数学苏教版必修1指数函数(教案)
- 格式:doc
- 大小:592.00 KB
- 文档页数:17
2.2.2 指数函数整体设计教材分析本节主要学习指数函数的概念、图象、性质及性质的简单应用.学习过程中,可以让学生通过画出具体的指数函数的图象,观察其特征,将表达图象特征的通俗语言,归纳、转化为数学符号语言,从而得出指数函数的性质.在这一过程中,体现数形结合的数学思想,用到了分类讨论的数学方法及从特殊到一般的类比研究的方法.所以本节的教学重点是指数函数的图象与性质.根据前面的分析,对本节的学习提出如下的建议:指导学生在学习过程中注意对列表计算结果的分析;让学生自己动手,通过画指数函数的图象,来归纳指数函数的性质.可以根据学生探索新知的情况,在适当时机,利用现代化的教学设备演示,帮助学生理解指数函数的性质.让学生在自主学习、探究活动中,体验数学发现和创造的历程,发展他们的创新意识,体会数学的美,同时激发学生对数学学习的兴趣.在应用性质的过程中,对学习有困难的学生,时时提醒他们注意底数a对指数函数的性质的影响.三维目标1.理解指数函数的概念和意义,能借助计算器或计算机画出具体的指数函数的图象,探索并理解指数函数的单调性的特殊点.2.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型.3.利用计算工具,比较指数函数增长差异;体会指数等不同函数的类型增长的含义.4.通过指数函数的图象和性质的教学,培养学生观察、分析、归纳等思维能力和数形结合的数学思想方法.5.利用计算机技术及相关的教学软件探讨指数函数的图象和性质,激发学生学习数学的兴趣,努力培养学生的创新意识,培养学生良好的心理素质,优化学生个性品质,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质.重点难点教学重点:1.指数函数的图象和性质.2.通过数形结合,利用图象来认识、掌握函数的性质,增强学生分析问题、解决问题的能力.教学难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质.课时安排3课时教学过程第一课时指数函数(一)导入新课设计思路一(实际问题导入)从我国辽东半岛普兰店附近的泥炭中发掘出的古莲子至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可以用放射性碳法:在动植物的体内都含有微量的放射性14C.动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变.经过5 730年(14C的半衰期),它的残余量只有原始量的一半.经过科学测定,若14C的原始量为1,则经过x年后的残留量为y=a x这里a为常数,0<a<1.设计思路二(情境导入)相传达依尔是国际象棋的发明人,同时也是古印度的宰相,达依尔聪明能干,国王要奖赏他,问他需要什么,达依尔就对国王说:“国王,你只需在象棋的第一格放1粒麦子,在第二格放2粒麦子,在第三格放4粒麦子,以后按比例每一格是前一格的两倍,一直放到第64格,这就是我的要求,如能满足我的这个要求,我就感激不尽了,其他的我就什么都不要了.”国王心想,这有什么难的,不就是一点麦子吗,满足他就是了,于是下令,按照宰相的要求去做,谁知道,全国的粮食用完了还不够.国王很是奇怪,他怎么也想不明白,那么你能用数学知识帮助国王解决这个问题吗?另外按宰相达依尔的要求共需多少粒小麦? 再看下面的一个例子: 背景(实际问题):某细胞分裂时,第一次由1个分裂成2个,第二次由2个分裂成4个,第三次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与分裂次数x 的函数关系式是什么?(答案:y=2x ) 推进新课 新知探究指数函数的概念根据上述例子,我们得到了形如y=a x 的函数,这些函数的自变量是指数,因此我们把这种函数称为指数函数.一般地,函数y=a x (a >0,a≠1)叫做指数函数,其中x 是自变量,x 的取值范围是R .为了对指数函数的形式有较为深刻的印象,不妨请同学思考下面的问题: ①函数y=x 2与函数y=2x 有什么区别?(答:函数y=x 2与函数y=2x 的区别是:函数y=2x 的指数为自变量,底数为常数,而函数y=x 2的底数为自变量,指数为常数)②为什么要规定底数a 是一个大于零且不等于1的常数?(答:如果a=0,⎪⎩⎪⎨⎧≤>;,0,0,0无意义时当恒等于时当xxa x a x如果a <0,例如y=(-2)x ,这时对于x=21,41,…,y=(-2)x 在实数范围内函数值不存在; 如果a=1,y=1x 是一个常数1,对于常数1没有研究的必要.为了避免上述情况,所以规定a >0,a≠1)下面我们来研究指数函数的性质:(在初中学生已经学过描点法画函数的图象,因此先让学生按照描点法的一般步骤:列表—描点—连接来画函数的图象)在同一坐标系中画出下列函数的图象: (1)y=10x ; (2)y=2x ; (3)y=(21)x .我们通过观察函数图象的特征来研究函数的性质:图象特征 函数性质a >1 0<a <1 A >1 0<a <1 向x 、y 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数图象都在x 轴上方 函数的值域为R + 函数图象都过定点(0,1) a 0=1自左向右看,图象逐渐上升 自左向右看,图象逐渐下降增函数 减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1x >0,a x >1 x >0,a x <1在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1x <0,a x <1 x <0,a x >1图象上升趋势是越来越陡 图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快 函数值开始减小极快,到了某一值后减小速度较慢利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,f(x)=a x (a >0且a≠1)值域是[f(a),f(b)]或[f(b),f(a)]; (2)若x≠0,则f(x)≠1;f(x)取遍所有正数当且仅当x ∈R ; (3)对于指数函数f(x)=a x (a >0且a≠1),总有f(1)=a ; (4)当a >1时,若x 1<x 2,则f(x 1)<f(x 2). 应用示例思路1例1 指数函数f(x)=a x (a >0,且a≠1)的图象经过点(3,π),求f(0)、f(1)、f(-3)的值.分析:要求f(0)、f(1)、f(-3)的值,我们需要先求出指数函数f(x)=a x (a >0,且a≠1)的解析式,也就是要先求a 的值.根据函数图象经过定点(3,π)这一个条件,可以求得底数a 的值. 解:设f(x)=a x (a >0,且a≠1),因为f(x)=a x (a >0,且a≠1)的图象经过点(3,π), 所以f(3)=π,即a 3=π,解得a=π31, 于是f(x)=π3x ,所以,f (0)=π0=1,f(1)=π31=3π,f(-3)=π-1=π1. 点评:从本题看出,要想确定一个指数函数,只需一个条件即可,因为表达式中只有1个参数a.例2 比较下列各组数中两个值的大小.(1)1.52.5,1.53.2; (2)0.5-1.2,0.5-1.5; (3)1.50.3,0.81.2分析:比较数的大小,可以利用函数的单调性,所给的几组数都是指数式,所以考虑利用指数函数的单调性来解.解:(1)考察指数函数y=1.5x ,因为1.5>1,所以指数函数y=1.5x 在R 上是单调增函数.又因为2.5<3.2,所以1.52.5<1.53.2.(2)考察指数函数y=0.5x ,因为0<0.5<1,所以指数函数y=0.5x 在R 上是单调减函数.又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.(3)由指数函数的性质知1.50.3>1.50=1,0.81.2<0.80=1,所以1.50.3>0.81.2.点评:比较两数的大小,一般方法是将其转化为同一函数的两个不同的函数值,利用函数的单调性进行比较,如果出现不能直接看成同一函数的两个值时,通常可在这两个数之间找一个中间值比如数1,然后将这两个数与1进行比较,从而比较出两个数的大小. 例3 (1)已知5x ≥50.5,求实数x 的取值范围; (2)已知0.25x <16,求实数x 的取值范围.分析:因为5x 、50.5的底数相同,而0.25x 、16可以将底数化为相同的底数0.25,所以可以考虑用指数函数的单调性来求解.解:(1)因为5>1,所以指数函数f(x)=5x 在R 上是单调增函数.由5x ≥50.5,可得x≥0.5,即x 的取值范围为[0.5,+∞).(2)因为0<0.25<1,所以指数函数f(x)=0.25x 在R 上是单调减函数. 因为16=(41)-2=0.25-2,所以0.25x <0.25-2,由此可得x >-2,即x 的取值范围为(-2,+∞). 点评:在解指数不等式(方程)时,可以考虑运用指数函数的单调性来解.对于(2)我们还可以将底数化为4来解.可参照课本第51页例2. 例4 求下列函数的定义域和值域: (1)y=241-x ;(2)y=(32)-|x|;(3)y=4x +2x+1+1;④(4)=10112-+x x .分析:由于指数函数y=a x (a >0,且a≠1)的定义域为R ,所以函数y=a f(x)与函数f(x)的定义域相同,利用指数函数的单调性求值域.解:(1)令x-4≠0,得x≠4,∴定义域为{x|x ∈R ,且x≠4}.∵41-x ≠0,∴241-x ≠1,∴y=241-x 的值域为{y|y >0,且y≠1}.(2)定义域为R . ∵|x|≥0,∴y=(32)-|x|=(23)|x|≥(23)0=1,故y=(32)-|x|的值域为{y|y≥1}. (3)定义域为R .∵y=4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2,且2x >0,∴y >1. 故y=4x +2x+1+1的值域为{y|y >1}. (4)令12+x x ≥0,得11+-x x ≥0,解得x <-1或x≥1,故y=10112-+x x 函数定义域为{x|x <-1或x≥1},值域为{y|y≥1,且y≠10}.点评:求与指数函数有关的函数的值域时,要注意充分考虑并利用指数函数本身的要求和所具有的性质,例如指数函数的单调性等.例5 作出下列函数的图象,并说明它们之间的相互关系. (1)y=3x ;(2)y=3x-1;(3)y=3x+1.分析:画函数的图象常用的方法是描点法,描点法的一般步骤是:列表—描点—连线. 当我们熟悉了一些基本的初等函数的图象特征后,可以考虑运用图象的变换的方法来实现作函数的图象.解:运用描点法可以作出函数(1)y=3x ;(2)y=3x-1;(3)y=3x+1的图象,如右图所示.由图象可以得知:函数y=3x+1的图象是由函数y=3x 的图象向左平移一个单位得到的;函数y=3x-1的图象是由函数y=3x 的图象向右平移一个单位得到的.点评:本题主要考查函数的图象及其平移变换,其变换的一般规律是:设a >0. (1)将函数y=f(x)的图象向左平移a 个单位,就得到函数y=f(x+a)的图象; (2)将函数y=f(x)的图象向右平移a 个单位,就得到函数y=f(x-a)的图象; (3)将函数y=f(x)的图象向下平移a 个单位,就得到函数y=f(x)-a 的图象; (4)将函数y=f(x)的图象向上平移a 个单位,就得到函数y=f(x)+a 的图象. 简单地说就是“左加右减,上加下减”.拓展思维:函数图象的变换除了平移变换外还有其他的变换,例如对称变换等,对于对称变换:一般地,函数y=f(x)的图象与函数y=f(-x)的图象关于y 轴对称;函数y=f(x)的图象与函数y=-f(x)的图象关于x 轴对称,函数y=f(x)的图象与函数y=-f(-x)的图象关于原点对称.思路2例1 指数函数y=f(x)的图象经过点(π,e),求f(0)、f(1)、f(-π)的值. 分析:要求函数值,只要求出函数的解析式就可以了.解:设y=f(x)=a x (a >0,且a≠1),因为y=f(x)的图象经过点(π,e),所以e=a π,得a=e π1,于是f(x)=(e π1)x .所以,f(0)=(e π1)0=1,f(1)=(e π1)1=e π1,f(-π)=(e π1)-π=e1. 例2 将下列各数由小到大排列起来:(-3)32,(32)21,(32)31,(-32)32-,(-3)31,(31-)3,(23)34,(21-)-2.分析:这些数按从小到大的顺序排列起来,最好的方法是先将这些数进行分类:首先可考虑是正数还是负数,如果是负数,则再进一步分成小于-1还是介于-1与0之间,是正数的再进一步分成0与1之间的及大于1的,然后再将以上各类数中的每一类数作进一步的比较,最后将它们由小到大排列起来.解:在所给的数中,负数有:(-3) 31,(31-)3,且(-3) 31<-1,-1<(31-)3<0,所以(-3)31<(31-)3<0. 正数有:(-3)32,(32)21,(32)31,(-32)32-,(23)34,(21-)-2,且(-3)32=332,(32)21,(32)31,(-32)32-=(23),(23)34,(21-)-2=(-2)2=4,其中大于0而小于1的有:(32)21,(32)31=(23)32,且(32)21<(32)31,大于1的有:(-3)32=332,(-32)32-=(23)32,(23)34,(21-)-2=4.综上所述,所给的数由小到大排列的顺序为:(-3)31<(31-)3<(32)21<(32)31<(-32)32-<(23)34<(-3)32<(21-)-2.点评:多个幂值的比较大小,常常采取先分组再比较的方法,即先将所给的各个数值进行分类,在每类数值中比较大小,若底数相同可利用指数函数的单调性进行比较;若底数、指数都不相同时,可以利用中间量搭建“桥梁”进行比较.若数值中含有字母,应对所含字母的取值进行讨论.例3 求下列函数的定义域和值域:(1)y=xx 212+;(2)y=2713-x. 解:(1)函数y=x x212+的定义域为R .∵y=xx212+,∴(y-1)2x =-y ,即(1-y)2x =y , 显然,y≠1,∴2x =y y-1>0,∴函数y=xx 212+的值域为(0,1). (2)∵3x -271≥0,∴3x ≥3-3,∴x≥-3.∴函数y=2713-x的定义域为{x|x≥-3|,函数y=2713-x值域为[0,+∞).点评:一般来说,函数y=a f(x)的定义域就是f(x)的定义域,其值域不但要考虑f(x)的值域,还要考虑a >1还是0<a <1,例如f(x)∈[-4,+∞)时,若a >1,则a f(x)∈[a -4,+∞),若0<a <1,则a f(x)∈(0,a -4]. 例4 利用函数f(x)=(21)x的图象,作出下列函数的图象: (1)f(x-1);(2)f(x+1);(3)f(x)-1. 分析:作图前先分别探究每一个函数的定义域和值域以及单调性,再研究探索各个函数的图象间是否有对称性及平移的相互关系,从而掌握图象的大致变化趋势,利用函数图象的相应变化,作出相应的函数图象. 解:各函数的图象如下图:点评:利用熟悉的函数图象作图,主要是利用图象的平移变换,平移需分清平移的方向以及平移的量,即平移多少个单位. 知能训练课本第52页练习1、2、3、4、5. 解答:1.C(提示:0<a-1<1).2.(1)3.10.5<3.12.3;(2)(32)-0.3>(32)-0.24; (3)2.3-2.5<0.2-0.1(提示:2.3-2.5<2.30=1,0.2-0.1>0.20=1).3.(1){x|x≠0,x ∈R };(2){x|x≥0,x ∈R }.4.(1)x >3;(2)x <-3;(3)x <21;(4)x <0. 5.A(提示:y=2-x ,即y=(21)x ). 点评:进一步熟练掌握指数函数的图象及其性质的应用. 课堂小结指数函数是中学阶段所学的重要的初等函数之一,因此在学习中要特别注意,尤其是指数函数是新接触的函数,所以要特别加以重视.本节课的重点内容是指数函数的定义、图象和性质,要求能熟记指数函数的图象特征以及指数函数的基本性质,这是学好指数函数的关键.除此之外,还要学会根据指数函数的图象特征来探究指数函数的性质,并能根据实际需要,对指数函数的底数a 分两种情况加以讨论,体会其中的数形结合的思想和分类讨论的思想,通过图象变换的讨论研究,懂得世界上的万事万物之间存在必然的、内在的联系,因此,在研究图象的平移和对称变换的时候,注意对变换的方法和规律的总结,并能正确地运用这些方法和规律解决有关函数图象的问题,加深对指数函数的图象和性质的认识和理解. 作业一、习题2.2(2)第1、2、4、5题. 二、阅读课本第49页至第53页内容.设计感想在设计本节课的教学过程时,围绕以下几点进行:一是以《新课程标准》的基本理念为指导,着眼于培养学生自主学习的能力,因此在设计教学过程时,注意让学生多动手实践,使学生从动手操作的过程中体会函数问题研究的方法和过程;二是从学生现有的认知基础出发,在课堂教学中以本节课的知识结构为主线,充分发挥学生学习的主观能动性,让学生自主探索并获取新的知识和应用新的知识解决实际问题;三是采用层层深入的方式,分散学生学习时可能遇到的难点;四是教学中注意讲练结合,借助多媒体手段进行多方位教学,从而实现教学方式多样化,从实例出发,引用典故,激发学生的学习兴趣,使教与学做到有机结合,使课堂教学达到最佳状态.(设计者:赵家法)第二课时 指数函数(二)导入新课设计思路一(复习导入)在上一节课中,我们学习了指数函数的概念、图象以及性质,下面我们一起来回顾一下相关的内容.(由学生回答,再由教师归纳总结) 设计思路二(习题导入) 请同学们完成下列习题:1.形如y=a x 的函数叫做______________函数,其中底数a 满足的条件是_____________;2.已知函数y=(m 2-3m-3)·3x 为指数函数,则m=_________;3.若-1<x <0,则2x ,(21)x,0.2x 由小到大的排列顺序是__________. 答案:1.指数,a >0,且a≠1;2.m=-1或4;3.2x <(21)x<0.2x . 思考如何判断函数y=1212-+x x 的奇偶性以及单调性?推进新课 新知探究复习指数函数的相关知识: 1.指数函数的定义. 2.指数函数的性质:指数函数y=a x 的图象和性质a >10<a <1图象性质(1)定义域:R (2)值域:(0,+∞) (3)图象过定点(0,1)(4)在(-∞,+∞)上是单调增函数 在(-∞,+∞)上是单调减函数应用示例思路1例1 求函数y=(21)232+-x x 的定义域、值域及单调区间.分析:这是一个求复合函数的单调性的问题,对于这类问题必须弄清楚函数是由哪几个函数复合而成,这些函数的单调性如何,这样才能正确求解.解:函数y=(21)232+-x x 的定义域为R . 设u=x 2-3x+2=(x-23)2-41,所以u=x 2-3x+2的值域为[-41,+∞),减区间为(-∞,23],增区间为[23,+∞).又因为函数y=(21)u 是减函数,所以函数y=(21)232+-x x 的值域为(0,42],单调减区间为[23,+∞),单调增区间为(-∞,23].点评:对于形如y=a g(x)(a >0,a≠1)的函数,根据例题可以得出以下结论:①函数y=a g(x)的定义域与g(x)的定义域相同;②应先求函数的g(x)值域,再根据指数函数的单调性及其值域来求y=a g(x)(a >0,a≠1)的值域;③对于函数y=a g(x)(a >0,a≠1)的单调性有:当a >1时,函数y=a g(x)(a >0,a≠1)的单调性与函数g(x)的单调性相同;当0<a <1时,函数y=a g(x)(a >0,a≠1)的单调性与函数g(x)的单调性相反. 例2 设a 是实数,f(x)=a-122+x(x ∈R ),(1)试证明:对于任意实数a ,函数f(x)为增函数;(2)试确定a 值,使f(x)为奇函数. 分析:题中函数f(x)=a-122+x (x ∈R )的形式较为复杂,而题目要求证明函数的单调性和奇偶性,因此,只要严格按照函数的单调性、奇偶性的定义进行证明就能证得结论. (1)证明:设x 1,x 2∈R ,且x 1<x 2,则f(x 1)-f(x 2)=(a-1221+x )-(a-1222+x )=1222+x -1221+x =)12)(12()22(22121++-x x x x ,由于指数函数y=2x 在R 上是增函数,且x 1<x 2,所以12x<22x,即12x-22x<0, 又由2x >0得12x+1>0,22x+1>0,所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). 因为此结论与a 取值无关,所以对于a 取任意实数,f(x)为增函数.(2)解:若f(x)为奇函数,则f(-x)=-f(x)即a-122+-x =-(a-122+x ),变形得:2a=xx x2)12(22+•-+122+x =12)12(2++x x , 解得:a=1.所以当a=1时,f(x)为奇函数.点评:(1)在题(1)的证明过程中,在对作差的结果进行正、负号判断时,利用了指数函数的值域及单调性.这也提醒我们在解这类题目时,注意运用已经掌握的函数的奇偶性及单调性来解题.(2)解题时应要求学生注意不同题型采用不同的解题方法.如题(2),此题并非直接确定a 值,而是由已知条件逐步推导得a 值. 例3 设函数f(x)=1+11-x ,g(x)=f(2|x|).(1)求函数f(x)和g(x)的定义域;(2)判断函数f(x)和g(x)的奇偶性;(3)求函数g(x)的单调递增区间.分析:对于函数g(x),它是一个由f(x)与x=2|x|复合而成的函数,因此,可以通过这种复合关系得到函数g(x)的解析式,从而可以解决相应的问题;函数的单调区间也可以考虑用定义解决.解:(1)由x-1≠0得x≠1,所以函数f(x)的定义域为(-∞,1)∪(1,+∞). 因为f(x)=1+11-x ,所以g(x)=f(2|x|)=1+121||-x , 由于2|x|-1≠0,所以x≠0,所以函数g(x)的定义域为(-∞,0)∪(0,+∞).(2)因为函数f(x)的定义域为(-∞,1)∪(1,+∞),它不关于原点对称,所以f(x)既不是奇函数也不是偶函数,即f(x)是非奇非偶函数.因为函数g(x)的定义域为(-∞,0)∪(0,+∞),它关于原点对称,且 g(-x)=1+121||--x =1+121||-x =g(x),所以g(x)是偶函数. (3)设x 1、x 2∈(0,+∞),且x 1<x 2,则 g(x 1)-g(x 2)=(1+121||1-x )-(1+121||2-x )=121||1-x -121||2-x ==---12112121x x)12)(12(222112---x x x x . 因为0<x 1<x 2,所以22x-12x>0,12x-1>0,22x-1>0,所以g(x 1)-g(x 2)>0,所以g(x)在(0,+∞)上是减函数,又因为g(x)是偶函数,所以g(x)在(-∞,0)上是增函数.所以g(x)的单调增区间是(-∞,0).点评:(1)研究函数的单调性和奇偶性,不能忽视函数的定义域,特别是在研究函数的奇偶性时,如果函数的定义域不关于原点对称,则这个函数必定是非奇非偶函数;(2)本题(3)的解答过程中,在研究函数的单调性时,巧妙运用了函数的奇偶性,起到了事半功倍的效果;(3)本题是一个比较综合的问题,我们在解决这类问题时,要紧紧抓住题目条件,联系相关定义、概念以及公式等,环环相扣,步步为营,最终自然而然地解决问题. 例4 已知函数f(x)=x(131-x+21). (1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)证明:函数f(x)在定义域上恒大于0.分析:本题中求函数的定义域从分母不为0入手;对于函数奇偶性的讨论可以直接由函数奇偶性的定义来判断.解:(1)定义域为{x|x≠0}.(2)因为f(x)=x(131-x +21),所以f(x)=x(131-x +21)=13132-+•x x x .因为f(-x)=131323131213132-+•=-+•-=-+•---x x x x x x x x x =f(x), 所以函数f(x)为偶函数.(3)当x >0时,3x >1,所以3x -1>0.所以131-x >0,从而有131-x+21>21.所以x(131-x +21)>2x >0,即当x >0时,f(x)>0; 当x <0时,1>3x >0,所以0>3x -1>-1.所以131-x <-1,从而有131-x +21<21-. 所以x(131-x +21)>-2x >0,即当x <0时,f(x)>0. 综上所述,函数f(x)在定义域上恒大于0.点评:(1)判断函数的奇偶性可以直接运用定义来判断,也可以运用函数奇偶性定义的等价形式:若函数f(x)满足f(-x)+f(x)=0,则函数f(x)为奇函数;函数f(x)满足f(-x)+f(x)=0,则函数f(x)为偶函数.因此对于本题中的(2)还有以下解法:因为f(x)-f(-x)=x(131-x +131--x +1)=x(1331--x x +1)=0. 所以得f(-x)=f(x),所以f(x)是偶函数.(2)证明函数在定义域上恒大于0的问题,可以运用分类讨论来逐步求解,也可以转化为先证明函数f(x)在(0,+∞)上值域为(0,+∞),再根据函数是偶函数得到函数f(x)在(-∞,0)上值域为(0,+∞),从而证得结论.思路2例1 对于函数f(x)=(31)122--x x ,(1)求函数f(x)的定义域、值域; (2)确定函数f(x)的单调区间.分析:这是一个复合函数的问题,因此,可以将函数分解成为我们熟悉的函数如二次函数、指数函数、对数函数等,利用这些熟悉的函数相应的性质来解决问题.解:函数f(x)=(31)122--x x 可以看成是由函数u =x 2-2x -1与函数y =(31)u 复合而成. (1)由u =x 2-2x -1=(x -1)2-2,当x ∈R 时,u≥-2,此时函数y =(31)u 总有意义,所以函数f(x)定义域为R ;又由u≥-2,所以0<(31)u ≤9,所以原函数的值域为(0,9]. (2)因为函数u =x 2-2x -1在[1,+∞)上递增, 所以对于任意的1≤x 1<x 2都有u 1<u 2,所以有(31)1u >(31)1u ,即y 1>y 2. 所以函数f(x)=(31)122--x x 在[1,+∞)上递减. 同理可得函数f(x)=(31)122--x x 在(-∞,1]上递增. 点评:形如y =a f(x)(a >0,a≠1)的函数有如下性质:(1)定义域与函数f(x)定义域相同;(2)先确定函数u =f(x)的值域,然后以u 的值域作为函数y =a u (a >0,a≠1)的定义域求得函数y =a f(x)(a >0,a≠1)的值域;(3)函数y =a f(x)(a >0,a≠1)的单调性,可以由函数u =f(x)与y =a u (a >0,a≠1)按照“同增异减”即“单调性相同为增函数,单调性相异为减函数”的原则来确定.(4)从本题中的解答过程,可以体会到换元法在解决复合函数问题时的作用.例2 若函数f(x)=1212---•x x a a 为奇函数, (1)确定a 的值;(2)求函数f(x)的定义域;(3)求函数f(x)的值域;(4)讨论函数f(x)的单调性.分析:这是一个研究函数的定义域、值域、单调性、奇偶性的问题,可以由函数的单调性、奇偶性的定义来解决相应的问题.解:先将函数f(x)=1212---•x x a a 化简为f(x)= a-121-x . (1)由奇函数的定义,可得f(-x)+f(x)=0,即a-121--x +a-121-x =0,因为2a +x x 2121--=0,所以a =-21. (2)因为f(x)=-21-121-x ,所以2x -1≠0,即x≠0. 所以函数f(x)=-21-121-x 的定义域为{x|x≠0}. (3)方法一:(逐步求解法)因为x≠0,所以2x -1>-1.因为2x -1≠0,所以0>2x -1>-1或2x -1>0.所以-21-121-x >21,-21-121-x <-21, 即函数的值域为(-∞,21-)∪(21,+∞). 方法二:(利用函数的有界性)由y=f(x)=-21-121-x ≠-21,可得2x =2121+-y y . 因为2x >0,所以2121+-y y >0,可得y >21或y <-21,即f(x)>21或f(x)<-21, 所以函数的值域为(-∞,21-)∪(21,+∞). (4)当x >0时,设0<x 1<x 2,则f(x 1)-f(x 2)=a-1211-x -(a-1212-x )=1212-x -1211-x =)12)(12(221221---x x x x . ∵0<x 1<x 2,∴1<12x <22x.∴12x -22x <0,12x -1<0,22x -1<0.∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),因此f(x)=-21-121-x 在(0,+∞)上递增. 同样可以得出f(x)=-21-121-x 在(-∞,0)上递减. 点评:本题是一道函数综合题,需利用函数的有关性质,如求函数的定义域、值域,判断函数的奇偶性、单调性等知识.在判断函数的单调性时,我们也可以采用复合函数单调性的判断方法.例3 若不等式3x +6x +9x ·a >-1对(-∞,1]上任意的x 恒成立,求实数a 的取值范围.分析:本题可以将不等式变形为a >f(x)或a <f(x)的形式,因为所给不等式恒成立,因此,实数a 的取值范围为a >[f(x)]max 或a <[f(x)]min ,这样就将问题转化为求f(x)的最大值或最小值.解:将不等式3x +6x +9x ·a >-1化为a >-[(31)x +(32)x +(91)x ], 因为函数y=(31)x ,y=(32)x ,y=(91)x 在(-∞,1]上都是减函数,所以函数y=-[(31)x +(32)x +(91)x ]在(-∞,1]上是增函数.所以当x=1时,函数y=-[(31)x +(32)x +(91)x ]有最大值910-,所以,所求实数a 的取值范围为a >910-. 点评:(1)在解决有关恒成立问题时的常用方法之一是“变量分离法”,即将变量x 与参数a 分离后分别放在不等式或等式的两边,然后,再来求相关函数的最值.(2)在求函数的最值时,运用函数的单调性来求解是常用的方法之一.例4 已知函数f(x)=a x +12+-x x (a >1).(1)证明:函数f(x)在(-1,+∞)上为增函数;(2)证明:方程f(x)=0没有负数根.分析:要证明函数在某一个区间上的单调性,常用的方法是应用函数单调性的定义来证明.要证明方程没有负数根,可以先假设方程存在负数根,然后根据题目条件推出矛盾,从而证得结论.证明:(1)设x 1、x 2∈(-1,+∞),且x 1<x 2,f(x 2)-f(x 1)=)1)(1()(31212121211221112++-+-=+---+-+x x x x a a x x a x x a x x x x , 因为x 1<x 2,a >1,所以12x x a a >,又因为x 1、x 2∈(-1,+∞),所以x 2+1>0,x 1+1>0.从而有f(x 2)-f(x 1)>0,所以函数f(x)在(-1,+∞)上为增函数.(2)设x 0(x 0<0)是方程f(x)=0的根,则0x a +1200+-x x =0, 即0x a =1200+-x x .因为x 0<0,所以0x a ∈(0,1). 又因为1200+-x x =130+x -1,若x 0<-1,则130+x <0,所以130+x -1<-1,即1200+-x x <-1; 若-1<x 0<0,则0<x 0+1<1,所以130+x >3,即1200+-x x >2. 所以1200+-x x ∈(-∞,-1)∪(2,+∞). 综上所述,满足0x a =1200+-x x 的x 0不存在,即方程f(x)=0没有负数根. 所以,方程f(x)=0没有负数根.点评:(1)对于函数单调性的证明或判断,利用函数单调性的定义是常用的证明或判断方法,另外,还有其他的方法,例如可以通过复合函数来判断或证明.(2)对于方程是否在某一个区间的根的存在性的判断,除了用本题的方法之外,还可以运用函数的单调性求出区间上的最值的方法来解决.知能训练1.已知函数f(x)是偶函数,且当x >0时,f(x)=10x ,则当x <0时,f(x)等于( )A.10xB.10-xC.-10xD.-10-x解答:B2.已知函数f(x)=a x 在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A.251+B.251+-C.251±D.215+ 解答:D3.函数y=2x 与y=x 2的图象的交点个数为( )A.0B.1C.2D.3解答:D4.函数y=π-|x|是( )A.奇函数,且在(-∞,0]上是增函数B.偶函数,且在(-∞,0]上是减函数C.奇函数,且在[0,+∞)上是增函数D.偶函数,且在[0,+∞)上是减函数解答:D5.函数f(x)=(31)22++-x x 的单调增区间为____________. 解答:[21,2] 6.函数y=(41)2122+-x x 的值域为____________. 解答:(0,2]7.已知函数y=a+141+x 为奇函数,则a=____________.解答:21- 点评:进一步掌握指数函数的图象与性质.课堂小结1.指数函数y=a x (a >0,a≠1)是在定义域上的单调函数,复合函数y=a u [其中u 是关于x 的函数u(x)]的单调性,由函数y=a u 和u=u(x)的单调性综合确定.2.通过观察指数函数y=a x (a >0,a≠1),不难发现:当⎩⎨⎧<<<<⎩⎨⎧>>10,101,1y a y a 或时,均有x >0;当⎩⎨⎧<<>⎩⎨⎧><<10,101,10y y a 或时,均有x <0.这一性质可以归结为“底幂同,大于零;底幂异,小于零”.熟悉这一性质,对于解决有关指数函数的问题非常有用.作业课本第55页习题2.2(2)第6、7、8题.设计感想本节课的内容主要是结合指数函数的性质来研究一些复合函数的性质,譬如研究复合函数的单调性和奇偶性,研究复合函数的单调区间以及函数的最值等等.其中复合函数的性质对于学生来说是难点,因此,在研究复合函数的性质时,注意归纳总结.一般地,函数y=f(u)和u=g(x),设函数y=f[g(x)]的定义域为A ,如果在A 或A 的某个子区间上函数y=f(u)(称为外函数)与u=g(x)(称为内函数)的单调性相同,则复合函数y=f[g(x)]在该区间上为递增函数,如果单调性相反,则复合函数y=f[g(x)]在该区间上为递减函数.这一个结论可以简记为“同增异减”.另外,在研究复合函数的性质时必须在函数y=f[g(x)]的定义域内研究.(设计者:王银娣)第三课时 指数函数(三)导入新课设计思路一(实际问题导入)当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5 730年衰减为原来的一半.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系P=(21)5730t,考古学家根据上面的这个式子依据生物体内的碳14含量P 的值,可以知道生物死亡的年数t.式子P=(21)5730t 是一个生物体内碳14含量P 关于生物死亡年数t 的函数,而且是一个指数函数形式的函数.这一节课我们来研究与指数函数相关的实际问题,也就是指数函数的实际应用问题.设计思路二(情境导入)请看下面的问题:某厂引进一个产品的生产线,第一个月这种产品的产量是100件,由于技术的不断熟练和更新,第二个月这种产品的产量是150件,第三个月这种产品的产量是225件,按照这样的生产速度,问第十个月这种产品的产量是多少件?问题的解决:因为第一个月这种产品的产量是100件,第二个月这种产品的产量是150件,第三个月这种产品的产量是225件,所以,可以得出这样的结论:后一个月的产量是前。
3.1.2指数函数(1)新课引入:设计一个游戏情境,学生分组,通过动手折纸,观察对折的次数与所得的层数之间的关系。
授课过程:一、1、创设情境,形成概念问题:庄子曰:一尺之棰,日取其半,万世不竭。
其含义是什么呢?能否给出表达式?问题:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……如果分裂一次需要10min,那么,一个细胞1h后分裂成多少个细胞?教师给出指数函数的定义,即形如 (a>0且a≠1)的函数称为指数函数,定义域为R。
如:函数y=2xy=(1/2)x学生分组,动手折纸,观察对折的次数与所得的层数之间的关系为学生分组讨论,先分析其含义,再转化为现代语言,建立数学模型,给出结论。
学生思考后回答并说明。
函数解析式是什么?2()xy x N=∈学生理解概念,并展开讨论,为什么定义中规定a>0且a≠1呢?(1)若a<0, ax不一充分发挥学生的主体作用,发展学生的个性,培养学生自主学习的能力。
在学生动手操作的过程中激发学生学习热情和探索新知的欲望。
让学生动手操作,动脑思考,培养学生勇于探索的精神。
进一步探索问题,发现规律。
对a的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时为后面研究函数的图象和第一次第二次第三次第四次y=10x都是指数函数,它们的定义域都是实数集R,提醒学生指数函数的定义是形式定义,如y=3×2x y=10x+5不是指数函数定有意义.如a=-2,当x=1/2,(2)若a=0,则当x>0时,ax=0; x≤0时,ax无意义.(3)若a=1,则对于任意x∈R,ax=1为常量。
性质埋下了伏笔。
在学生判断的过程中教师给予适时指导,学生体会哪些是指数函数的过程也是学生头脑中不断完善对定义理解的过程。
2、发现问题,探求新知(1)怎样得到指数函数的图像?(2)指数函数图像有什么特点?(3)通过图像,你能发现指数函数的那些性质?教师在用电子表格软件EXCEL的图表演示给学生。
指数函数(1)【教学目标】 一、知识与技能理解根式的概念,掌握n 次方根的性质 二、过程与方法通过探究、思考,培养学生观察能力和理性思维能力 三、情感、态度与价值观通过学习根式的概念,使学生认清基本概念的来龙去脉,加深对认识事物一般规律的理解和认识 【教学重点】根式的概念和n 次方根的性质 【教学难点】根式概念的理解;当n 是偶数时,||a a n n =(因为n n a 总是一个非负数)这一性质的理解【教学过程】 一、创设情景填空(1)*)nn aa a a n N =⋅∈个(; a 0=1(a )0≠; n naa1=-)N n ,0a (*∈≠ (2)m n m n a a a +⋅= (m,n ∈Z); ()m n mn a a = (m,n ∈Z); ()n n n ab a b =⋅ (n ∈Z) (3)_____9=; -_____9=; ______0=(4))0a _____()a (2≥=; ________a 2= 二、新课1.一般地,如果一个实数x 满足______________________那么,x 为a 的________________。
2.当n 为奇数时,正数的n 次方根是一个 ,负数的n 次方根是一个当n 为偶数时,正数的n 次方根有两个,它们是 ,这时正数a 的正n 次方根用 表示,负的用 表示,0的任何次方根都是 , 没有偶次方根。
3.式子 叫做根式,其中 叫做根指数, 叫做被开方数。
4.规定正分数指数幂:=nm a,负分数指数幂:=-nm a5.指数幂的性质(其中s,t ∈Q,a>0,b>0)=⋅t s a a ,=t s a )( ,=t ab )(三、例题分析 例1、求下列各式的值(1)2)5( (2)33)2(- (3)44)2(-(4)2)3(π- (5)44)1(a a -+说明:①a a nn =)(,即一个数先开方,再乘方(同次),结果仍为被开方数②⎩⎨⎧=为偶数为奇数n a n a a nn|,|,例2、求值(1)21100 (2)328 (3)239-(4)43)811(-(5)5.02120)01.0()412(2)532(-⋅+--例3、 用分数指数幂的形式表示下列各式(a>0)(1)a a 2 (2)a a (3)323a a ⋅例4 化简(1)53542156585)(b a b a ÷÷ (2)313373329a a a a ⋅÷--例5 计算625625++-例6 已知,32121=+-aa 求下列各式的值(1)1-+a a (2)22-+a a (3)21212323----aa a a四、课堂小结1.理解根式概念的基础上,正确运用根式的运算性质解题2.理解分数指数幂的意义,掌握分数指数幂与根式的互化,熟练运用有理指数幂的运算性质。
§2.2.2指数函数(一)教学目标1.掌握指数函数的概念,并能根据定义判断一个函数是否为指数函数.2.能根据指数函数的解析式作出函数图象,并根据图象给出指数函数的性质.3.能根据单调性解决基本的比较大小的问题. 教学重点指数函数的定义、图象、性质 教学难点指数函数的描绘及性质 教学过程一.问题情景问题1.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…,一个这样的细胞分裂x 次以后,得到的细胞个数y 与x 有怎样的关系.问题2.有一根1米长的绳子,第一次剪去绳长的一半,第二次再剪去剩余绳子的一半,…,剪去x 次后绳子剩余的长度为y 米,试写出y 与x 之间的关系.二.学生活动1.思考问题1,2给出y 与x 的函数关系?2.观察得到的函数2x y =,12xy ⎛⎫= ⎪⎝⎭与函数2y x =的区别.3.观察函数2xy =,12xy ⎛⎫= ⎪⎝⎭与xy a =的相同特点.三.建构数学(用投影仪,把两个例子展示到黑板上)[师]:通过问题1,2的分析同学们得出y 与x 之间有怎样的关系?[生1]:分裂一次得到2个细胞,分裂两次得到4(22=)个细胞,分裂三次得到8(32=),所以分裂x 次以后得到的细胞为2x个,即y 与x 之间为y 2x =.[生2]:第一次剩下绳子的12,第二次剩下绳子的14(212=),第三次剩下绳子的18(312=),那么剪了x 次以后剩下的绳长为12x 米,所以绳长y 与x 之间的关系为12xy ⎛⎫= ⎪⎝⎭. (学生说完后在屏幕上展示这两个式子) [师]:这两个关系式能否都构成函数呢?[生]:每一个x 都有唯一的y 与之对应,因此按照函数的定义这两个关系都可以构成函数.[师]:(接着把2y x =打出来)既然这两个都是函数,那么同学们观察我们得到的这两个函数y 2x =,12xy ⎛⎫= ⎪⎝⎭在形式上与函数2y x =有什么区别.(引导学生从自变量的位置观察).[生]:前两个函数的自变量都在指数的位置上,而2y x =的自变量在底上.[师]:那么再观察一下y 2x =,12xy ⎛⎫= ⎪⎝⎭与函数xy a =有什么相同点?[生]:他们的自变量都在指数的位置,而且他们的底都是常数.[师]:由此我们可以抽象出一个数学模型xy a =就是我们今天要讲的指数函数.(在屏幕上给出定义)定义:一般地,函数xy a =(0,1a a >≠) 叫做指数函数,它的定义域是R .概念解析1:[师]:同学们思考一下为什么x y a =中规定0,1a a >≠?(引导学生从定义域为R 的角度考虑).(先把0a =,0a <,1a =显示出来,学生每分析一个就显示出一个结果)[生]:⑴若0a =,则当0x =时,00x a = 没有意义.⑵若0a <,则当x 取分母为偶数的分数时,没有意义.例如:12(2)-=⑶若1a =,则1xa =,这时函数就为一个常数1没有研究的价值了. 所以,我们规定指数函数的底0,1a a >≠.[师]:很好,请坐.我们既然知道了底的取值范围,那么看这样一个问题:问题1.已知函数(32)xy a =-为指数函数,求a 的取值范围.(屏幕上给出问题)[生]:由于32a -作为指数函数的底因此必须满足:232033210a a a a ⎧->>⎧⎪⇒⎨⎨-≠⎩⎪≠⎩即2|03a a a ⎧⎫>≠⎨⎬⎩⎭且 概念解析2:[师]:我们知道形如xy a =(0,1a a >≠)的函数称为指数函数.通过观察我们发现:⑴x a 前没有系数,或者说系数为1.既1xa ⋅; ⑵指数上只有唯一的自变量x ;⑶底是一个常数且必须满足:0,1a a >≠.那么,根据分析同学们判断下列表达式是否为指数函数?(在屏幕上给出问题2)问题2.⑴(0.2)x y =,⑵(2)x y =-,⑶xy e =,⑷1()3xy =⑸1xy =,⑹23xy =⋅,⑺3xy -=,⑻22xxy +=[生1]:(答)⑴⑶⑷为指数函数.⑵⑸⑹⑺⑻不是.[生2]: 我不同意,⑺应该是指数函数,因为133xxy -⎛⎫== ⎪⎝⎭.[师]:很好,我们发现有些函数表面上不是指数函数,其实经过化简以后就变成了指数函数.所以不要仅从表面上观察,要抓住事物的本质.[师]:上面我们分析了指数函数的定义,那么下面我们就根据解析式来研究它的图象和性质.根据解析式我们要作出函数图象一般有哪几个步骤? [生]:(共同回答)列表,描点,连线.[师]:好,下面我请两个同学到黑板上分别作出2x y =,12x y ⎛⎫= ⎪⎝⎭和3xy =,13xy ⎛⎫= ⎪⎝⎭的函数图象.(等学生作好图并点评完以后,再把这四个图用几何画板在屏幕上展示出来)[师]:那么我们下面就作出函数:2xy =,12xy ⎛⎫= ⎪⎝⎭, 3xy =,13xy ⎛⎫= ⎪⎝⎭的图象x -3 2- 1- 0 1 2 32x 18 14 12 1 2 4 8 2x - 8 4 2 1 12 14 183x 127 19 13 1 3 9 273x - 27 9 3 1 13 19 127[师]:通过这四个指数函数的图象,你能观察出指数函数具有哪些性质?(先把表格在屏幕上打出来,中间要填的地方先空起来,根据学生的分析一步步展示出来)[生1]:函数的定义域都是一切实数R ,而且函数的图象都位于x 轴上方.[师]:函数的图象都位于x 轴上方与x 有没有交点?随着自变量x 的取值函数值的图象与x 轴是什么关系?[生1]:没有.随着自变量x 的取值函数的图象与x 轴无限靠近.[师]:即函数的值域是:(0,)+∞.那么还有没有别的性质?[生2]:函数12x y ⎛⎫= ⎪⎝⎭、13xy ⎛⎫= ⎪⎝⎭是减函数,函数2x y =、3xy =是减函数.[师]:同学们觉的他这种说法有没有问题啊?(有)函数的单调性是在某个区间上的,因此有说明是在哪个范围内.又110,123<<,12,3<那么上述的结论可以归纳为: [生2]:当01a <<时,函数xy a =在R 上是减函数,当1a >时,函数xy a =在R 上是增函数.[师]:很好,请做!(提问[生3])你观察我们在作图时的取值,能发现什么性质?[生3]:当自变量取值为0时,所对的函数值为1.一般地指数函数xy a =当自变量x 取0时,函数值恒等于1.[师]:也就是说指数函数恒过点(0,1),和底a 的取值没有关系.那么你能否结合函数的单调性观察函数值和自变量x 之间有什么关系? [生3]:由图象可以发现:当01a <<时,若0x >,则0()1f x <<;若0x <,则1()f x <. 当1a >时,若0x >,则()1f x >;若0x <,则0()1f x <<.[师]:刚才是我们通过每个函数的图象得到共同的性质,那么同学们在观察函数图象之间有没有什么联系?[生4]: 函数2xy =与12x y ⎛⎫= ⎪⎝⎭的图象关于y 轴对称,函数3xy =与13xy ⎛⎫= ⎪⎝⎭的图象关于y 轴对称,所以是偶函数.(? ? ? ?)[师]:前面的结论是正确的,同学们说后面那句话对吗?[生]:(共同回答)不对,因为函数的奇偶性是对一个函数的,所以没有这个性质. [师]:由此我们得到一般的结论, 函数xy a =与xy a -=的图象关于y 轴对称. [师]:很好,那么我们把同学们刚才归纳的指数函数的性质综合起来,放到一张表格内. 01a << 1a >图 象巩固与练习1根据指数函数的性质,利用不等号填空.(在屏幕上给出练习,让学生口答) ⑴()345 0,⑵15- 0,⑶07 0,⑷()4249- 0,⑸()223 1,⑹()479- 1,⑺1210- 1,⑻36 1.四.数学运用例1.比较大小⑴ 2.5 3.21.5,1.5 ⑵ 1.2 1.50.5,0.5-- ⑶0.3 1.21.5,0.8解: ⑴考虑指数函数() 1.5xf x =.因为1.51>所以() 1.5xf x =在R 上是增函数.因为2.53.2<所以2.53.21.5 1.5<⑵考虑指数函数()0.5xf x =.因为00.51<<所以() 1.5xf x =在R 上是减函数.因为1.2 1.5->-所以1.2 1.50.50.5--<⑶由指数函数的性质知0.301.51.51>=,而1.200.80.81<=所以0.3 1.21.50.8>例2.⑴已知0.533x ≥,求实数x 的取值范围; ⑵已知0.225x<,求实数x 的取值范围. 解:⑴因为31>,所以指数函数()3xf x =在R 上是增函数.由0.533x≥,可得0.5x ≥,即x 的取值范围为[)0.5,+∞⑵因为00.21<<所以指数函数()0.2xf x =在R 上是减函数,因为221250.25--⎛⎫== ⎪⎝⎭所以20.20.2x -<由此可得2x >-,即x 的取值范围为()2,-+∞. 五.回顾小结x y a =(0,1a a >≠),x R ∈).要能根据概念判断一个函数是否为指数函数.2.指数函数的性质(定义域、值域、定点、单调性). 3.利用函数图象研究函数的性质是一种直观而形象的方法,因此记忆指数函数性质时可以联想它的图象.六.课外作业课本52P 1,2,4。
3.1 指数函数
3.1.2 指数函数〔1〕
【教学目标】
1.理解指数函数的概念和意义;
2.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型;
3.培养学生观察、分析、归纳等思维能力和数形结合的数学思想方法.【活动方案】
活动一:理解指数函数的定义,掌握指数函数解析式的特征
1.指数函数的定义:
练习:指出以下函数哪些是指数函数
〔1〕〔2〕〔3〕〔4〕
5 〔6〕〔7〕=4-8 〔且a≠1〕
活动二:掌握指数函数的图象,理解指数函数的性质
作出函数和的图象
思考1:作出函数与的图象,结合与的图象探求指数函数的图象有什么特征?结论1:指数函数图象和性质:
思考2:〔1〕指数函数和的图象;函数与的图象有怎样的关系?你能得到更一般的结论吗?
活动三:运用指数函数的性质解决简单的问题
例1:比拟以下各组数中两个值的大小:
〔1〕,;〔2〕,;〔3〕,;〔4〕,思考3:如何比拟两个指数式的大小?
例2:〔1〕,求实数的取值范围;
〔2〕,求实数的取值范围.
〔3〕设函数,,假设,求的取值范围.
例3:求以下函数的定义域和值域:
1 〔2〕〔3〕〔4〕
【当堂检测】
1.假设函数=a2-3a+3·a是指数函数,那么它的单调性为..2.比拟以下各组数中两个值的大小
〔1〕;〔2〕;〔3〕.
3.图中曲线,,,分别是指数函数,,,的图象,那么a,b,c,d,1,0
之间的大小关系是__________________.
【课堂小结】
【课后作业】?38分钟课时作业本?指数函数〔1〕。
《指数函数》教学设计一、教材分析函数是数学学习的重点和难点,函数的思想贯穿整个数学学习。
本节课是学生在已掌握了函数的定义、性质和简单的指数运算的基础上,进一步研究指数的定义、图像和性质,一方面可以进一步深化学生对函数概念的理解和认识,使学生得到系统的函数知识和研究函数的方法;另一方面也为研究对数函数以及等比数列的性质打下基础。
本节课十分重要,它对知识起承上启下的作用。
二、学情分析在初中所学的基本初等函数的基础上,通过前几节课的对函数的定义的更详细了解,学生对函数有了一定的理解,已初步能用函数的观点分析问题、解决问题。
三、教学目标知识目标:熟悉指数函数的定义;掌握指数函数的图像和性质。
能力目标:通过教学培养学生观察、分析、归纳等思维能力,进一步巩固数形结合、分类讨论的数学思想,掌握从特殊到一般的学习数学的方法,增强识图用图的能力。
情感目标:通过探究学习,使学生学会认识事物的特殊性与一般性的关系,学会用函数的观点分析问题,并养成合作交流、独立思考、理论联系实际的习惯,激发学生学习数学的兴趣,树立学习数学的信心。
四、教学重点、难点重点是指数函数的图像和性质;难点是指数函数性质的应用。
教学方法:引导,观察,归纳,启发,探究,比较。
五、教学活动(一)温故知新(学生集体回答下列问题。
)1.指数式的形式2.指数的运算公式设计意图:通过多媒体演示,引导学生回忆指数的运算,培养学生温故知新的能力,为本节内容的学习做好准备。
(二)创设情境,导入新课(学生跟随教师动手折纸,在动态的操作中找到问题的答案)折纸是一门艺术,很受大家的青睐;折纸又是一个数学探究的过程,它溶于数学,所以以折纸为载体,出现了不少趣题,请同学们动手之后回答下面的问题:假设一张纸的厚度为1,对折x次,纸的厚度y是多少?答:对折1次,折纸厚度为21;对折2次,折纸厚度为22;对折3次,折纸厚度为23;对折4次,折纸厚度为24,……对折x次,折纸厚度y=2x 定义:一般地,形如y=ax,(a>0且a≠1)的函数叫做指数函数,其中x 是自变量,定义域为实数集R。
2.2 指数函数2.2.1 分数指数幂整体设计教材分析“分数指数幂”这一节的主要内容是根式和分数指数幂的概念以及有理数指数幂的运算性质.分数指数是指数概念的又一次推广,教学中应通过多举一些实际例子让学生反复理解分数指数幂的意义,让学生明白分数指数幂不是表示相同因式的乘积,而是根式的另一种写法.或者通过根式和分数指数幂的相互转化来巩固和加深对分数指数幂这一概念的理解. 由于学生已经学习了负整数指数幂,正分数指数幂的概念引入后学生也就不难理解负分数指数幂的意义,在教学过程中,可以引导学生得出 m na=nma1(a >0,m 、n 均为正整数,且n >1)这一结论. 三维目标1.理解根式的概念,掌握n 次方根的性质.2.理解分数指数幂的含义,了解实数指数幂的意义.3.掌握有理数指数幂的运算性质,灵活地运用公式进行有理数幂的运算和化简,会进行根式与分数指数幂的相互转化.4.通过研究指数由“整数指数幂→根式→分数指数幂→有理数指数幂→实数指数幂”这一不断扩充和不断完善的过程,使学生深深体会认识客观世界的一般规律是呈不断上升的趋势,认同科学是在不断地观察、实验、探索和完善中前进的. 重点难点教学重点:正确理解根式以及分数指数幂的概念,根式与分数指数幂的互化,运用分数指数幂进行简单的运算. 教学难点:根式的概念以及分数指数幂的意义. 课时安排 2课时教学过程第一课时 分数指数幂(一)导入新课设计思路一(复习导入)在初中我们已经学过平方根和立方根的概念,我们复习一下平方根和立方根的概念. 平方根的概念:如果x 2=a ,那么我们称x 为a 的平方根;如果x 3=a ,那么我们称x 为a 的立方根.相仿地,我们就有n 次实数方根的概念. 设计思路二(问题导入)在日常生活中,衣服用去污剂洗过以后,要用清水漂洗.假如每次清水漂洗能漂去残留去污剂量的43,写出残留去污剂量y 与漂洗次数x 的函数关系式.若要使残留去污剂量不超过漂洗前的1%,则至少要漂洗多少次? (答案:函数关系式是:y=(1-43)x =(41)x,使残留去污剂量不超过漂洗前的1%,至少漂洗4次)推进新课 新知探究根据引入,可以得到如下n 次实数方根的概念: 一般地,如果一个实数x 满足x n =a(n >1,n ∈N *),那么我们称x 为a 的n 次实数方根(nth root).当n 为奇数时,正数的n 次实数方根是一个正数,负数的n 次实数方根是一个负数.这时,a的n次实数方根只有一个,记为x=na ,例如,23=8⇒2=38;(-3)3=-27⇒-3=327-;b 5=7⇒b=57.当n 为偶数时,正数的n 次实数方根有两个,它们互为相反数.这时,正数a 的正的n 次实数方根用符号n a 表示,负的n 次实数方根用符号-n a 表示.正数a 的n 次实数方根我们可以把它们合并而写成±n a (a >0)的形式,例如, x 4=4⇒x=±44;y 2=3⇒y=±3.特别需要注意的是,当a 等于0时,0的n 次实数方根等于0.我们把式子n a 叫做根式(radical),其中n 叫做根指数,a 叫做被开方数.对于根式,我们要注意以下几点:(1)关于n 次实数方根的定义:n 次实数方根的定义及性质是平方根、立方根的定义及性质的推广,根式记号是平方根、立方根记号的推广,将n 次实数方根的概念与平方根、立方根的概念进行对比,不难发现:①在实数范围内,正数的奇数次方根是一个正数,负数的奇数次方根是一个负数,零的奇数次方根是零,设a ∈R ,n 是大于1的奇数,则a 的n 次方根是n a .②在实数范围内,正数的偶数次方根是两个绝对值相等符号相反的数,零的奇数次方根是零,负数的偶数次方根没有意义.设a≥0,n 是大于1的偶数,则a 的n 次方根是±n a . (2)开方与乘方:求a 的n 次方根的运算叫做开方,开方运算与乘方运算是互为逆运算,不能把开方运算与乘方运算混为一谈.例如:求2的四次方,其运算结果是24=16,而求2的四次方根,其运算结果是±42. 应用示例思路1例1 求下列各式的值: (1)33)6(-;(2)2)7(-;(3)44)3(π-;(4)2)(b a -(b >a).分析:根式的求值,通常从根式的性质入手. 解:(1)33)6(-=-6;(2)2)7(-=|-7|=7;(3)44)3(π-=|3-π|=π-3;(4)2)(b a -=|a-b|=b-a(b >a).点评:根式的求值与化简,通常都是运用根式的运算性质:当n 为奇数时,n n a =a ;当n 为偶数时,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 一般来说,根指数n 为奇数时比较简单,而根指数n为偶数时很容易出现错误,为了避免错误的产生,可以先写成n n a =|a|,然后再根据绝对值的意义,去掉绝对值符号. 例2 化简222y xy x ++.分析:通过观察根式中的被开方式x 2+2xy+y 2是一个完全平方式,因此可以先将x 2+2xy+y 2转化为完全平方,再来根据根式的意义求解. 解:222y xy x ++=2)(y x +=|x+y|=⎩⎨⎧<+--≥++).0(,),0(,y x y x y x y x点评:因为(x+y)2是开平方,所以根据根式的意义,注意讨论x +y 的正负.例3 化简下列各式:(1)442+-x x +|1-x|,其中1<x <2; (2)2)(a b b a b a ---•--|b-a|.解:(1)由根式的性质当n 为偶数时,nna =|a|=⎩⎨⎧<-≥0,,0,a a a a 可知,442+-x x +|1-x|=2)2(-x +|1-x|=|x-2|+|1-x|.因为x-2<0,1-x <0,所以原式=2-x+x-1=1.(2)要使b a -有意义,必须a-b≥0,所以2)(a b -=a-b,|b-a|=a-b ,所以b a -·b a --2)(a b --|b-a|=(b a -)2-(a-b)-(a-b)=a-b-a+b-a+b=b-a.点评:若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简. 例4 计算: (1)2115141032++++;(2)63121823346+++++.分析:两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.解:(1)2115141032++++=)75)(32(32)75(3)75(232+++=++++2575757751-=--=+ (2)63121823346+++++=)36)(23()3221(6)23(3)23(623346++++=+++++.26)1223(2)121231(2)12)(23(3)3221(6-=-+-=+++=+++++点评:对于分子和分母都带有根号的式子,在化简或计算时一定要注意分子和分母的化简,还要注意将分母有理化.思路2例1 化简下列各式: (1)yxx y •; (2)2)2(+a ;(3)246347625---+-.分析:注意观察所给题目的特征,运用根式的性质来解题.另外化简的方向是脱去根号,方法是配方,而且配方的方法也是脱去根号的常用的技巧与手段. 解:(1)yx x y y x xy •=•=1. (2)2)2(+a =|a+2|=⎩⎨⎧-<---≥+).2(,2),2(,2a a a a(3)246347625---+- =222)22()32()23(---+- =|22||32||23|---+-=)22()32()23(---+- =0.点评:(1)在解有关根式的问题时,注意体会根式的运算性质:当n 为奇数时,n n a =a ;当n 为偶数时,n n a =|a|=⎩⎨⎧<-≥,0,,0,a a a a 同时与(n a )n =a 进行比较,并且加以区别,不能将二者混为一谈.(2)解题中运用的配方的技巧适用的范围十分广泛,掌握并能熟练地运用这一技巧,从而提高运算能力.例2 已知4x 2-4x -15≤0,化简:25204912422+-+++x x x x .分析:通过已知条件4x 2-4x -15≤0,求出x 的范围,再运用配方的方法以及完全平方公式等来求解.解:∵4x 2-4x -15≤0,∴-23≤x≤25,∴2x +3≥0,2x -5≤0, ∴2222)52()32(252049124-++=+-+++x x x x x x =|2x +3|+|2x -5|=2x +3+5-2x =8.点评:本例属于有限制条件的根式化简问题,这种题型的一般解题方法是:先求出已知条件对字母的限制范围,在此字母的限制范围内,再依据根式的意义、性质进行化简,如果没有限制条件,则应当对字母进行分类讨论.例3 化简:a aa a a a a -+--⨯+-+-123962322. 分析:对于根式的化简,经常采用配方的方法,运用根式的运算性质来解答.解:a a a a a a a -+--⨯+-+-123962322=a aa a a a -+--⨯---123|3|)2)(1(,因为1-a≥0,2-a >0,所以a≤1,所以a-1≤0,a -2<0,a-3<0. 原式=a a a aa a a a -+--=-+--⨯--•-11123321=0.点评:在根式化简时,一要注意根指数是奇数还是偶数,二要注意被开方数的符号也就是被开方数是正数还是负数,特别是被开方数含有字母,必要时要对字母的取值进行讨论或由题目条件得到字母的取值范围,再进一步对题目所给根式化简. 知能训练一、课本第47页练习1. 解答:1.(1)5a ;(2)43a ;(3)57a ;(4)31a.二、补充练习:1.已知a 、b ∈R ,则等式(a-b)·2)(b a -=-(b -a)2成立的条件是( ) A.a >b B.a <b C.a =b D.a≤b 解答:D2.下列运算正确的是( )A.(-a 2)3=(-a 3)2B.(-a 2)3=-a 5C.(-a 2)3=a 5D.(-a 2)3=-a 6 解答:D 3.设n ∈N *,则81[1-(-1)n ](n 2-1)的值( ) A.一定是零 B.一定是偶数 C.是整数但不一定是偶数 D.不一定是整数 解答:B4.若102x =25,则10-x 等于( ) A.-51 B.6251 C.501 D.51 解答:D5.625625++-=________________. 解答:32提示:原式=322323)32()32(22=++-=++-.6.已知实数a 、b 在数轴上所对应的点分别为A(在原点的左边)、B(在原点的右边),则222)(b a b a -+-=___________.解答:-2a7.已知3a =2,3b =5,则32a -b =______________. 解答:54 课堂小结1.本节课的主要内容是根式及根式的运算性质.要求掌握的知识内容比较简单,只要能准确理解根式的概念和掌握根式的运算性质,抓住取值的正负情况,有关根式的问题就能很便捷地解决.2.根式的运算性质中,当n 为偶数时,常常将n n a 先写成|a|的形式,然后再根据a 的正负来确定运算结果,如果a 的正负情况不确定,就必须根据a 的正负情况进行分类讨论.3.配方、分母有理化是解决根式的求值和化简等问题时常用的方法和技巧,而分类讨论则是不可忽视的数学思想方法. 作业课本第48页习题2.2(1) 1.设计感想根式的概念及其性质是中学阶段重要的知识点之一.通过课堂教学和学生的习题训练,发现学生在运用这一知识时很容易产生错误,特别是n n a 的解答,学生在解题时常常会忘记对于n 取奇数和偶数时的不同,当n 取偶数时还把它当作奇数时来求解.因此,在教学的过程中,一是要注重知识结构的科学传输即根式的由来;二是要强调严密完整的解题步骤,突出当n 为偶数时,必须将n n a 先写成|a|的形式;三是通过不同形式的例题和习题的讲解和训练,强化这一知识点.(设计者:王国冲)第二课时 分数指数幂(二)导入新课设计思路一(复习导入)在上节课中,主要学习了根式的概念及根式的性质,请同学们回忆所学内容.(将相关内容归纳板书)1.n 次实数方根;2.根式的概念;3.根式的性质.设计思路二(习题导入) 完成下列习题:1.若x 3=27,则称x 为27的_________次方根,此时x=_________;若a 4=256,则称a 为256的_________次方根,此时a=_________;(3,3;4,4).2.当n 为奇数时,实数a 的n 次实数方根有_________个,记作_________;当n 为偶数时,正实数a 的n 次实数方根有_________个,记作_________.(1,n a ;2,±n a ). 通过上述习题,复习有关根式的概念及性质,由学生归纳总结,然后板书. 推进新课 新知探究 根式的概念看下列变化过程:因为(24)2=28,所以82=24,又因为4=28,所以82=228.类似地有:5103=3510,4165=5416.由上可知:当m 能n 被整除时,就有n m a =a nm . 一般地,我们规定:a nm=n m a (a >0,m ,n 均为正整数). 这就是正数a 的正分数指数幂的意义. 类似负整数指数幂的意义,我们规定:m na=nm a1(a >0,m ,n 均为正整数),且0的正分数指数幂为0,0的负分数指数幂没有意义. 根据规定,分数指数幂实际上是根式的另一种表示形式,与以前所学的整数指数幂相比,分数指数幂a nm不是nm个a 相乘,而是根式的一种表示方式,因而通过分数指数幂的学习,将指数概念作了推广,即将整数指数推广到了有理数指数. 以前所学的整数指数幂的运算性质仍然保持不变,也就是说原来的整数指数幂的运算性质也推广到了有理数指数的范围,即对于有理数指数幂的运算有如下性质: ①a s ·a t =a s+t ,②(a s )t =a st ,③(ab)s =a s ·b s其中s 、t ∈Q,a >0,b >0. 应用示例思路1例1 求下列各式的值: (1)10021;(2)832;(3)923-;(4)(811)43-.分析:本题可以先将底数化成幂的形式,如100=102,然后再根据指数运算性质进行运算.解:(1)10021=(102)21=10212⨯=10.(2)832=(23)32=322⨯=22=4.(3)923-=(32)23-=3-3=271. (4)(811)43-=(3-4)43-=33=27.点评:熟练掌握分数指数幂的运算从最基础的入手,能将简单的数字的幂的形式转化为指数形式进行运算.例2 用分数指数幂的形式表示下列各式(a >0): (1)a 2a ;(2)a a .分析:弄清根式与分数指数幂的关系,从而实现根式与分数指数幂的互化. 解:(1)a 2a=a 2a 21=a212+=a 25.(2)a a =(a a )21=(aa 21)21=(a 23)21=a 43.点评:在实际问题中常常将根式化为分数指数幂进行运算,在转化过程中弄清分数指数幂与根式之间的关系,特别是根指数与分数指数之间的关系尤为重要. 例3 求下列各式的值: (1)65312121132)(ba bab a ••••---;(2)1075325555••;(3)111)(---+ab b a ;(4)2)(b a -(a >b). 分析:对于既含有根式又含有分数指数幂的式子,把根式统一化成分数指数幂的形式,便于计算.如果根式中的根指数不同,也化成分数指数幂的形式,再利用分数指数幂的运算性质进行计算.解:(1)65312121132)(b a bab a ••••---=653121612131-+---•ba=a -1=a1. (2)1075325555••=107215325555••=5107215322555=--+.(3)abab b a ab b a ab b a 1111)(111+=+=+---=a+b. (4)2)(b a -=|a-b|=a-b(a >b).点评:根式运算或根式与指数的混合运算时通常将根式化为分数指数幂的形式,这样计算较为方便.另外对于(3)还可以有如下解法:11111111111)()()(---------+=+=+ab ab b ab a ab b a =a+b. 例4 已知x 21+x21-=3,求32232322-+-+--xx x x 的值.分析:注意已知条件和所求结论之间的关系,通过将条件作适当的变形、转化,使所给条件和所求结论统一起来,并注意整体代入方法的恰当应用. 解:由x 21+x 21-=3,得x 23+x23-=(x 21+x 21-)(x+x -1-1)=(x 21+x21-)[(x 21+x21-)2-3]=3×(32-3)=18,x 2+x -2=(x+x -1)2-2=[(x 21+x 21-)2-2]2-2=47,所以,原式=318247--=3.点评:这道题可以通过已知x 21+x 21-=3解得x 的值,然后将x 代入计算,但这种解法太繁琐,而用整体思想来考虑,则比较简单.整体代换的思想是常见的数学思想.思路2例1 求下列各式的值: (1)432416⨯;(2)63125.132⨯⨯;(3)433)279(÷-;(4)322aa a •(a >0).分析:有关根式的运算可以将根式化为分数指数幂的形式,运用分数指数幂的运算性质进行相关运算.解:(1)432416⨯=[24×(234)21]41=(2324+)41=241314•=267=622.(2)63125.132⨯⨯=2×321×(23)31×(3×22)61=231311+-×3613121++=2×3=6.(3)433)279(÷-=(332-323)÷341=332÷341-332÷341=34132--34132-=3125-345=4512533-.(4)322a a a •=a 2·a21-·a32-=32212--a=6565a a=(a >0).点评:(1)解既含有分数指数幂又含有根式的问题,一般情况下,都统一将根式化为分数指数幂的形式,从而方便计算;(2)在求值运算时,如果只含有根式,但根指数不同,常常将根式化为分数指数幂的形式,运用分数指数幂的运算性质进行相关的运算. 例2 化简下列各式: (1)ab abab ••-312;(2)4332yxx y y x ••.分析:对于有关根式的运算,只要把根式化成分数指数幂的形式,再运用有理数指数的运算性质进行计算. 解:(1)ab abab ••-312=a 31·b 32·(a 21)31·(b 21-)31·a 21·b 21=a216132216131+-++•b=ab;(2)4332yxx y y x ••=81411813413212)()()(+-=••x y x x y y x ·y 834321-+-=x 87·y 81-=y y x 877. 点评:(1)分数指数幂是指数概念的扩充,分数指数幂的意义并不表示相同因式的乘积,而是根式的又一种表示方法;(2)根式与分数指数幂可以相互转化,根式转化为分数指数幂的形式之后,可以运用有理数指数幂的运算性质进行运算;(3)分数指数幂与根式的运算结果不要求形式的统一,但结果要求不能同时含有根号和分数指数幂,也不能既有分母又有负指数. 例3 已知3x +3-x =5,求下列各式的值:(1)9x +9-x ;(2)27x +27-x ;(3)3x -3-x .分析:根据已知条件,寻找结论与条件之间的关系,发现可以通过整体变换来解. 解:(1)9x +9-x =(3x )2+(3-x )2=(3x +3-x )2-2·3x ·3-x =52-2=23; (2)27x +27-x =(3x )3+(3-x )3=(3x +3-x )[(3x )2-3x ·3-x +(3-x )2]=(3x +3-x )(9x +9-x -1)=5(23-1)=110; (3)3x -3-x =±=-+±=+••-±=-----299)3(332)3()33(222x x x xxx x x21±.点评:整体思想是常见的数学思想之一,通过整体代入、整体运算、整体消元、整体合并等方法,可以将运算过程简化,提高解题效率.另外,对于本题,也可以将3x 看成整体作为一个未知数,先求出3x 的值,然后再代入求解,但这种解法较繁琐,是一种不经济的解法.例4 已知x=278-,y=7117,求333131343233232793yx xyx x y xy x -÷-++的值. 分析:本题可以先将x 、y 代入求值,也可以先将所要求值的式子化简再代入计算. 解:因为x≠0, 所以,原式=313131313131323)27(3xy x y x x yx x -⨯-+.又因为x-27y≠0,所以,原式=49)23()32()278()27()3()(22323223331331=-=-=-==-----xy x x y x .点评:在求解本题时,容易出现直接将x 、y 的值代入,进行计算,但这样做不仅运算量大,过程繁杂,而且容易产生错误,不易得到正确的结果.如果先化简,再代入求值,这样解不仅运算方便,而且过程简捷. 知能训练课本第48页练习2、3、4. 答案:2.(1)x 32;(2)x 2y 23;(3)m 23.3.(1)125;(2)1258;(3)6. 4.(1)a 83;(2)x 3y -2;(3)x 2y 34.课堂小结本节课的重点是分数指数幂的概念及分数指数幂的运算性质,难点是根式与分数指数幂的互化,对于分数指数幂其实质是根式的另一种表示形式,所以根式的运算常常利用分数指数幂与根式之间的关系转化为分数指数幂的运算来进行.我们在解题时要注意解题的策略,一般是先化简再求值,同时还要注意一些公式特别是乘法公式的灵活运用,从而使运算过程简化,达到事半功倍的效果. 作业课本第48页习题2.2(1)5,6.设计感想由于学生刚刚接触分数指数以及分数指数幂的运算,特别是一下子还不能马上接受分数指数幂是根式的另一种表示形式,因此造成在计算时经常产生错误的结果,所以在教学时要适当地在分数指数幂与根式的关系上多花一些时间,讲清楚分数指数幂实际上是根式的另一种表示形式;另外,由于将整数指数幂推广到了有理数指数幂,因此,在这方面尤其是计算方面要有比较多的变化形式呈现出来,注意与乘法公式的结合,运用整体思想来解决相关问题.习题详解课本第48页习题2.2(1)1.(1)100;(2)-0.1;(3)x-y;(4)-(2x+y).2.(1)原式=a 31+a41=a127;(2)原式=a814121++=a87;(3)原式=a2332+=a613;(4)原式=2132+a·b 23=a 67b 23.3.(1)1.709 976;(2)46.881 700;(3)11.447 609;(4)58 241.224 3.4.(1)原式=a 654332-+=a127;(2)原式=a 4·a 9=a 13;(3)原式=-6a3231+·b3131+-=-6a ;(4)原式=(2a 21)2-(3b 41-)2=4a-9b 21-;(5)原式=(a-a -1)2÷(a-a -1)(a+a -1)=112211+-=+---a a a a a a . 5.因为(a 21-a 21-)2=a-2+a -1=1,所以a 21-a21-=±1.6.(1)x=29. (2)x=24.。
3.1 指数函数-苏教版必修1教案1. 知识点概述指数函数是高中数学中的一重要内容,也是学生在以后学习数理化、工科和金融等领域所必须掌握的基础数学概念。
本教案以苏教版必修1中的指数函数为主要教学内容,为学生系统地讲解指数函数的定义、性质和一些相关的运算及特殊函数。
2. 教学目标1.理解指数运算的定义和性质;2.掌握指数运算的基本法则,包括指数幂、指数根以及指数函数的性质;3.能够解决与指数函数相关的各种应用问题。
3. 教学重点与难点3.1 教学重点1.指数运算的定义和性质;2.指数函数的定义、性质及一些特殊函数;3.应用指数函数解决实际问题。
3.2 教学难点1.合理引导学生理解指数幂、指数根、指数函数等基本概念;2.运用所学知识解决不同类型的实际问题。
4. 教学内容与方法4.1 教学内容4.1.1 指数的定义和性质1.了解指数的定义及相关术语;2.掌握指数运算中的乘方法则、除方法则、幂方法则;3.理解指数函数的定义、性质及指数函数的三要素;4.掌握指数运算中的指数根法则、指数函数的特殊函数。
4.1.2 指数函数1.理解指数函数及其基本性质;2.掌握指数函数的图像及其性质;3.理解指数函数的单调性,麦克劳林级数及指数函数的导数;4.掌握指数函数的极限性质。
4.1.3 指数函数的应用1.熟悉指数函数的实际应用领域;2.掌握指数函数的应用于增长和衰减的计算方法;3.掌握指数函数的应用于复利计算、指数增长及累计函数的方法。
4.2 教学方法1.课堂讲解结合生动的实例,揭示指数函数的本质;2.引导学生实际观察、总结规律、展开讨论;3.利用多媒体教具,结合视频、图表等多种展现形式,直观地呈现知识点。
5. 教学评估1.课堂随堂测试:每节课之后,设置三到五道题目,检验学生对当节内容的掌握情况;2.作业评估:每节课设置适量的作业量,检验学生对知识点的熟练掌握程度;3.期中考试和期末考试:检验学生对整个指数函数的掌握程度。
即:1.情景设置,形成概念2.发现问题,深化概念3.深入探究图像,加深理解性质4.强化训练,落实掌握5.小结归纳6.布置作业(一)情景设置,形成概念1、引例:折纸问题:让学生动手折纸问题1:①对折的次数x与所得的层数y之间有什么关系?(2x y =)②记折前纸张面积为1,对折的次数x与折后面积y之间有什么关系?(1()2x y =)问题2: ①x y 2=、1()2x y =及0.999879x y =这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?(引导学生观察,两个函数中,底数是常数,指数是自变量。
如果可以用字母代替其中的底数,那么上述两式就可以表示成x y a =的形式。
自变量在指数位置,所以我们把它称作指数函数)2、形成概念:(1)定义:形如x y a =(a>0且a ≠1)的函数称为指数函数,定义域为x∈R 。
问题3:一个新的数学概念的引入,一定要有研究的价值和意义。
此定义中,你觉得对底数a 有何要求?为什么?3.发现问题、深化概念例1:判断下列函数是否为指数函数,为什么?1)y=-3x 2)y=31/x 3) y=(-3)x 4) y=31+x ,5)(1)x y a =+ 例2: 1)若函数y=(2a -3a+3) a x是指数函数,求a 值。
2)指数函数f(x)= a x (a>0且a ≠1)的图像经过点(3,9),求f(x)、f(0)、f(1)的值。
(待定系数法求指数函数解析式(只需一个方程))(二)深入研究图像,加深理解性质问题4:指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,也是很重要的初等函数。
我们应研究指数函数的哪些性质?又该如何研究呢?(图象——性质,具体——一般)学生操作: 操作一:利用描点法作函数2xy =与1()2x y =的图象; 操作二:利用描点法作函数3x y =与1()3x y =的图象; 问题5:(1)指数函数2x y =与1()2x y =的图象有何关系?函数3x y =与1()3x y =的图象有何关系?你能得到一般性结论吗?(2)指数函数2x y =、1()2x y =、3x y =、1()3x y =的图象有何有什么共同特征?又有什么区别呢?你能得到一般性结论吗?(学生观察图象得出结论)操作三:(借助几何画板演示)函数x y a =当1>a 和10<<a 时的若干个图象,请同学们观察,(1)当5.1=a ,2=a ,3=a ……时的图象,你能发现它们有什么共同特征?(2)当8.0=a ,5.0=a ,3.0=a ……时的图象,你能发现它们有什么共同特征?请你概括一下对数函数应具有什么性质。
2.2.1 分数指数幂(2)教学目标:1. 理解正数的分数指数幂的含义,了解正数的实数指数幂的意义;2. 掌握有理数指数幂的运算性质,会进行根式与分数指数幂的相互转化,灵活运用乘法公式幂的运算法则进行有理数指数幂的运算和化简. 教学重点:分数指数幂的含义及有理数指数幂的运算和化简. 教学难点:分数指数幂含义的理解;有理数指数幂的运算和化简. 教学过程:一、情景设置1.复习回顾:说出下列各式的意义,并说出其结果(1= = (2==(3)4=5= (4= =2=25=24推广到一般情况有:(1)当m 22m =;(2)当m 为n 2m n=.表示成2s 的形式,s 的最合适的数值是多少呢? 二、数学建构1.正数的正分数指数幂的意义:m na = ( ) 2.正数的负分数指数幂的意义: mn a -= ( )3.有理数指数幂的运算法则:t s a a •= , ()tsa = ,()tab =三、数学应用 (一)例题:1.求值:(1)12100 ; (2)238 ;(3)329- (4)()3481-2.用分数指数幂的形式表示下列各式(式中a >0)(1)2a (2)3a ;(3 (4小结:有理数指数幂的运算性质.3;4.化简:(1(2)()222222223333x y x y x y xyxy--------+--≠+-.5.已知817,,2771a b =-=13(二)练习:化简下列各式:12.()11122x x x x x --⎛⎫++- ⎪⎝⎭;3++(a >0,b >0) 4.当18t =时,求131211333311111t t t t t t t t +--+-+++-的值 四、小结:1.分数指数幂的意义; 2.有理数指数幂的运算性质;3.整式运算律及乘法公式在分数指数幂运算中仍适用;4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂. 五、作业: 课本P 48-2,4,5.。
指数函数(一)教学目标:使学生理解指数函数的概念,并能正确作出其图象,掌握指数函数的性质;培养学生观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;培养学生发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。
教学重点:指数函数的概念、图象、性质教学难点:指数函数的图象、性质教学过程:教学目标(一)教学知识点1.指数函数.2.指数函数的图象、性质.(二)能力训练要求1.理解指数函数的概念.2.掌握指数函数的图象、性质.3.培养学生实际应用函数的能力.(三)德育渗透目标1.认识事物之间的普遍联系与相互转化.2.用联系的观点看问题.3.了解数学知识在生产生活实际中的应用.●教学重点指数函数的图象、性质.●教学难点指数函数的图象性质与底数a的关系.●教学方法学导式引导学生结合指数的有关概念来理解指数函数的概念,并向学生指出指数函数的形式特点,在研究指数函数的图象时,遵循由特殊到一般的研究规律,要求学生自己作出特殊的较为简单的指数函数的图象,然后推广到一般情况,类比地得到指数函数的图象,并通过观察图象,总结出指数函数的性质,而且是分a>1与0<a<1两种情形.●教具准备幻灯片三张第一张:指数函数的图象与性质(记作§2.6.1 A)第二张:例1 (记作§2.6.1 B)第三张:例2 (记作§2.6.1 C)●教学过程Ⅰ.复习回顾[师]前面几节课,我们一起学习了指数的有关概念和幂的运算性质.这些知识都是为我们学习指数函数打基础.现在大家来看下面的问题:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……1个这样的细胞分裂x次后,得到的细胞个数y 与x 的函数关系式是y =2x这个函数便是我们将要研究的指数函数,其中自变量x 作为指数,而底数2是一个大于0且不等于1的常量.下面,我们给出指数函数的定义. Ⅱ.讲授新课 1.指数函数定义一般地,函数y =a x (a >0且a ≠1)叫做指数函数,其中x 是自变量,函数定义域是R .[师]现在研究指数函数y =a x (a >0且a ≠1)的图象和性质,先来研究a >1的情形.例如,我们来画y =2x 的图象列出x ,y 的对应值表,用描点法画出图象:例如,我们来画y =2-x 的图象.可得x ,y 的对应值,用描点法画出图象.也可根据y =2-x 的图象与y =2x 的图象关于y 轴对称,由y =2x 的图象对称得到y =2-x 即y =(21)x的图象. 我们观察y =2x 以及y =2-x 的图象特征,就可以得到y =a x (a >1)以及y =a x (0<a <1)的图象和性质.3.例题讲解[例1]某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩留量是原来的一半(结果保留1个有效数字).分析:通过恰当假设,将剩留量y 表示成经过年数x 的函数,并可列表、描点、作图,进而求得所求.解:设这种物质最初的质量是1,经过x 年,剩留量是y . 经过1年,剩留量y =1×84%=0.841; 经过2年,剩留量y =0.84×84%=0.842; ……一般地,经过x 年,剩留量y =0.84x 根据这个函数关系式可以列表如下: 0.500.420.35用描点法画出指数函数y =0.84的图象.从图上看出y =0.5只需x ≈4.答:约经过4年,剩留量是原来的一半. 评述:(1)指数函数图象的应用. (2)数形结合思想的体现.[例2]说明函数y =2x +1与y =2x 的图象的关系,并画出它们的示意图.分析:做此题之前,可与学生一起回顾初中接触的二次函数平移问题. 解:比较函数y =2x +1与y =2x 的关系: y =2-3+1与y =2-2相等, y =2-2+1与y =2-1相等, y =22+1与y =23相等, ……由此可以知道,将指数函数y =2x 的图象向左平行移动一个单位长度,就得到函数y =2x +1的图象.评述:此题目的在于让学生了解图象的平移变换,并能逐步掌握平移规律.Ⅲ.课堂练习 1.课本P 74练习1在同一坐标系中,画出下列函数的图象: (1)y =3x ;(2)y =(31)x . 2.课本P 73例2(2).说明函数y =2x -2与指数函数y =2x 的图象的关系,并画出它们的示意图.解:比较y =2x -2与y =2x 的关系y =2-1-2与y =2-3相等, y =20-2与y =2-2相等,y =23-2与y =21相等, ……由此可以知道,将指数函数y =2x 的图象向右平移2个单位长度,就得到函数y =2x -2的图象.Ⅳ.课时小结[师]通过本节学习,大家要能在理解指数函数概念的基础上,掌握指数函数的图象和性质,并会简单的应用.Ⅴ.课后作业(一)1.在同一坐标系里画出下列函数图象: (1)y =10x ; (2)y =(101)x. 2.作出函数y =2x -1和y =2x +1的图象,并说明这两个函数图象与y =2x 的图象关系.答:如图所示,函数y =2x -1的图象可以看作是函数y =2x 的图象向右平移两个单位得到.函数y =2x +1的图象可以看作是函数y =2x 的图象向上平移1个单位得到(二)1.预习内容: 课本P 73例3 2.预习提纲:(1)同底数幂如何比较大小?(2)不同底数幂能否直接比较大小? ●板书设计Ⅰ.复习引入引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……. 1个这样的细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系是什么?分裂次数:1,2,3,4,…,x 细胞个数:2,4,8,16,…,y由上面的对应关系可知,函数关系是 y =2x .引例2:某种商品的价格从今年起每年降低15%,设原来的价格为1,x 年后的价格为y ,则y 与x 的函数关系式为 y =0.85x .在y =2x , y =0.85x 中指数x 是自变量,底数是一个大于0且不等于1的常量.我们把这种自变量在指数位置上而底数是一个大于0且不等于1的常量的函数叫做指数函数.Ⅱ.讲授新课1.指数函数的定义函数y =a x (a >0且a ≠1)叫做指数函数,其中x 是自变量,函数定义域是R探究1:为什么要规定a >0,且a ≠1呢?①若a =0,则当x >0时,a x =0;当x ≤0时,a x 无意义.②若a <0,则对于x 的某些数值,可使a x 无意义. 如y =(-2)x ,这时对于x =14 ,x =12 ,…等等,在实数范围内函数值不存在.③若a =1,则对于任何x ∈R ,a x =1,是一个常量,没有研究的必要性.为了避免上述各种情况,所以规定a >0且a ≠1。
在规定以后,对于任何x ∈R ,a x 都有意义,且a x >0. 因此指数函数的定义域是R ,值域是(0,+∞).探究2:函数 y =2·3x 是指数函数吗? 指数函数的解析式 y =a x 中,a x 的系数是1. 有些函数貌似指数函数,实际上却不是,如 y =a x+k (a >0且a ≠1,k ∈Z);有些函数看起来不像指数函数,实际上却是,如y=a -x (a >0,且a ≠1),因为它可以化为 y =(a -1)x ,其中 a -x >0,且a -x ≠1.活动设计:教师提出问题,学生思考、分析、讨论,教师引导、整理2.指数函数的图象活动设计:学生分别取不同的a 值,用计算器作出函数图像,观察、分析讨论函数性质,教师辅导、启发、整理⑴作图:(以下几例由学生作出类似情况,然后展示)⑵描点法作函数草图在同一坐标系中分别作出函数 y =2x ,y =(12 )x ,y =10x 的图象. ⑴先分别列出 y =2x ,y =(12 )x ,y =10x 中x 、y 的对应值表:注意:①用图形计算器函数值表填写列表,列表时注意x 的广泛代表性,即对于负数、零、正数都要取到;②要画出渐近的“味道” ⑶观察、总结Ⅲ.[例1](课本第81页)比较下列各题中两个值的大小: ①1.72.5,1.73; ②0.8-0.1,0.8-0.2; ③1.70.3,0.93.1活动设计:理解用函数单调性来比较大小,教师引导、整理 解:利用函数单调性①1.72.5与1.73的底数是1.7,它们可以看成函数 y =1.7x ,当x =2.5和3时的函数值;因为1.7>1,所以函数y =1.7x 在R 是增函数,而2.5<3,所以,1.72.5<1.73;②略③在下面个数之间的横线上填上适当的不等号或等号:1.70.3>1.70>1;0.93.1<0.90<1;1.70.3>0.93.1小结:对同底数幂大小的比较用的是指数函数的单调性,必须要明确所给的两个值是哪个指数函数的两个函数值;对不同底数是幂的大小的比较可以与中间值进行比较. Ⅳ.课堂练习⑴比较大小:-0.7-0.2-1.7-0.3;(-2.5)32(-2.5)54⑵已知下列不等式,试比较m 、n 的大小:(23 )m >(23 )n ,m n ;1.1m <1.1n ,m n . ⑶比较下列各组中数的大小:10, 0.4-2.5, 2-0.2, 2.51.6Ⅴ.课时小结指数函数的定义;图象的作法;性质Ⅵ.课后作业课本P54习题:1,2.指数函数(二)教学目标:使学生巩固指数函数性质的理解与掌握、并能应用;培养学生观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。
教学重点:指数函数的性质的应用教学难点:指数函数的性质的应用教学过程:教学目标(一)教学知识点1.指数形式的函数.2.同底数幂.(二)能力训练要求1.熟练掌握指数函数概念、图象、性质.2.掌握指数形式的函数求定义域、值域.3.掌握比较同底数幂大小的方法.4.培养学生数学应用意识.(三)德育渗透目标1.认识事物在一定条件下的相互转化.2.会用联系的观点看问题.●教学重点比较同底幂大小.●教学难点底数不同的两幂值比较大小.●教学方法启发引导式启发学生根据指数函数的形式特点来理解指数形式的函数,并能够利用指数函数的定义域、值域,结合指数函数的图象,进行同底数幂的大小的比较.在对不同底指数比较大小时,应引导学生联系同底幂大小比较的方法,恰当地寻求中间过渡量,将不同底幂转化同底幂来比较大小,从而加深学生对同底数幂比较大小的方法的认识.●教具准备幻灯片三张第一张:指数函数的定义、图象、性质(记作§2.6.2 A)第二张:例3(记作§2.6.2B)第三张:例4(记作§2.6.2 C)●教学过程 Ⅰ.复习回顾[师]上一节,我们一起学习了指数函数的概念、图象、性质,现在进行一下 回顾.Ⅱ.讲授新课[例3]求下列函数的定义域、值域 (1)y =114.0-x ; (2)y =153-x .(3)y =2x +1分析:此题要利用指数函数的定义域、值域,并结合指数函数的图象.注意向学生指出函数的定义域就是使函数表达式有意义的自变量x 的取值范围.解:(1)由x -1≠0得x ≠1所以,所求函数定义域为{x |x ≠1}由11-x ≠0得y ≠1 所以,所求函数值域为{y |y >0且y ≠1}评述:对于值域的求解,在向学生解释时,可以令11-x =t .考查指数函数y =0.4t ,并结合图象直观地得到,以下两题可作类似处理.(2)由5x -1≥0得x ≥51 所以,所求函数定义域为{x |x ≥51} 由15-x ≥0得y ≥1所以,所求函数值域为{y |y ≥1} (3)所求函数定义域为R 由2x >0可得2x +1>1所以,所求函数值域为{y |y >1}[师]通过此例题的训练,大家应学会利用指数函数的定义域、值域去求解指数形式的复合函数的定义域、值域,还应注意书写步骤与格式的规范性.[例4]比较下列各题中两个值的大小 (1)1.72.5,1.73 (2)0.8-0.1,0.8-0.2 (3)1.70.3,0.93.1要求:学生练习(1)、(2),并对照课本解答,尝试总结比较同底数幂大小的方法以及一般步骤.解:(1)考查指数函数y =1.7x又由于底数1.7>1,所以指数函数y =1.7x 在R 上是增函数 ∵2.5<3 ∴1.72.5<1.73(2)考查指数函数y =0.8x由于0<0.8<1,所以指数函数y =0.8x 在R 上是减函数. ∵-0.1>-0.2∴0.8-0.1<0.8-0.2 [师]对上述解题过程,可总结出比较同底数幂大小的方法,即利用指数函数的单调性,其基本步骤如下:(1)确定所要考查的指数函数;(2)根据底数情况指出已确定的指数函数的单调性;(3)比较指数大小,然后利用指数函数单调性得出同底数幂的大小关系. 解:(3)由指数函数的性质知: 1.70.3>1.70=1, 0.93.1<0.90=1,即1.70.3>1,0.93.1<1, ∴1.70.3>0.93.1.说明:此题难点在于解题思路的确定,即如何找到中间值进行比较.(3)题与中间值1进行比较,这一点可由指数函数性质,也可由指数函数的图象得出,与1比较时,还是采用同底数幂比较大小的方法,注意强调学生掌握此题中“1”的灵活变形技巧.[师]接下来,我们通过练习进一步熟悉并掌握本节方法. Ⅲ.课堂练习 1.课本P 78练习2 求下列函数的定义域(1)y =x13; (2)y =51 x . 解:(1)由x1有意义可得x ≠0 故所求函数定义域为{x |x ≠0} (2)由x -1≥0 得x ≥1故所求函数定义域为{x |x ≥1}. 2.习题2.6 2比较下列各题中两个值的大小 (1)30.8,30.7(2)0.75-0.1,0.750.1 (3)1.012.7,1.013.5 (4)0.993.3,0.994.5 解:(1)考查函数y =3x由于3>1,所以指数函数y =3x 在R 上是增函数. ∵0.8>0.7 ∴30.8>30.7(2)考查函数y =0.75x由于0<0.75<1,所以指数函数y =0.75x 在R 上是减函数. ∵-0.1<0.1∴0.75-0.1>0.750.1 (3)考查函数y =1.01x由于1.01>1,所以指数函数y =1.01x 在R 上是增函数. ∵2.7<3.5∴1.012.7<1.013.5(4)考查函数y =0.99x由于0<0.99<1,所以指数函数y =0.99x 在R 上是减函数. ∴3.3<4.5∴0.993.3>0.994.5. Ⅳ.课时小结[师]通过本节学习,掌握指数函数的性质应用,并能比较同底数幂的大小, 提高应用函数知 识的能力. Ⅴ.课后作业(一)课本P 78习题2.6 1.求下列函数的定义域(1)y =23-x(2)y =32x +1 (3)y =(21)5x (4)y =x17.0解:(1)所求定义域为R . (2)所求定义域为R . (3)所求定义域为R . (4)由x ≠0得所求函数定义域为{x |x ≠0}.3.已知下列不等式,比较m 、n 的大小 (1)2m <2n (2)0.2m >0.2n(3)a m <a n (0<a <1) (4)a m >a n (a >1)解:(1)考查函数y=2x∵2>1,∴函数y=2x在R上是增函数.∵2m<2n∴m<n;(2)考查函数y=0.2x∵0<0.2<1∴指数函数y=0.2x在R上是减函数.∵0.2m>0.2n∴m<n;(3)考查函数y=a x∵0<a<1∴函数y=a x在R上是减函数.∵a m<a n∴m>n;(4)考查函数y=a x∵a>1∴函数y=a x在R上是增函数,∴a m>a n∴m>n.(二)1.预习内容:函数单调性、奇偶性概念2.预习提纲(1)函数单调性,奇偶性的概念.(2)函数奇偶性概念.(3)函数单调性,奇偶性的证明通法是什么?写出基本的证明步骤.●板书设计Ⅰ.复习引入指数函数的定义与性质Ⅱ.讲授新课[例1]某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%. 画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩留量是原来的一半(结果保留一个有效数字).解:⑴先求出函数关系式:设这种物质最初的质量是1,经过 x 年,剩留量是 y . 那么 经过1年,剩留量y =1×84%=0.841; 经过2年,剩留量y =0.84×84%=0.842; …………经过x 年,剩留量y =0.84x (x ≥0). ⑵描点作图:根据函数关系式列表如下:根据上表描点作出指数函数y =0.84x (x ≥0)的图象(图略).从图上看出y =0.5,只需x ≈4.答:约经过4年,剩留量是原来的一半. [例2]求下列函数的定义域和值域:⑴ y =1-a x⑵ y =(12 )31x活动设计:学生用图形计算器作出函数图像,观察图像,分析讨论定义域值域,然后准确解答,教师引导、整理解:⑴要使函数有意义,必须1-a x ≥0,即a x ≤1 当a >1时 x ≤0; 当0<a <1时 x ≥0∵a x >0 ∴0≤1-a x <1 ∴值域为0≤y <1⑵要使函数有意义,必须 x +3≠0 即 x ≠-3∵1x +3 ≠0 ∴y =(12 )31+x ≠(12 )0=1又∵y >0 ∴值域为 (0,1)∪(1,+∞) [例3]求函数y =(12 )xx 22-的单调区间,并证明活动设计:学生用图形计算器作出函数图像,观察图像,分析讨论单调区间,然后准确解答,教师引导、整理(图见上)解(用复合函数的单调性):设:u =x 2-2x 则:y =(12 )u对任意的1<x 1<x 2,有u 1<u 2,又∵y =(12 )u 是减函数 ∴y 1<y 2 ∴y =(12 )xx 22-在[1,+∞)是减函数 对任意的x 1<x 2≤1,有u 1>u 2,又∵y =(12 )u 是减函数 ∴y 1<y 2 ∴y =(12 )xx 22-在[1,+∞)是增函数 引申:求函数y =(12 )x x 22-的值域 (0<y ≤2) Ⅲ. 课堂总结对于函数y =f (u )和u =g (x ),如果u =g (x )在区间(a ,b )上是具有单调性,当x ∈(a ,b )时,u ∈(m ,n ),且y =f (u )在区间(m ,n )上也具有单调性,则复合函数y =f (g (x ))在区间(a ,b )具有单调性:①若u =g (x )在(a ,b )上单调递增,y =f (u )在(m ,n )上单调递增,则复合函数y =f (g (x ))在区间(a ,b )上单调递增;②若u =g (x )在(a ,b )上单调递增,y =f (u )在(m ,n )上单调递减,则复合函数y =f (g (x ))在区间(a ,b )上单调递减;③若u =g (x )在(a ,b )上单调递减,y =f (u )在(m ,n )上单调递增,则复合函数y =f (g (x ))在区间(a ,b )上单调递减;④若u =g (x )在(a ,b )上单调递减,y =f (u )在(m ,n )上单调递减,则复合函数y =f (g (x ))在区间(a ,b )上单调递增;复合函数单调性的规律见下表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”.活动设计:教师提出问题,学生思考、分析讨论,教师引导、整理下面只证明①设x1、x2∈(a,b),且x1<x2∵u=g(x)在(a,b)上是增函数,∴g(x1)<g(x2),且g(x1)、g(x2)∈(m,n)∵y=f(u)在(m,n)上是增函数,∴f(g(x1))<f(g(x2)).所以复合函数y=f(g(x))在区间(a,b)上是增函数。