镍基复合材料ppt课件
- 格式:ppt
- 大小:1.54 MB
- 文档页数:17
《镍基复合材料的制备及其摩擦学性能研究》一、引言随着现代工业技术的快速发展,材料科学在工程应用中的地位日益凸显。
其中,镍基复合材料因其优异的物理、化学及机械性能,被广泛应用于航空、航天、能源、汽车等关键领域。
其制备工艺的优化和摩擦学性能的研究,对于提升材料的使用性能及延长使用寿命具有极其重要的意义。
本文将就镍基复合材料的制备方法及摩擦学性能进行研究探讨。
二、镍基复合材料的制备(一)原料与设备制备镍基复合材料的主要原料包括镍基合金粉末、增强相材料(如碳化硅、氧化铝等)、添加剂等。
制备设备主要包括混合设备、烧结设备、热处理设备等。
(二)制备工艺镍基复合材料的制备主要采用粉末冶金法,其基本步骤包括配料、混合、压制、烧结及热处理等。
具体过程如下:1. 配料:根据所需材料的成分比例,将原料按比例混合。
2. 混合:采用机械混合或化学混合的方式,使各组分充分混合均匀。
3. 压制:将混合后的粉末放入模具中,通过压力机进行压制,形成预成形坯。
4. 烧结:将预成形坯放入烧结炉中,在一定的温度和压力下进行烧结,使材料致密化。
5. 热处理:烧结后的材料进行热处理,以提高材料的性能。
(三)制备过程中的影响因素在制备过程中,影响镍基复合材料性能的因素主要包括粉末粒度、压制压力、烧结温度和时间等。
这些因素对材料的致密度、成分分布及机械性能等有着重要的影响。
三、镍基复合材料的摩擦学性能研究(一)摩擦学性能的基本概念及测试方法摩擦学性能是衡量材料在摩擦过程中所表现出的性能,主要包括摩擦系数、磨损率等。
测试摩擦学性能的方法主要有摩擦试验机测试、磨损试验等。
(二)镍基复合材料的摩擦学性能特点镍基复合材料具有优异的摩擦学性能,其摩擦系数低,磨损率小。
这主要得益于其良好的硬度、耐磨性及抗高温氧化性能。
此外,增强相的加入也提高了材料的硬度和耐磨性,进一步优化了材料的摩擦学性能。
(三)影响镍基复合材料摩擦学性能的因素影响镍基复合材料摩擦学性能的因素主要包括材料成分、组织结构、表面处理等。
镍基复合材料镍基复合材料是一种重要的结构材料,广泛应用于航空航天、汽车制造、化工等领域。
镍基复合材料具有优异的高温强度、耐腐蚀性能和热疲劳寿命,因此备受工程技术领域的关注和重视。
本文将对镍基复合材料的组成、性能和应用进行介绍。
镍基复合材料由镍基合金作为基体材料,通过添加其他合金元素或非金属材料形成复合结构。
常见的镍基复合材料包括镍基高温合金、镍基耐磨合金和镍基复合陶瓷等。
这些材料在高温、高压、强腐蚀等恶劣环境下具有出色的性能表现,因此在航空发动机、石油化工设备、核工程等领域得到广泛应用。
镍基复合材料的优异性能主要体现在以下几个方面:首先,镍基复合材料具有优异的高温强度和抗氧化性能。
在高温环境下,镍基复合材料能够保持较高的强度和硬度,不易发生变形和热膨胀,因此适用于高温零件的制造。
其次,镍基复合材料具有良好的耐腐蚀性能。
在酸碱盐等腐蚀介质中,镍基复合材料能够保持稳定的化学性能,不易发生腐蚀和损伤,因此适用于化工设备和海洋工程等领域。
此外,镍基复合材料还具有优异的热疲劳寿命和耐磨性能。
在高温循环载荷下,镍基复合材料不易发生疲劳开裂和断裂,能够保持较长的使用寿命;同时,在高速摩擦磨损条件下,镍基复合材料的磨损率较低,具有良好的耐磨性能。
镍基复合材料的应用领域非常广泛,包括航空航天、船舶制造、化工设备、能源开采等多个领域。
在航空发动机中,镍基复合材料被用于制造叶片、涡轮盘等高温零件,能够提高发动机的工作温度和效率;在海洋石油平台上,镍基复合材料被用于制造耐腐蚀的管道和阀门,能够提高设备的使用寿命和安全性。
总的来说,镍基复合材料具有优异的高温强度、耐腐蚀性能和热疲劳寿命,是一种重要的结构材料。
随着工程技术的不断发展,镍基复合材料将会在更多领域得到应用,并发挥重要作用。
镍基复合材料的应用10级金属(1)班1007024101镍基复合材料的应用镍基复合材料是以镍及镍合金为基体制造的。
由于镍的高温性能优良,因此这种复合材料主要是用于制造高温下工作的零部件。
镍基复合材料主要用于液体火箭发动机中的全流循环发动机。
这种发动机的涡轮部件要求材料在一定温度下具有高强度、抗蠕变、抗疲劳、耐腐蚀、与氧相容。
在目前正在研制的系统中这些部件选用镍基高温合金。
虽然用SiC 颗粒或纤维增强的复合材料可以达到高强度、高刚度和抗蠕变。
但在全流循环发动机的富氧驱动气体环境下,这些材料不能兼顾与氧的相容性。
发动机起动瞬变过程的热冲击环境,排除了涡轮叶片采用加涂层的材料系的可能。
因此,用整体材料制作的涡轮叶片,必须经受住富氧燃烧产物所形成的环境。
因为涡轮部件和涡轮盘在大约9min 运行中一般不用冷却,所以在短时运行中,整体材料温度达到730℃是正常的。
对某些设计,希望密度低于6.5g/cm3 的材料的强度要大于1040MPa。
应力、温度和化学环境都十分苛刻,要延长维修平均间隔时间(MTBR)使这些材料性能目标更难达到。
其它非旋转部件也必须经受住极端运行环境的考验。
喷注器面板、喷注壳体和预燃烧器在高温下都必须抗氧化、耐腐蚀、抗氢脆。
喷嘴调节和控制流入主燃烧室的推进剂流量。
预燃烧室是个小型燃烧室。
在这个燃烧室里,产生涡轮驱动气体。
在目前一些系统(其中一些被有效冷却)中,这些部件使用钴合金。
未来发动机的这些部件,预计有极端的热环境(气体温度接近918℃)和高达62MPa 的压力。
Si3N4 整体材料正在用作喷嘴壳体,但陶瓷壳体与金属推力室的匹配困难还没有解决。
由于喷嘴壳体的形状是轴对称的,所以早就有人建议这种壳体采用连续纤维增强的复合材料,但部件的匹配条件向连续纤维增强的复合材料提出挑战。
以下为两种比较典型的镍基复合材料及其主要性能:(一)、镍基变形高温合金以镍为主要基体成分的变形高温合金。
镍基变形高温合金以汉语拼音字母“GH”加序号表示,如GH36、GH49、GH141等。