度下圆盘的回复振动周期和转动惯量。
5. 改变圆盘的质量分布、形状或转轴位置,重复步骤2-4。
四、数据处理与分析根据实验记录的周期T和圆盘的半径r,可以通过公式T = 2π√(I/τ)计算出圆盘的转动惯量I。
通过多组实验数据的比较,可以得出以下结论:1. 质量分布对转动惯量的影响:质量集中在转轴附近的物体转动惯量较小,而质量分布均匀的物体转动惯量较大。
2. 形状对转动惯量的影响:形状对转动惯量的影响较复杂,一般来说,物体的转动惯量与其形状的体积分布有关,形状越分散,转动惯量越大。
3. 转轴位置对转动惯量的影响:转轴位置的改变会导致物体的转动惯量发生变化,一般来说,转轴越远离物体质心,转动惯量越大。
五、实验误差分析在实际实验中,由于摩擦、空气阻力等因素的存在,实验数据可能存在一定的误差。
为了减小误差,可以采取以下措施:1. 减小摩擦:在扭摆装置中加入适量的润滑剂,减小转动时的摩擦力。
2. 排除空气阻力:在实验过程中尽量减小圆盘与空气的接触面积,避免空气阻力对实验结果的影响。
刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握用游标卡尺和秒表等仪器的使用方法。
二、实验原理三线摆是由三根等长的悬线将一水平圆盘悬挂在一个固定的支架上构成的。
当圆盘绕中心轴 OO' 作扭转摆动时,圆盘的运动可以看作是圆盘绕通过其重心且垂直于盘面的轴线的转动和平动的合成。
设圆盘的质量为 m,半径为 R,对于通过其重心且垂直于盘面的轴线的转动惯量为Ic。
当圆盘扭转一个小角度θ 时,圆盘的势能变化为:ΔEp = mgh其中,h 为圆盘重心上升的高度。
由于θ 很小,所以可以近似认为:h ≈ Rθ²根据能量守恒定律,圆盘的势能变化等于其动能的变化,即:ΔEp =1/2 Iω²其中,ω 为圆盘的角速度。
又因为圆盘的摆动周期为 T,所以ω =2π/T。
联立上述式子可得:Ic =(mgR²T²) /(4π²h)实验中通过测量圆盘的质量 m、半径 R、摆动周期 T 以及圆盘扭转角度θ 对应的重心上升高度 h,即可计算出圆盘对于通过其重心且垂直于盘面的轴线的转动惯量 Ic。
三、实验仪器三线摆、游标卡尺、米尺、秒表、待测刚体(圆环、圆柱等)、托盘天平。
四、实验步骤1、用托盘天平测量圆盘和待测刚体的质量。
2、用游标卡尺测量圆盘和待测刚体的直径,分别测量多次,取平均值。
3、调整三线摆的悬线长度,使上下圆盘之间的距离约为 50cm 左右。
4、轻轻转动上圆盘,使圆盘作小角度的扭转摆动,用秒表测量圆盘摆动 50 个周期的时间,重复测量多次,取平均值,计算出摆动周期T。
5、将待测刚体放在圆盘上,使两者的中心轴线重合,按照上述方法测量系统(圆盘和待测刚体)的摆动周期 T'。
五、实验数据记录与处理1、圆盘质量 m =______ g,直径 D =______ cm,半径 R =D/2 =______ cm。
转动惯量测量实验报告(共7篇)20页实验名称:转动惯量测量实验实验目的:通过实验测量旋转物体的转动惯量,并了解柿子童的定理以及有效质量的概念。
实验仪器:旋转定量装置、摩擦转台、测高仪、微型计算机、数据采集卡实验原理:转动惯量是物体绕特定轴旋转时的惯性系数,表示物体的旋转固有性质。
旋转定量装置把物体固定在转轴上,悬挂一个对应于物体重量的质量,在物体减速旋转时通过计算得出物体的转动惯量。
设物体以角速度ω绕某一定轴转动。
质处于离该轴r处,质量为m,则质点的角动量L=mvr,转动惯量为I=mr 2,单位是kg·m2。
转动定量装置有相应的计算公式:I=C·m·(h+d/2)2/T2,其中I为物体的转动惯量,C为常数(由仪器提供),m为质量,h为重心高度,d为转轴的直径,T为物体1圈的时间。
有效质量的概念是指在转动过程中受到外力作用的物体的质量是原来物体质量的一部分。
它的大小可以计算为(C+K)m。
其中,C是转动定量装置的常数,K是校正因数,m是物体的质量。
实验步骤:1.安装转动定量装置,将待测物体固定在转轴上2.测量转轴的直径d和质心的高度h3.测量悬挂质量的质量m和悬挂高度h’4.使物体绕转轴旋转1圈,记录用时T5.多次测量,求平均值,计算转动惯量I=C·m·(h+d/2)2/T26.重复以上实验,修改悬挂质量的质量或质心位置,测量I的变化,比较偏差7.探究有效质量的概念,计算(C+K)m的大小,并进行比较实验结果:将物体的质量m不变,改变质心高度h和转轴直径d大小,观察对转动惯量I的影响。
可以发现,两者对I的影响都是与大小成正比的,即h、d越大,I越大;越小,I越小。
误差主要来自于读数仪器和实验操作技巧。
有效质量的计算结果与实际质量相比,误差范围较小。
通过转动惯量的测量,我们可以对旋转物体的惯性的了解更加多样化,并深入理解惯性的作用与其应用场景。
同时,实验结论可以帮助我们在实际应用场景中更加科学地设计实验方案,并更加深入地理解转动相关的物理知识点。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量的实验报告转动惯量的实验报告一、引言转动惯量是物体旋转时所具有的惯性,是描述物体旋转运动的物理量。
本实验旨在通过测量不同物体的转动惯量,探究物体形状和质量对转动惯量的影响。
二、实验装置和方法实验装置包括转动惯量测量装置、测量器具(卷尺、天平等)和不同形状的物体(如圆盘、长方体等)。
实验步骤如下:1. 将转动惯量测量装置放置在水平台面上,确保其稳定。
2. 选择一个物体,如圆盘,测量其质量m,并记录下来。
3. 将圆盘固定在转动惯量测量装置上,并使其能够自由旋转。
4. 通过卷尺测量圆盘的半径r,并记录下来。
5. 用测量器具测量圆盘的转动惯量I,并记录下来。
6. 重复步骤2-5,测量其他形状的物体的质量、尺寸和转动惯量。
三、实验结果与分析根据实验数据,我们计算得到了不同物体的转动惯量,并进行了比较。
以下是一些实验结果和分析:1. 圆盘与长方体的转动惯量比较我们测量了相同质量的圆盘和长方体的转动惯量,并发现圆盘的转动惯量要大于长方体。
这是因为圆盘的质量分布更加集中在旋转轴附近,而长方体的质量分布相对较为分散,导致圆盘的转动惯量较大。
2. 形状对转动惯量的影响我们还测量了不同形状的物体的转动惯量,并发现不同形状的物体具有不同的转动惯量。
例如,对于相同质量的物体,圆盘的转动惯量大于长方体,而球体的转动惯量又大于圆盘。
这是因为球体的质量分布更加集中在旋转轴附近,相比之下,圆盘的质量分布更为分散,导致球体的转动惯量最大。
3. 质量对转动惯量的影响我们还进行了不同质量物体的转动惯量比较。
实验结果显示,对于相同形状的物体,质量越大,转动惯量也越大。
这是因为质量的增加会增加物体的惯性,从而增大了物体的转动惯量。
四、实验误差分析在本实验中,存在一些误差可能影响了实验结果的准确性。
例如,测量质量时天平的读数误差、测量尺寸时卷尺的读数误差等。
此外,转动惯量测量装置本身可能存在一定的摩擦力,也会对实验结果产生一定的影响。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量实验报告目录1. 实验目的1.1 认识转动惯量的概念1.2 学习如何测量转动惯量2. 实验原理2.1 转动惯量的定义2.2 转动惯量的计算公式3. 实验器材和方法3.1 实验器材清单3.2 实验步骤4. 实验数据和处理4.1 实验数据记录4.2 数据的处理方法5. 实验结果分析5.1 转动惯量的计算结果5.2 结果的可靠性讨论6. 实验结论7. 参考文献1. 实验目的1.1 认识转动惯量的概念在本实验中,我们旨在通过实际操作,让学生了解转动惯量是什么,以及它在物理学中的重要性和应用。
1.2 学习如何测量转动惯量另一个实验目的是让学生学会如何通过实验测量物体的转动惯量,掌握测量方法和技巧。
2. 实验原理2.1 转动惯量的定义转动惯量是物体对转动的惯性,它描述了物体在围绕某一轴旋转时所表现出的惯性特征,通常用符号 I 表示。
2.2 转动惯量的计算公式转动惯量的计算公式是I = Σmr^2,其中 m 为物体的质量,r 为质心到旋转轴的距离。
3. 实验器材和方法3.1 实验器材清单- 转动台- 测力计- 不同形状的物体3.2 实验步骤1. 将物体固定在转动台上2. 施加力使物体旋转3. 测量施加的力和物体的角加速度4. 重复实验并记录数据4. 实验数据和处理4.1 实验数据记录在实验中记录了不同物体的质量、旋转半径、施加的力和角加速度等数据。
4.2 数据的处理方法通过数据处理软件对实验数据进行处理,应用转动惯量计算公式,得出不同物体的转动惯量数值。
5. 实验结果分析5.1 转动惯量的计算结果根据实验数据和处理结果,计算得出了不同物体的转动惯量数值,并进行比较分析。
5.2 结果的可靠性讨论对实验结果的可靠性进行讨论,分析可能存在的误差来源并提出改进方法。
6. 实验结论通过本实验,我们成功测量了不同物体的转动惯量,并对实验结果进行了分析和讨论,验证了转动惯量计算公式的可靠性。
7. 参考文献列出本实验中所涉及到的相关物理学原理、实验方法和参考资料。
转动惯量的测量实验报告数据处理实验目的:通过实验测量旋转体的转动惯量,掌握用陀螺仪测量转动的方法。
实验原理:转动惯量是描述物体相对于旋转轴的旋转惯性的物理量。
当外力作用于旋转体时,旋转体会产生转速,此时会有一个转动惯量作用于旋转体,阻碍其继续旋转。
因此当物体的质量越大或者物体到旋转轴的距离越远时,旋转惯量也就越大。
而陀螺仪的原理是利用旋转惯量的影响来测量角速度。
实验设备:数字陀螺仪、测量木块、计时器、圆盘、测量尺、线杠、液体测量器。
操作步骤:1、将圆盘放在水平面上,通过线杠和木块将圆盘固定在陀螺仪上。
2、调整陀螺仪,使其位置水平,然后进行零点校准。
3、通过液体测量器测量出木块的质量,并用测量尺测量木块到圆盘边缘的距离,记录下数据。
4、计时器开始计时,然后用手推动圆盘,使其绕自身的平行轴旋转。
5、在圆盘旋转时,观察陀螺仪的显示,得到圆盘的初始角速度和终止角速度。
6、通过式子:(I=mR^2)/(2t(wf-wi)),计算出圆盘的转动惯量。
实验数据处理:根据记录下的数据,结合计算公式,可以求出测量圆盘的转动惯量。
假如测量得到的木块质量为250g,距离圆盘边缘的距离为10cm,计时器计时结果为10秒。
圆盘的初始角速度为20rad/s,终止角速度为7rad/s。
则可以得到转动惯量如下:I=(0.25kg×0.1m^2)/(2×10s×(20rad/s-7rad/s))=0.037kg·m^2结论:通过实验测量得到的圆盘转动惯量为0.037kg·m^2,与理论值相差不大,说明实验方法可靠。
在实验中,我们还发现了测量精度与实验条件有关,如调整陀螺仪和圆盘的平衡、测量垂直方向时要保证测量精度等。
通过这次实验,我们掌握了用陀螺仪测量转动惯量的方法,并加深了对转动惯量的物理概念。
篇一:转动惯量的实验分析报告转动惯量的测量实验分析报告一、数据处理(1)用游标卡尺、米尺、天平分别测出待测物体的质量和必要的几何尺寸。
如塑料圆柱的直径,金属圆筒的内、外径,木球的直径以及金属细杆的长度等。
(2)计算扭摆弹簧的扭转常数k,计算公式为:i1k?4?2?0.0411*******n?m 2t1?t22(3)测定塑料圆柱、金属圆筒、木球与金属细杆的转动周期,计算转动惯量的实验值,并与理论值相比较,求出百分比误差。
百分比误差=理论值-实验值?100理论值以上各测量值均记录在表3-2-1中,具体计算公式也包含在表格中。
表3-2-1 刚体转动惯量的测定(4)验证平行轴定理。
改变滑块在金属细杆上的位置,测定转动周期,测量数据记录在表3-2-2中。
计算滑块在不同位置出系统的转动惯量,并与理论值比较,计算百分比误差。
其中测得m滑块=0.2397kg。
表3-2-2 平行轴定理的验证从以上实验结果可知,实验结果与理论计算结果百分比误差在百分之十以内,理论值与实验值的拟合较为合理,可有效地验证测定刚体的转动惯量并验证平行轴定理。
其中,误差来源主要有以下几点:(1)圆盘转动的角度大于90度,致使弹簧的形变系数发生改变。
(2)没有对仪器进行水平调节。
(3)圆盘的固定螺丝没有拧紧。
(4)摆上圆台的物体有一定的倾斜角度。
三、思考题(一)预习思考题1、如何测量扭摆弹簧的扭转系数k?答:先测出小塑料圆柱的几何尺寸及质量,得到小塑料圆柱的转动惯量理21论值为i1?m1d1,再测量出金属载物盘的转动周期t0及小塑料圆柱的转动周8i1期为t1,利用计算公式k?4?2代入数据即可求出k。
2t1?t222.如何测定任意形状的物体绕特定轴转动的转动惯量?答:利用题1中测得的i1、t1和t0得到金属载物盘的转动惯量为i1t1i0?2,将待测物体放在金属载物盘上,测出其转动惯量周期为t2,再利2t1?t02kt2用计算公式i2=?i0即可得到该物体的转动惯量。
24?3.数字计时仪的仪器误差为0.01s,试验中为什么要测量10个周期?答:实验中除了仪器误差外,还有其他误差,如随机误差、系统误差等。
不一定要测量10个周期,只是10个周期来计算的话可大大减少误差,也可以多测几个周期,但限于人力和资源的使用,一般测量10个周期就可以达到精度了。
(二)操作后思考题1.在测量形状规则的物体的转动惯量时,若物体在载物台上放置不平稳,会对计算结果产生什么影响?答:如果物体在载物台上放置不平稳的话,它的实际转动惯量相比百分比误差会加大,使转动惯量的理论值与实验值相差太大,得不到正确的实验结论。
2.扭摆法角度的大小对测量会产生什么影响?答:弹簧的劲度系数不是一个固定常数,它与转动的角度略有关系。
若扭摆角度过小,k值变小;若扭摆角度大于90,致使弹簧的劲度系数发生改变;若扭摆角度在90左右时,弹簧的扭转常数k基本相同。
23.验证平行轴定理时,为什么不用一个圆柱体而采用两个对称位置?答:若只用一个,则圆盘会受到一个沿盘切向的力矩的作用,转动时,必然导致摩擦力矩的增加,一方面增大了测量误差,另一方面影响仪器的使用寿命。
如果采用两个对称的位置,两力矩大小相等,方向相反,相互抵消了。
4.采用本实验测量方法,对测量试样的转动惯量大小有什么要求?答:转动惯量反映出物体转动状态下的惯性,转动惯量大的物体的角速度更难被改变。
因此,为了测得较为准确的转动惯量,必须使刚体的角速度变化较小,即刚体的转动惯量要求较大一些。
篇二:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ(1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
b.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。
将式(3)写为:r = k2/ t (5)式中k2 = (2hi/ mg)是常量。
上式表明r与1/t成正比关系。
实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。
即若所作图是直线,便验证了转动定律。
1/21/2从r-1/t图上测得斜率,并用已知的m、h、g值,由k2 = (2hi/ mg)求出刚体的i.三.实验仪器刚体转动仪,滑轮,秒表,砝码。
四.实验内容1.调节实验装置:调节转轴垂直于水平面调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。
选定砝码下落起点到地面的高度h,并保持不变。
2.观察刚体质量分布对转动惯量的影响取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。
本项实验只作定性说明,不作数据计算。
3.测量质量与下落时间关系:测量的基本内容是:更换不同质量的砝码,测量其下落时间t。
用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个5.0g;用秒表记录下落时间。
将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。
将拉线平行缠绕在轮上。
逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态开始下落到达地面的时间。
对每种质量的砝码,测量三次下落时间,取平均值。
砝码质量从5g开始,每次增加5g,直到35g 止。
用所测数据作图,从图中求出直线的斜率,从而计算转动惯量。
4.测量半径与下落时间关系测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。
将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。
对每一塔轮半径,测三次砝码落地之间,取其平均值。
注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。
由测得的数据作图,从图上求出斜率,并计算转动惯量。
五.实验数据及数据处理:r-1/t的关系:由此关系得到的转动惯量i=1.78?10?3kg?m 2m-(1/t)2的关系:篇三:刚体转动惯量的测定实验报告刚体转动惯量的测定物本1001班张胜东(201009110024)李春雷(201009110059)郑云婌(201009110019)刚体转动惯量的测定实验报告【实验目的】1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。
2.用扭摆测定弹簧的扭转常数k和几种不同形状的物体的转动惯量,并与理论值进行比较。
3.验证转动定理和平行轴定理。
【实验仪器】(1)扭摆(转动惯量测定仪)。
(2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。
(3)天平。
(4)游标卡尺。
(5)hld-th-ii转动惯量测试仪(计时精度0.001ms)。
【实验原理】1. 扭摆扭摆的构造如图所示,在垂直轴1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。
在轴的上方可以装上各种待测物体。
垂直轴与支座间装有轴承,以降低磨擦力矩。
3 为水平仪,用来调整系统平衡。
将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。
根据虎克定律,弹簧受扭转而产生的恢复力矩m与所转过的角度θ成正比,即b m=-kθ(1)式中,k为弹簧的扭转常数,根据转动定律 m=iβ式中,i为物体绕转轴的转动惯量,β为角加速度,由上式得? 令 ?2?m (2)?k,忽略轴承的磨擦阻力矩,由(1)、(2)得 d2?k2??????? (3)??2idt上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
此方程的解为:θ=acos(ωt+φ) (4)式中,a为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为t?2???2?i(5) k由(5)可知,只要实验测得物体扭摆的摆动周期,并在i和k中任何一个量已知时即可计算出另一个量。
本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的k值。
若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(3)即可算出该物体绕转动轴的转动惯量。
2.弹簧的扭转系数实验中用一个几何形状规则的物体(塑料圆柱体),它的转动惯量可以根据它的质量和集合尺寸用理论公式直接计算得到,再由实验数据算出本一起弹簧的k值。
方法如下:(1)测载物盘摆动周期t0,由(5)式得其转动惯量为:(2)塑料圆柱放在载物盘上,测出摆动周期t1,由(5)式其总惯量为:(3)塑料圆柱的转动惯量理论值为则由得:3. 测任意物体的转动惯量若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测其摆动周期,即可算出该物体绕转动轴的转动惯量。
待测物体的转动惯量为4.转动惯量的平行轴定理理论分析证明,若质量为m的物体绕通过质心轴的转动惯量为io时,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量变为i=ic+mx2(6)称为转动惯量的平行轴定理。