第11讲 圆的面积(2).ppt
- 格式:ppt
- 大小:539.05 KB
- 文档页数:9
高考数学专题讲座 第11讲 直线与圆考纲要求:(1)理解直线斜率的概念,掌握两点的直线的斜率,掌握直线方程的点斜式\两点式\一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行于垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单应用. (5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程.理解圆的参数方程. 基础达标1.若直线l 的倾斜角为π+arctan(-12),且过点(1,0),则直线l 的方程为________________.x +2y -1=02.已知定点A (0,1),点B 在直线x +y =0上运动,当线段AB 最短时,点B 的坐标是________________. (-12,12)3.已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数.当这两条直线的夹角在(0,π12)内变动时,a 的取值X 围是 ( C ) A .(0,1)B .(33,3)C .(33,1)∪(1,3) D .(1,3) 4.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是 ( C )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=45.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠π2+k π,k ∈Z )的位置关系是 ( C )A .相交B .相切C .相离D .不确定6.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0.当直线l 被C 截得的弦长为23时,则a = ( C ) A . 2 B .2-2C .2-1 D .2+1 例题选讲例1.(1)过点M (2,1)作直线l 与x 轴、y 轴的正半轴分别交于A 、B 两点.① 若△AOB 的面积取得最小值,求直线l 的方程,并求出面积的最小值;② 直线l 在两条坐标轴上截距之和的最小值;③若|MA |·|MB |为最小,求直线l 的方程.解:(1)①由于已知直线l 在坐标轴上的截距,故选用直线的截距方程:1=+bya x (i ) 由已知a >0,b >0.故S △AOB =21ab (ii ) 由已知,直线(i)经过点(2,1).故112=+b a ,就是a +2b =ab ,a =12-b b (∵b ≠1) (iii) ∵a >0, b >0, ∴a >1. 将(iii)代入(ii),得S =12-b b =1112-+-b b =b +1+11-b =(b -1)+11-b +2.当b >1时 S ≥211)1(-⋅-b b +2=4. 等号当且仅当 b -1=11-b 即b =2时成立.代入(iii)得a =4. ∴所求的直线方程为24yx +=1,即x②解一:a +b =2b b -1+b =2(b -1)+2b -1+b = = 2b -1+b -1+当b >1时 , a +b ≥2(2b -1)(b -1)等号当且仅当 b -1=2b -1, 即解二:a +b =(a +b )×1=(a +b )(2a +1b )=3等号当且仅当2b a =a b ,即a 2=2b 2③由于直线l 绕点M 运动,故可选∠OAB 2θsin M y =1sin θ, |MB |=θcos M x =2cos θ,|MA |·|MB |=1sin θ×2cos θ=4s in2θ,∴当sin2θ=1时,|MA |·|MB |有最小值4, 此时tan θ=1,所求直线l 的方程为x +y -3=0.(2)已知圆C :(x +2)2+y 2=1,P (x ,y )为圆上任意一点.①求y -22x -2的最大值、最小值;②求x -2y的最大值、最小值.解:(1)令k =y -2x -1,则k 表示经过P 点和A (1,2)两点的直线的斜率,故当k 取最大值或最小值时,直线P A :kx -y +2-k =0和圆相切,此时d =|-2k +2-k |1+k 2=1,解得k =3±34,所以y -22x -2的最大值为3+38,最小值为3-38;(2)方法一:令x -2y =t ,可视为一组平行线系,由题意,直线应与圆C 有公共点,且当t 取最大值或最小值时,直线x -2y -t =0和圆相切,则d =|-2-t |5=1,解得t =-2±5,所以x -2y 的最大值为-2+5,最小值为-2-5;方法二:因为P (x ,y )为圆C :(x +2)2+y 2=1上的点,令x =-2+cos θ,y =sin θ,θ∈[0,2π),所以x -2y =-2+cos θ-2 sin θ=-2+5cos(θ+φ)( φ=arctan2),当θ+φ=2π,即θ=2π-arctan2时,cos(θ+φ)=1,x -2y 取到最大值为-2+5,当θ+φ=π,即θ=π-arctan2时,cos(θ+φ)=-1,x -2y 取到最大值为-2+5;例2.已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x -2y =0的距离为55.求该圆的方程. 解:设圆P 的圆心为P (a ,b ),半径为γ,则点P 到x 轴,y 轴的距离分别为|b |,|a |.由题设知圆P 截x 轴所得劣弧对的圆心角为90º,知圆P 截x 轴所得的弦长为r 2.故r 2=2b 2又圆P 被y 轴所截得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又因为P (a ,b )到直线x -2y =0的距离为55,所以5552b a d -=, 即有 a -2b =±1, 由此有⎩⎨⎧=-=-121222b a a b ⎩⎨⎧-=-=-121222b a a b 解方程组得⎩⎨⎧-=-=11b a ⎩⎨⎧==11b a 于是r 2=2b 2=2,所求圆的方程是(x +1)2+(y +1)2=2,或(x -1)2+(y -1)2=2.思考:求在满足条件①、②的所有圆中,圆心到直线l :x -2y =0的距离最小的圆的方程.解法一:设圆的圆心为P (a ,b ),半径为r ,则点P 到x 轴,y 轴的距离分别为│b │, │a │. 由题设知圆P 截x 轴所得劣弧对的圆心角为90°,知圆P 截X 轴所得的弦长为r 2,故r 2=2b 2, 又圆P 截y 轴所得的弦长为2,所以有 r 2=a 2+1.从而得2b 2-a 2=1.又点P (a ,b )到直线x -2y =0的距离为52b a d -=,所以5d 2=│a -2b │2 =a 2+4b 2-4ab≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1,当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值. 由此有⎩⎨⎧=-=12,22a b b a 解此方程组得⎩⎨⎧==;1,1b a 或⎩⎨⎧-=-=.1,1b a 由于r 2=2b 2知2=r .于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2. 解法二:同解法一,得52b a d -=∴d b a 52±=-得2225544d bd b a +±= ①将a 2=2b 2-1代入①式,整理得01554222=++±d db b②把它看作b 的二次方程,由于方程有实根,故判别式非负,即△=8(5d 2-1)≥0,得 5d 2≥1.∴5d 2有最小值1,从而d 有最小值55. 将其代入②式得2b 2±4b +2=0.解得b =±1.将b =±1代入r 2=2b 2,得r 2=2.由r 2=a 2+1得a =±1. 综上a =±1,b =±1,r 2=2. 由b a 2-=1知a ,b 同号. 于是,所求圆的方程是(x -1) 2+(y -1) 2=2,或(x +1) 2+(y +1) 2=2.例3.在以O 为原点的直角坐标系中,点A (4,-3)为△OAB 的直角顶点.已知|AB |=2|OA |,且点B 的纵坐标大于零.(1)求向量AB →的坐标;(2)求圆x 2-6x +y 2+2y =0关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线y =ax 2-1上总有关于直线OB 对称的两个点?若不存在,说明理由:若存在,求a 的取值X 围.[解](1)设⎩⎨⎧=-=+⎪⎩⎪⎨⎧=⋅==,034100,0||||||2||},,{22v u v u OA AB OA AB v u AB 即则由得 },3,4{.86,86-+=+=⎩⎨⎧-=-=⎩⎨⎧==v u AB OA OB v u v u 因为或 所以v -3>0,得v =8,故AB ={6,8}.(2)由OB ={10,5},得B (10,5),于是直线OB 方程:.21x y =由条件可知圆的标准方程为:(x -3)2+y(y+1)2=10, 得圆心(3,-1),半径为10. 设圆心(3,-1)关于直线OB 的对称点为(x,y )则,31,231021223⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=-+=-⋅-+y x x y y x 得故所求圆的方程为(x -1)2+(y -3)2=10. (3)设P (x 1,y 1), Q (x 2,y 2) 为抛物线上关于直线OB 对称两点,则.23,022544,02252,,2252,202222222212212121212121>>-⋅-=∆=-++⎪⎪⎩⎪⎪⎨⎧-=-=+⎪⎪⎩⎪⎪⎨⎧-=--=+-+a aa a a ax a x x x a a x x ax x x x yy y y x x 得于是由的两个相异实根为方程即得 故当23>a 时,抛物线y=ax 2-1上总有关于直线OB 对称的两点.4.已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,(1)如果|AB |=423,求直线MQ 的方程;(2)求动弦AB 的中点P 的轨迹方程. 解:(1)由324||=AB ,可得,31)322(1)2||(||||2222=-=-=AB MA MP 由射影定理,得 ,3|||,|||||2=⋅=MQ MQ MP MB 得 在Rt △MOQ 中,523||||||2222=-=-=MO MQ OQ ,故55-==a a 或, 所以直线AB 方程是;0525205252=+-=-+y x y x 或 (2)连接MB ,MQ ,设),0,(),,(a Q y x P 由点M ,P ,Q 在一直线上,得(*),22xy a -=-由射影定理得|,|||||2MQ MP MB ⋅= 即(**),14)2(222=+⋅-+a y x 把(*)及(**)消去a ,并注意到2<y ,可得).2(161)47(22≠=-+y y x说明:适时应用平面几何知识,这是快速解答本题的要害所在。
苏科版数学九年级上册2.1 圆(第2课时)说课稿一. 教材分析苏科版数学九年级上册第2.1节“圆”是整个初中数学的重要内容,也是九年级上学期的重点和难点。
本节课主要介绍圆的定义、圆的性质、以及圆与直线、圆与圆的位置关系。
通过本节课的学习,使学生掌握圆的基本概念和性质,能够解决一些与圆有关的问题,为后续学习圆的方程、圆的切线、圆的弧长和面积等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,如平面几何中点、线、面的基本性质,对图形的认知和观察能力也有一定的提高。
但同时,圆的知识比较抽象,学生需要较强的空间想象能力和逻辑思维能力。
因此,在教学过程中,要充分考虑学生的认知水平,注重启发引导,让学生在原有的知识基础上更好地理解和掌握圆的知识。
三. 说教学目标1.知识与技能目标:理解圆的定义和性质,掌握圆与直线、圆与圆的位置关系,会使用圆的性质解决一些实际问题。
2.过程与方法目标:通过观察、思考、讨论,培养学生的空间想象能力和逻辑思维能力,提高学生解决几何问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:圆的定义、圆的性质、圆与直线、圆与圆的位置关系。
2.教学难点:圆的性质的推导和证明,圆与直线、圆与圆的位置关系的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究,培养学生的独立思考能力和团队合作精神。
2.教学手段:利用多媒体课件、实物模型、几何画板等,直观展示圆的性质和位置关系,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入新课:通过展示生活中的圆形物体,如硬币、圆桌等,引导学生思考圆的特点,引出圆的定义和性质。
2.自主学习:让学生通过阅读教材,了解圆的定义和性质,尝试解答相关问题。
3.合作交流:分组讨论圆与直线、圆与圆的位置关系,分享各自的学习心得和解题方法。
1、画圆时,圆规两脚之间的距离为4CM,那么这个圆的直径是()CM,周长是()CM ,面积是()平方厘米。
2、用一根长18.84DM的铁丝围成一个圆圈,所围成的圆圈的半径是()DM,圆圈内的面积是()平方分米。
3、在一个长8厘米、宽5厘米的长方形纸板上剪一个最大的圆,圆的面积是()平方分米。
4、圆内两端都在圆上的线段有()条,其中()最长。
圆的直径和半径都有()条。
5、圆心确定圆的(),()确定圆的()。
6、如果把一个圆的半径扩大到原来的2倍,则周长就会扩大到原来的()倍,面积就会扩大到原来的()倍。
7、有同一个圆心的圆叫()圆,圆心位置不同而半径相等的圆叫()圆。
8.圆的周长和直径的商叫做( ),用字母( )表示。
9.在等圆中,所有的直径都( ),所有的半径都( ),直径是半径的( )。
10.长方形有( )条对称轴。
正方形有( )条对称轴,等腰三角形有( )条对称轴,圆有( )条对称轴。
11.在一个边长为4分米的正方形里,画一个最大的圆,这个圆的直径为( )分米,半径为( )分米,周长为( )分米,面积为( )平方分米。
12.大圆的半径是小圆的6倍,小圆周长是大圆的( ),大圆面积是小圆面积的( )。
13.一个半圆形的花坛周长是30.84米,这个半圆形花坛的面积是( )。
14.时钟分针的顶端转动一周形成的图形是()。
15.圆的周长是半径的()倍。
16. 把一个圆分成若干等份,剪开拼成一个近似的长方形。
这个长方形的长相当于(),长方形的宽就是圆的()。
17.一个半圆,它的直径是60厘米,它的周长是()分米,面积是()平方分米。
18.用一根长628厘米的铁丝围成一个圆,这个圆的直径是()厘米。
19.把一头牛用3米长的绳系在一根木桩上,这头牛吃草的最大面积是()平方米。
20.在一个周长是20厘米的正方形里画一个最大的圆,它的周长是()厘米。
21.把车轮做成圆形,车轴定在圆心,是因为()。
22.右图中正方形的面积是20平方分米,圆的面积是()平方分米。
学科教师辅导讲义学员编号:年级:初二课时数: 3学员姓名:辅导科目:数学学科教师:授课类型T函数的有关概念C自变量与函数值T列函数解析式授课日期及时段★★★★★★★授课日期及时段教学内容函数的有关概念1、回顾变量与常量;2、理解函数的概念,并能识别函数;3、了解函数的几种表示方法及各自的优缺点.知识结构1. 函数的概念①常量与变量:【注意】在某一变化过程中,变量、常量都可能有多个。
常量可以是一个实数,也可以是一个代数式(数值始终保持不变)②函数的概念:一般地,设在一个变化过程中有两个变量x和y,并且对于x在它允许取值范围内的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.【注意】对函数概念的理解(1)有两个变量(2)一个变量的数值随着另一个变量的变化而变化(3)自变量每确定一个值,函数有一个并且只有一个值与之对应(或多个x的值可以对应一个y值但不能一个x值对应多个y值,如y=x2和x2=y)(4) 我们习惯上设y 为函数,但不表示其它字母不可以作为函数,如s=vt , x=6y (5)我们在写函数的时候把函数写在等号的左边,把自变量写在等号的右边例:y=2x-1 2. 函数的表示方法①列表法:通过列出自变量的值与对应函数值的表格来表示函数关系的方法叫列表法.优点:能明显地呈现出自变量与对应的函数值缺点:只能列出部分自变量与函数的对应值,难以从表格中看出自变量与函数之间的对应规律 ②解析法:用数学式子表示函数的方法叫解析法.优点:简明扼要,规范准确,便于分析推导函数的性质 缺点:有些函数关系,不能用解析式表示③图像法:对于一个函数,把自变量与函数的每组对应值作为点的横纵坐标在直角坐标系中画出来,由这些点组成的图形叫这个的图像. 优点:形象直观,能清晰呈现函数的一些性质缺点:所画的图像是近似的,局部的,从图像上观察的结果也是近似的【例1】对于圆的面积公式S =πR 2,下列说法中,正确的为( )A.π是自变量B.R 2是自变量C.R 是自变量D.πR 2是自变量【参考答案】C【例2】(湖北孝感)下列曲线中,表示y 不是x 的函数是( )【参考答案】B【例3】(下列变量之间的关系中,具有函数关系的有( )①三角形的面积与底边 ②多边形的内角和与边数 ③圆的面积与半径 ④y =12 x 中的y 与x A.1个B.2个C.3个D.4个【参考答案】C我来试一试!D.yx0 y xA.yxC. yOB.x1.轮子每分钟旋转60转,则轮子的转数n 与时间t (分)之间的关系是__________. 其中______是自变量,______是因变量.2. 某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为______.3. 已知矩形的周长为24,设它的一边长为x ,那么它的面积y 与x 之间的函数关系式为______.4. 下列图形中的曲线不表示y 是x 的函数的是( )5. 下列变量之间的关系:①三角形面积S 与它的底边a ;②x- y=3中的x 与y ;③y =23x 中的y 与x ; ④圆的面积S 与圆的半径r ,其中成函数关系的有( ) A .2个 B .3个 C .4个 D .1个6. 下列变量之间的关系不是函数关系的是( )A .长方形的宽一定,其长与面积 B.正方形的周长与面积 C .等腰三角形的底边与面积 D.球的体积与球的半径 【参考答案】1. n=60t ,t,n 2.y=0.2x 3.y=x(12-x) 4.C 5.B 6.C1. 函数实际上就是自变量与因变量之间的一种对应关系,概念比较抽象,不妨结合图象及初一下所学的知识(变量与求值)加以理解.2. 一般我们习惯上设y 为函数,但不表示其它字母不可以作为函数.自变量与函数值1、理解自变量并会求自变量的取值范围;2、理解函数值的概念并能根据题意求出自变量对应的函数值;知识结构1. 自变量取值范围①自变量的取值必须使含自变量的代数式都有意义.在初中范围内没有意义的三种情况是(1)00(2)0作分母(3)根号下为负 ②整式:其自变量的取值范围是全体实数.分式:其自变量的取值范围是使得分母不为0的实数二次根式下含自变量:其自变量的取值范围是使得被开方式为非负的实数。