系统辨识
- 格式:docx
- 大小:183.02 KB
- 文档页数:14
系统辨识算法一、引言系统辨识是指通过对系统输入输出数据进行观测和分析,从而建立数学模型以描述和预测系统行为的过程。
系统辨识算法是在给定输入输出数据的基础上,利用数学方法和计算机模拟技术,对系统的结构和参数进行估计和辨识的算法。
系统辨识算法在控制工程、信号处理、机器学习等领域具有广泛的应用。
二、系统辨识方法系统辨识方法可以分为参数辨识和非参数辨识两类。
1. 参数辨识参数辨识是指通过对系统模型中的参数进行估计,来描述和预测系统的行为。
常用的参数辨识方法有最小二乘法、最大似然估计法、递推最小二乘法等。
最小二乘法是一种基于最小化误差平方和的优化方法,通过优化目标函数来估计参数值。
最大似然估计法是一种基于概率统计理论的方法,通过似然函数最大化来估计参数值。
递推最小二乘法是一种基于递推迭代的方法,通过更新参数估计值来逼近真实参数值。
2. 非参数辨识非参数辨识是指通过对系统的输入输出数据进行分析,来估计系统的结构和参数。
常用的非参数辨识方法有频域分析法、时域分析法、小波分析法等。
频域分析法是一种基于信号频谱特性的方法,通过对输入输出信号的频谱进行分析,来估计系统的频率响应。
时域分析法是一种基于信号时域特性的方法,通过对输入输出信号的时序关系进行分析,来估计系统的时域特性。
小波分析法是一种基于小波变换的方法,通过对输入输出信号的小波变换系数进行分析,来估计系统的时频特性。
三、系统辨识应用系统辨识算法在实际工程中有着广泛的应用。
1. 控制工程系统辨识算法在控制系统设计中起到关键作用。
通过对控制对象进行辨识,可以建立准确的数学模型,从而设计出性能优良的控制器。
例如,在自适应控制中,可以利用系统辨识算法来实时辨识系统模型,从而根据实际系统特性调整控制器参数。
2. 信号处理系统辨识算法在信号处理领域有重要应用。
通过对信号进行辨识,可以提取信号的特征和结构,从而实现信号去噪、信号分析、信号识别等目标。
例如,在语音信号处理中,可以利用系统辨识算法来建立语音模型,进而实现语音识别和语音合成。
第02讲系统辨识三要素系统辨识是指通过对系统输入和输出数据的观测和分析,求解出系统的数学模型的过程。
系统辨识主要有两种方法:非参数辨识和参数辨识。
在进行参数辨识时,需要确定三个基本要素,分别是模型结构、参数估计方法和误差分析方法。
本文将详细介绍这三个要素。
首先,模型结构是系统辨识的核心要素之一、模型结构决定了辨识出的数学模型与实际系统之间的对应关系。
模型结构的选择需要根据实际问题和已有的知识和经验来确定。
常用的模型结构包括线性模型、非线性模型、时变模型等。
例如,对于一个物理系统来说,可以尝试使用一阶惯性环节、二阶惯性环节等常见的线性模型结构进行辨识;对于一个生物系统来说,可以采用Lotka-Volterra模型等非线性模型结构进行辨识。
选择合适的模型结构可以提高系统辨识的精度和可靠性。
其次,参数估计方法是指在给定模型结构的情况下,通过对系统输入和输出数据进行处理和分析,求解出模型参数的过程。
参数估计方法分为两类:最小二乘法和最大似然法。
最小二乘法通过最小化观测数据与模型预测数据之间的残差平方和来估计模型参数;最大似然法通过最大化观测数据的似然函数来估计模型参数。
当观测数据服从高斯分布时,最小二乘法和最大似然法等效。
参数估计方法的选择需要根据数据性质和实际问题来确定。
对于小样本数据,最大似然法常常具有更好的效果;对于大样本数据,最小二乘法通常是更好的选择。
最后,误差分析方法是指用来评估辨识结果的准确性和可信度的方法。
误差分析方法主要包括残差分析、模型检验和辨识结果评价等。
残差分析是通过分析辨识结果与观测数据之间的差异来评估模型拟合程度的方法。
模型检验是通过将辨识结果应用到实际应用中,观察其预测能力和鲁棒性来评价模型的有效性。
辨识结果评价是通过计算模型的性能指标,如均方误差、决定系数等来评估辨识结果的准确性和可靠性。
误差分析方法的选择需要根据实际问题和辨识结果的要求来确定。
对于较为简单的问题,可以选择较为简单的误差分析方法;对于复杂的问题,需要选择更为精确和全面的误差分析方法。
系统辨识的基本步骤
系统辨识的基本步骤包括:
1.数据采集:从现实世界中获取需要识别的信息,例如人脸图像、
语音信号、文字等。
数据采集的质量直接影响到后续的识别效果,因此需要注意采集环境、采集设备等因素。
2.特征提取:从采集到的数据中提取出具有代表性的特征。
3.模型建立:根据提取的特征,建立相应的模型。
4.模型训练:使用训练数据对模型进行训练,调整模型参数,提高
模型的准确性和鲁棒性。
5.模型评估:使用测试数据对模型进行评估,计算模型的精度、召
回率、F1值等指标,以检验模型的性能。
6.模型应用:将训练好的模型应用于实际场景中,进行目标检测、
分类、跟踪等任务。
在实际应用中,还需要根据具体的问题和任务进行适当的调整和改进,以提高系统的性能和适应性。
控制系统中的系统辨识与自适应控制在控制系统中,系统辨识与自适应控制是两个关键的方面。
系统辨识是指通过实验或推理的方法,从输入和输出的数据中提取模型的参数和结构信息,以便更好地理解和控制系统的行为。
而自适应控制是指根据系统辨识得到的模型参数和结构信息,实时地调整控制器的参数以适应系统变化,以提高控制性能。
一、系统辨识1.1 参数辨识参数辨识是指确定系统动态模型中的参数。
常用的方法包括最小二乘法、极大似然估计法等。
最小二乘法是一种常见的参数辨识方法,通过最小化实际输出与模型输出之间的误差平方和来确定参数。
1.2 结构辨识结构辨识是指确定系统动态模型的结构,包括确定系统的阶数、输入输出关系等。
常用的结构辨识方法有ARX模型、ARMA模型等。
ARX模型是指自回归外部输入模型,适用于输入输出具有线性关系的系统。
ARMA模型是指自回归滑动平均模型,适用于输入输出关系存在滞后效应的系统。
二、自适应控制自适应控制是根据系统辨识得到的模型参数和结构信息,动态地调整控制器的参数以适应系统的变化。
常用的自适应控制方法有模型参考自适应控制、模型预测控制等。
2.1 模型参考自适应控制模型参考自适应控制是建立在系统辨识模型基础上的控制方法。
通过将系统输出与参考模型输出进行比较,通过调整控制器参数来减小误差。
常见的模型参考自适应控制方法有自适应PID控制、自适应模糊控制等。
2.2 模型预测控制模型预测控制是一种基于系统辨识模型的控制策略,通过对系统未来的状态进行预测,以求得最优控制输入。
模型预测控制可以同时考虑系统的多个输入和多个输出,具有较好的控制性能。
三、应用案例3.1 机械控制系统在机械控制系统中,系统辨识和自适应控制可以被应用于伺服控制系统。
通过系统辨识可以得到伺服电机的动态模型,然后利用自适应控制方法调整PID控制器的参数,以提高伺服系统的响应速度和稳定性。
3.2 化工控制系统在化工控制系统中,系统辨识和自适应控制可以被应用于控制某个反应器的温度。
系统辨识与模型预测控制系统辨识与模型预测控制是现代控制理论中的关键概念,它们在工程领域中被广泛应用于系统建模及控制设计中。
本文将详细介绍系统辨识与模型预测控制的基本概念、原理、方法和应用。
一、系统辨识系统辨识是指通过实验数据对系统的动态行为进行建模和估计的过程。
它可以帮助我们了解系统的性质和结构,并在控制系统设计中提供准确的数学模型。
系统辨识的主要任务是确定系统的参数和结构,并评估模型的质量。
1.1 参数辨识参数辨识是系统辨识的主要内容之一,它通过收集系统的输入和输出数据,并根据建模方法对参数进行估计。
常用的参数辨识方法包括最小二乘法、极大似然法、频域法等。
参数辨识的结果对建模和控制设计具有重要的指导意义。
1.2 结构辨识结构辨识是指确定系统的数学结构,即选择合适的模型形式和结构。
常用的结构辨识方法有ARX模型、ARMA模型、ARMAX模型等。
结构辨识的关键是根据系统的性质和实际需求选择适当的模型结构,以保证模型的准确性和有效性。
二、模型预测控制模型预测控制是一种基于系统动态模型的控制方法,它通过在线求解最优控制问题实现对系统的控制。
模型预测控制通过对系统未来动态行为的预测,结合控制目标和约束条件,求解优化问题得到最优控制输入。
它具有优良的鲁棒性和适应性,并且能够处理多变量、非线性以及时变系统的控制问题。
2.1 模型建立模型预测控制的第一步是建立系统的数学模型,通常采用系统辨识的方法得到。
模型可以是线性的或非线性的,根据实际需求选择适当的模型结构和参数。
2.2 控制器设计模型预测控制的核心是设计控制器,控制器的目标是使系统输出跟踪参考轨迹,并满足约束条件。
控制器设计通常通过求解一个离散时间最优控制问题来实现,常用的方法有二次规划、线性规划、动态规划等。
2.3 优化求解模型预测控制的关键是求解最优控制问题,将系统的模型和控制目标转化为一个优化问题,并通过数值优化方法求解得到最优解。
常用的优化算法包括线性规划、非线性规划、遗传算法等。
系统辨识理论及应用引言系统辨识是通过对已知输入和输出进行处理,从而识别出系统的数学模型并进行建模的过程。
在现代科学和工程应用中,系统辨识技术被广泛应用于控制系统设计、信号处理、预测和模型识别等领域中。
本文将介绍系统辨识的理论基础、常用方法以及在实际应用中的案例分析,以便读者能够更好地了解系统辨识技术的原理和应用。
系统辨识的理论基础系统辨识的定义系统辨识是一种通过对系统的输入和输出数据进行处理,来推导出系统的数学模型的方法。
系统辨识可以用来描述和预测系统的行为,从而实现对系统的控制和优化。
系统辨识的基本原理系统辨识建模的基本思想是将输入和输出之间的关系表示为一个数学模型。
这个模型可以是线性模型、非线性模型、时变模型等。
在系统辨识中,常用的数学模型包括差分方程模型、状态空间模型、传递函数模型等。
系统辨识的基本原理是通过收集系统的输入和输出数据,然后利用数学方法来推导出系统的数学模型。
这个过程可以看作是一个参数优化的过程,通过不断调整模型参数,使得模型的输出与实际系统的输出尽可能接近。
系统辨识的常用方法系统辨识的常用方法包括参数估计方法、频域分析方法和结构辨识方法。
参数估计方法是最常用的系统辨识方法之一,它通过最小化模型的预测误差来估计模型参数。
常用的参数估计方法包括最小二乘法、最大似然估计法、最小二乘法等。
频域分析方法是基于系统的频率响应特性进行辨识的方法。
常用的频域分析方法包括递归最小二乘法、频域辨识方法等。
结构辨识方法是用来确定系统的结构的方法。
结构辨识方法可以分为模型选择方法和模型结构确定方法。
常用的结构辨识方法包括正则化算法、信息准则准则方法等。
系统辨识的应用控制系统设计系统辨识技术在控制系统设计中起着重要的作用。
通过对系统辨识建模,可以对系统进行建模和优化。
控制系统设计中的系统辨识可以用来预测系统的响应、设计合适的控制器以及优化控制算法。
信号处理系统辨识技术在信号处理中也有广泛的应用。
通过对信号进行系统辨识建模,可以分析信号的特性、提取信号中的有用信息以及去除信号中的干扰等。
系统辨识和降阶模型一、引言系统辨识和降阶模型是现代控制理论中重要的概念和技术,广泛应用于工程领域。
系统辨识是指通过对系统的输入和输出数据进行分析和建模,从而推断出系统的内在特性和行为规律的过程。
降阶模型是指将高阶系统模型转化为低阶系统模型,以简化系统的分析和设计。
二、系统辨识系统辨识是一种通过实验数据来推断系统模型的方法。
它可以基于系统的输入和输出数据,利用统计学和数学建模技术来估计系统的参数和结构。
系统辨识可以分为参数辨识和结构辨识两个层面。
1. 参数辨识参数辨识是指通过对系统的输入输出数据进行分析,估计系统的参数值。
常用的参数辨识方法有最小二乘法、极大似然法和最大熵法等。
最小二乘法是一种通过最小化实际输出与模型输出之间的差异,来估计系统参数的方法。
极大似然法是一种基于概率统计原理的参数估计方法,通过最大化样本数据的似然函数来确定参数值。
最大熵法是一种基于信息论的参数估计方法,通过最大化系统的不确定性来确定参数值。
2. 结构辨识结构辨识是指通过对系统的输入输出数据进行分析,估计系统的结构和模型形式。
常用的结构辨识方法有模型选择准则、系统辨识算法和系统辨识工具等。
模型选择准则是一种评估不同模型的性能和复杂度的方法,常用的准则有AIC准则、BIC准则和MSE准则等。
系统辨识算法是一种通过计算机程序对系统数据进行处理和分析,从而得到系统模型的方法。
系统辨识工具是一种用于辅助系统辨识的软件工具,常用的工具有MATLAB、LabVIEW和Python等。
三、降阶模型降阶模型是指将高阶系统模型转化为低阶系统模型的过程。
降阶模型可以简化系统的分析和设计,提高系统性能和控制效果。
常用的降阶模型方法有模型约简、系统分解和模型识别等。
1. 模型约简模型约简是一种通过舍弃系统模型中的一部分变量和参数,从而降低模型复杂度的方法。
常用的模型约简方法有特征值分解、奇异值分解和模态分析等。
特征值分解是一种通过对系统矩阵进行特征值分解,从而得到系统的特征向量和特征值的方法。
系统辨识综述一、系统辨识概述辨识、状态估计和控制理论是现代控制理论三个互相渗透的领域。
辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。
随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。
然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。
系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。
社会科学和自然科学领域已经投入相当多的人力和物力去观察、研究有关的系统辨识问题。
系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。
从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。
辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。
当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。
辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。
总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。
系统辨识辨识方法性能分析引言系统辨识是指通过观测系统的输入和输出,利用数学模型对系统的动态行为进行建模和预测的过程。
辨识方法的性能分析是评估辨识方法的优劣和适用范围的过程,对于选择合适的辨识方法和优化辨识结果具有重要意义。
本文将对系统辨识中常用的几种方法进行性能分析,包括参数辨识方法、非参数辨识方法和半参数辨识方法。
参数辨识方法参数辨识方法是指通过估计系统的参数来建立系统模型。
常见的参数辨识方法包括最小二乘法、极大似然法和支持向量回归等。
这些方法通过寻找最优参数来拟合系统的输入和输出数据,从而得到系统的数学模型。
对于参数辨识方法的性能分析,可以从以下几个方面进行评估:1.拟合优度:拟合优度是指辨识方法得到的模型与实际系统之间的拟合程度。
可以通过计算模型的残差平方和或R方值来评估拟合优度,拟合优度越高,模型与实际系统的拟合程度越好。
2.参数估计误差:参数估计误差反映了辨识方法对系统参数的估计准确程度。
可以通过计算参数估计误差的均方根误差或标准偏差来评估辨识方法的参数估计精度,参数估计误差越小,辨识方法的性能越好。
3.参数可辨识性:参数可辨识性指的是辨识方法是否能够准确地估计系统的参数。
对于具有多个参数的系统,如果某些参数之间存在相关性或冗余性,辨识方法可能无法准确地估计这些参数。
因此,参数可辨识性是评估辨识方法是否适用于系统辨识的重要指标。
非参数辨识方法非参数辨识方法是指通过不对系统模型做任何假设,直接从输入和输出数据中提取系统的特征来进行辨识。
常见的非参数辨识方法包括频域方法、时域方法和小波分析等。
这些方法不需要对系统进行具体的数学建模,对系统的特征进行直接提取和分析。
对于非参数辨识方法的性能分析,可以从以下几个方面进行评估:1.频谱分辨能力:频谱分辨能力是指辨识方法对系统频域特征的提取能力。
通过计算频谱分辨能力指标,可以评估辨识方法在不同频率下对系统信息的提取精度,频谱分辨能力越高,辨识方法对系统频域特征的分析能力越强。
系统辨识知识点总结归纳一、系统辨识的基本概念系统辨识是指通过对系统的输入和输出进行观察和测量,利用数学模型和算法对系统的结构和行为进行识别和推断的过程。
它在工程技术领域中起着重要的作用,可以用来分析和预测系统的性能,对系统进行控制和优化。
系统辨识涉及信号处理、数学建模、统计推断等多个领域的知识,是一门非常复杂的学科。
二、系统辨识的基本原理系统辨识的基本原理是基于系统的输入和输出数据,利用数学模型和算法对系统的结构和参数进行识别和推断。
其基本步骤包括数据采集、模型建立、参数估计、模型验证等。
系统辨识的关键是如何选择合适的模型和算法,以及如何对系统的输入数据进行预处理和分析。
同时,还需要考虑数据的质量和可靠性,以及模型的简单性和准确性等因素。
三、系统辨识的方法和技术系统辨识的方法和技术包括参数辨识、结构辨识、状态辨识等,具体有线性系统辨识、非线性系统辨识、时变系统辨识、多变量系统辨识等。
这些方法和技术涉及到信号处理、最优控制、统计推断、神经网络、模糊逻辑等多个领域的知识,可以根据不同的系统和问题,选择合适的方法和技术进行应用。
四、系统辨识的应用领域系统辨识的应用领域非常广泛,包括控制系统、信号处理、通信系统、生物医学工程、工业生产等。
在控制系统中,系统辨识可以用来设计控制器,提高系统的稳定性和性能。
在信号处理中,系统辨识可以用来提取信号的特征,分析信号的性质。
在通信系统中,系统辨识可以用来设计调制解调器,提高系统的传输效率和可靠性。
在生物医学工程中,系统辨识可以用来分析生物信号,诊断疾病和设计医疗设备。
在工业生产中,系统辨识可以用来优化生产过程,提高产品质量和效率。
五、系统辨识的发展趋势随着科学技术的不断发展,系统辨识也在不断地发展和完善。
未来,系统辨识的发展趋势主要包括以下几个方面:一是理论方法的创新,将更多的数学、统计和信息理论方法引入系统辨识中,提高系统辨识的理论基础和分析能力;二是算法技术的提高,利用机器学习、深度学习等先进的算法技术,对系统进行更加准确和高效的辨识;三是应用领域的拓展,将系统辨识应用到更多的领域和行业中,为社会经济发展和科技进步作出更大的贡献。
系统辨识及自适应控制实验报告实验报告:系统辨识及自适应控制1.引言系统辨识和自适应控制是现代自动控制领域中的重要研究内容。
系统辨识是通过采集系统输入输出数据,建立数学模型描述系统的动态行为。
自适应控制则是根据系统辨识得到的模型,调整控制器参数以适应系统的变化和外部干扰。
本实验旨在通过实际操作,掌握系统辨识和自适应控制的基本原理和方法。
2.实验目的1)了解系统辨识的基本原理和方法;2)掌握常见的系统辨识方法,包括参数辨识和频域辨识;3)理解自适应控制的基本原理和方法;4)熟悉自适应控制的实现过程;5)通过实验验证系统辨识和自适应控制的有效性。
3.实验原理3.1系统辨识原理系统辨识的目标是通过采集系统输入输出数据,建立数学模型来描述系统的动态特性。
常见的系统辨识方法包括参数辨识和频域辨识两种。
参数辨识是通过拟合实际测量数据,找到最佳的模型参数。
常用的参数辨识方法有最小二乘法、极大似然法和最小误差平方等。
频域辨识则是通过对输入输出信号的频谱分析,得到系统的频率响应特性。
常用的频域辨识方法有傅里叶变换法、相关分析法和谱估计法等。
3.2自适应控制原理自适应控制是根据系统辨识得到的模型,调整控制器参数以适应系统的变化和外部干扰。
自适应控制分为基于模型的自适应控制和模型无关的自适应控制。
基于模型的自适应控制利用系统辨识得到的模型参数,设计相应的控制器来实现自适应控制。
常见的基于模型的自适应控制方法有模型参考自适应控制和模型预测自适应控制等。
模型无关的自适应控制则不依赖于系统辨识的模型,而是根据实际测量数据直接调整控制器参数。
常见的模型无关的自适应控制方法有自适应滑模控制和神经网络控制等。
4.实验内容4.1系统辨识实验在实验中,我们通过采集系统输入输出数据,根据最小二乘法进行参数辨识。
首先设置系统的输入信号,如阶跃信号或正弦信号,并记录对应的输出数据。
然后根据采集到的数据,选取适当的模型结构,通过最小二乘法求解最佳的模型参数。
系统辨识三要素举例引言在系统辨识中,三要素是指系统的输入、输出和系统模型。
本文将依次介绍这三个要素,并通过实例进行详细探讨。
输入系统的输入是指对系统产生作用的影响或刺激。
输入可以是物质的,也可以是能量的,还可以是信息的。
下面通过几个例子来说明。
例子1:水龙头的流水当我们打开水龙头,水就会从水龙头中流出,这里的水流就是系统的输入。
水的流动对于水管系统来说,是一个重要的输入信号,系统会根据这个输入信号进行相应的处理和控制。
例子2:摄影机的光线对于一个摄影机来说,光线是其输入的重要因素之一。
当我们拍摄照片或录制视频时,摄影机会通过镜头接收到光线,将光线转化为电信号,并进行进一步的处理和记录。
例子3:人体感应灯的触发人体感应灯是一种智能照明设备,它可以根据人体的活动来自动感应开关。
当有人经过时,人体感应灯会检测到人体的热量和运动,从而触发开关动作。
这里的人体活动就是系统的输入。
输出系统的输出是指系统对输入作用的响应或处理结果。
输出可以是物质的,也可以是能量的,还可以是信息的。
下面通过几个例子来说明。
例子1:电饭煲的煮饭当我们把米和水放入电饭煲中,并设置好煮饭的时间和火力,电饭煲会通过控制加热和保温等操作,将米饭煮熟并保持在适宜的温度,这里的煮熟的米饭就是系统的输出。
例子2:汽车的速度当我们踩下汽车的油门,汽车会根据输入的油门信号,通过引擎和传动系统的协同工作,将化学能转化为机械能,将汽车推动前进。
这里汽车前进的速度就是系统的输出。
例子3:电视的图像和声音当我们打开电视,通过电视的天线、有线、光盘或网络等输入信号,电视会解码和处理这些信号,并将其转化为图像和声音,供我们观看和聆听。
这里的图像和声音就是电视的输出。
系统模型系统模型是对系统输入与输出关系的抽象描述和数学表达。
通过建立系统模型,可以更好地理解和分析系统的行为特性。
下面通过几个例子来说明。
例子1:弹簧振子弹簧振子是一个经典的力学系统,由质点和弹簧组成。
一、实验目的1. 理解系统辨识的基本概念和原理。
2. 掌握递推最小二乘算法在系统辨识中的应用。
3. 通过实验,验证算法的有效性,并分析参数估计误差。
二、实验原理系统辨识是利用系统输入输出数据,对系统模型进行估计和识别的过程。
在本实验中,我们采用递推最小二乘算法对系统进行辨识。
递推最小二乘算法是一种参数估计方法,其基本思想是利用当前观测值对系统参数进行修正,使参数估计值与实际值之间的误差最小。
递推最小二乘算法具有计算简单、收敛速度快等优点。
三、实验设备1. 电脑一台,装有MATLAB软件。
2. 系统辨识实验模块。
四、实验步骤1. 打开MATLAB软件,运行系统辨识实验模块。
2. 在模块中输入已知的系数a1、a2、b1、b2。
3. 生成输入序列u(t)和噪声序列v(t)。
4. 将输入序列u(t)和噪声序列v(t)加入系统,产生输出序列y(t)。
5. 利用递推最小二乘算法对系统参数进行辨识。
6. 将得到的参数估计值代入公式计算参数估计误差。
7. 仿真出参数估计误差随时间的变化曲线。
五、实验结果与分析1. 实验结果根据实验步骤,我们得到了参数估计值和参数估计误差随时间的变化曲线。
2. 结果分析(1)参数估计值:通过递推最小二乘算法,我们得到了系统参数的估计值。
这些估计值与实际参数存在一定的误差,这是由于噪声和系统模型的不确定性所导致的。
(2)参数估计误差:从参数估计误差随时间的变化曲线可以看出,递推最小二乘算法在短时间内就能使参数估计误差达到较低水平。
这说明递推最小二乘算法具有较好的收敛性能。
(3)参数估计误差曲线:在实验过程中,我们发现参数估计误差曲线在初期变化较快,随后逐渐趋于平稳。
这表明系统辨识过程在初期具有较高的灵敏度,但随着时间的推移,参数估计误差逐渐减小,系统辨识过程逐渐稳定。
六、实验结论1. 递推最小二乘算法在系统辨识中具有较好的收敛性能,能够快速、准确地估计系统参数。
2. 实验结果表明,递推最小二乘算法能够有效减小参数估计误差,提高系统辨识精度。
作业1如图1.1所示一阶系统,系统传递函数为G(s)=1/(0.1s+1),如果采用M序列作为输入信号进行系统辨识,采用5级移位寄存器产生M序列作为输入信号,取M序列的时钟脉冲△=15ms,a=2辨识该系统的脉冲响应。
并说明取5级移位寄存器合理与否。
图1.1 一阶RC系统答:1.解题步骤1.初始化参数,设置模型参数,设置产生M序列的各个关键参数;2.利用产生伪随机二进制序列信号的函数getPRBS产生M序列,并作为系统输入;3.通过系统模型,产生系统输出,并将输入输出画在同一图中;4.计算系统输入输出相关函数R xy;5.计算系统脉冲估计值ghat和系统真实脉冲输出g2.程序清单主程序clc; close all; clear all;%% InitializationR = 100e3; % system initialization resistance=100k ohmC = 1e-6; % capacitance=1uftc = R*C; % Time Constant% generate M-sequencen=5;a=2; % Level of the PRBSdel = 15e-3; % clock pulse periodN=2^n-1; % Period of M sequence total=2*N;% Generate m-sequence using the 'getPRBS' function Out = getPRBS(n,a,del,total);% Generate response y(t) of the systems = tf('s');G = 1/(tc*s+1);tf = total*del;tim = 0:del:tf-del;y = lsim(G, Out, tim);%plot input and output of the systemfigurestairs(tim,Out);axis([0 1.0 -2.5 2.5]);hold onplot(tim,y,'r');hold off% Compute Rxy(i*del)sum = 0.0;Rxy = [];iDel_vec=[];for i=1:Ntau=i-1;iDel_vec=[iDel_vec;tau*del];for j=1:Nsum=sum+sign(Out(j))*y(j+tau);endRxy_i = (a/N)*sum;sum=0.0;Rxy = [Rxy; tau Rxy_i];end% Compute ghat & gind = length(Rxy);C = -Rxy(ind, 2);S = (N+1)*a^2*del/N;Rxy_iDel = Rxy(:,2);ghat=(Rxy_iDel+ C )/S;ghat(1)=2*ghat(1);g = 10*exp(-10.*iDel_vec);Result = [Rxy ghat g];%list formdisp(' -------------------------------------------');disp(' i Rxy(iDel) ghat g');disp(' -------------------------------------------');disp(num2str(Result));disp(' -------------------------------------------');调用产生M序列的getPRBS函数function Out=getPRBS(n,a,del,total); %Get PRBS signal%parameters are n registers, a, altitude of m sequence, del, clock pulse, total, the length of m-sequence to be requiredOut = []; % Make Empty Out for storing binary sequence% Initialize n Registersfor i = 1:nR(i) = 1;endif (R(n)==1)Out(1) =-a;endif(R(n)==0)Out(1)=a;endfor i=2:totaltemp=R(1);R(1)= xor(R(n-2),R(n)); %modulo 2 adderj=2;while j<=n %registers shifttemp1=R(j);R(j)=temp;j=j+1;temp=temp1;endif (R(n)==1)Out(i) =-a;endif(R(n)==0)Out(i)=a;endend3. 运行结果图1.2 一阶RC 电路M 序列辨识响应图表1-I 输入输出相关函数、脉冲估计值、真实脉冲输出表-------------------------------------------------------------------------------------------i Rxy(iDel) ghat g--------------------------------------------------------------------------------------------0 -0.0319183 2.86143 10 1 0.529696 10.4984 8.60708 2 0.43794 9.01697 7.40818 3 0.358965 7.74186 6.37628 4 0.290991 6.64436 5.48812 5 0.232485 5.69973 4.72367 6 0.182129 4.88668 4.0657 7 0.138787 4.18689 3.49938 8 0.101482 3.58456 3.01194 9 0.0693728 3.06614 2.5924 10 0.0417366 2.61993 2.2313 11 0.0179498 2.23588 1.9205 12 -0.0025236 1.90531 1.65299--------------------------------------------------------------------------------------------timeA m p i t i t u d e一阶RC 系统输入输出曲线图续表1-I 输入输出相关函数、脉冲估计值、真实脉冲输出表-------------------------------------------------------------------------------------------i Rxy(iDel) ghat g-------------------------------------------------------------------------------------------13 -0.0201452 1.6208 1.4227414 -0.0353123 1.37591 1.2245615 -0.0483668 1.16514 1.0539916 -0.0596028 0.983723 0.9071817 -0.0692738 0.827577 0.78081718 -0.0775977 0.693181 0.67205519 -0.0847621 0.577505 0.57844320 -0.0909286 0.477942 0.49787121 -0.0962361 0.392248 0.42852122 -0.100804 0.31849 0.36883223 -0.104736 0.255006 0.31745624 -0.108121 0.200364 0.27323725 -0.111033 0.153334 0.23517726 -0.11354 0.112855 0.20241927 -0.115698 0.078014 0.17422428 -0.117556 0.0480262 0.14995629 -0.119154 0.0222155 0.12906830 -0.12053 0 0.11109-----------------------------------------------------------------------------选取5级移位寄存器作为输入信号合理。
原因是由5级移位寄存器产生的信号既拥有了较好的随机特性,其周期特性又能与本题中的系统相吻合。
由其产生的信号能够较好的激发出系统的输入输出特性。
作业2已知系统的差分方程为:() 1.5(1)0.7(2)(1)0.5(2)()(1)0.2(2)y k y k y k u k y k k k k εεε--+-=-+-+--+- 其中()k ε是均值为0,7.2σ=并服从正态分布的不相关随机噪声,()u k 采用4级移位寄存器产生的幅度为1的M 序列,1ms ∆=。
数据长度取N=240,请绘出Newton-Raphson 方法求参数的极大似然估计程序流程图并附上Matlab 程序。
1. 程序流程图图2.1 程序流程图2.程序清单clcclose allsigma=7.2;%均方差epsilon=0.001;%迭代终止条件total=16;N=240;V=sigma*randn(total,1); %噪声%M序列产生y1=1;y2=1;y3=1;y4=0;for i=1:15x1=xor(y3,y4);x2=y1;x3=y2;x4=y3;y(i)=y4;if y(i)>0.5,u(i)=-1;else u(i)=1;endy1=x1;y2=x2;y3=x3;y4=x4;end%最小二乘一般算法,产生初始估计值a1,a2,b1,b2;z=zeros(1,total);for k=3:totalz(k)=1.5*z(k-1)+0.7*z(k-2)+u(k-1)+0.5*u(k-2)+V(k);end%给样本系数矩阵H=[-z(2) -z(1) u(2) u(1);-z(3) -z(2) u(3) u(2);-z(4) -z(3) u(4) u(3);-z(5) -z(4) u(5) u(4);-z(6) -z(5) u(6) u(5);-z(7) -z(6) u(7) u(6);-z(8) -z(7) u(8) u(7);-z(9) -z(8) u(9) u(8);-z(10) -z(9) u(10) u(9);-z(11) -z(10) u(11) u(10);-z(12) -z(11) u(12) u(11);-z(13) -z(12) u(13) u(12);-z(14) -z(13) u(14) u(13);-z(15) -z(14) u(15) u(14)];Z=[z(3);z(4);z(5);z(6);z(7);z(8);z(9);z(10);z(11);z(12);z(13);z(14);z(15);z(16)];c=inv(H'*H)*H'*Z;a1=c(1);a2=c(2);b1=c(3);b2=c(4);d1=0.1;d2=0.1;theta=[a1,a2,b1,b2,d1,d2]';%参数估计初值v(1)=0;v(2)=0;d_theta1=zeros(6,1);d_theta2=zeros(6,1);v_da1(1)=0;v_da2(1)=0;v_db1(1)=0;v_db2(1)=0;v_dd1(1)=0;v_dd2(1)=0;v_da1(2)=0;v_da2(2)=0;v_db1(2)=0;v_db2(2)=0;v_dd1(2)=0;v_dd2(2)=0;j=1;bef=zeros(6,1);%执行算法while sum(abs(theta-bef))>epsilon%采集输入输出for i=1:N+3x1=xor(y3,y4);x2=y1;x3=y2;x4=y3;y(i)=y4;if y(i)>0.5,u(i)=-1;else u(i)=1;endy1=x1;y2=x2;y3=x3;y4=x4;endy(1)=0;y(2)=0;V=sigma*randn(N+3,1); %噪声y(1)=1;y(2)=0.01;for k=3:N+3y(k)=1.5*y(k-1)-0.7*y(k-2)+u(k-1)+0.5*u(k-2)+V(k)-V(k-1)+0.2*V(k-2);endJ_d=0;JJ_d=0;a1=theta(1);a2=theta(2);b1=theta(3);b2=theta(4);d1=theta(5);d2=theta(6);for k=3:N+3v(k)=y(k)+a1*y(k-1)+a2*y(k-2)-b1*u(k-1)-b2*u(k-2)-d1*v(k-1)-d2*v(k-2);%求取v(k) v_da1(k)=y(k-1)-d1*v_da1(k-1)-d2*v_da1(k-2);v_da2(k)=y(k-2)-d1*v_da2(k-1)-d2*v_da2(k-2);v_db1(k)=-u(k-1)-d1*v_db1(k-1)-d2*v_db1(k-2);v_db2(k)=-u(k-2)-d1*v_db2(k-1)-d2*v_db2(k-2);v_dd1(k)=-v(k-1)-d1*v_dd1(k-1)-d2*v_dd1(k-2);v_dd2(k)=-v(k-2)-d1*v_dd2(k-1)-d2*v_dd2(k-2);d_theta=[v_da1(k),v_da2(k),v_db1(k),v_db2(k),v_dd1(k),v_dd2(k)]';J_d=J_d+v(k)*d_theta;JJ_d=JJ_d+d_theta'*d_theta;endbef=theta;theta=theta-inv(JJ_d)*J_d;v(1)=v(N+1);v(2)=v(N+2);v_da1(1)=v_da1(N+1);v_da2(1)=v_da2(N+1);v_db1(1)=v_db1(N+1); v_db2(1)=v_db2(N+1);v_dd1(1)=v_dd1(N+1);v_dd2(1)=v_dd2(N+1); v_da1(2)=v_da1(N+2);v_da2(2)=v_da2(N+2);v_db1(2)=v_db1(N+2); v_db2(2)=v_db2(N+2);v_dd1(2)=v_dd1(N+2);v_dd2(2)=v_dd2(N+2); %求取误差error1(j)=-1.5-theta(1);error2(j)=0.7-theta(2);error3(j)=1-theta(3);error4(j)=0.5-theta(4);error5(j)=-1-theta(5);error6(j)=0.2-theta(6);v_error(j)=v(N+2);j=j+1;endtheta%输出估计参数%作图figure(1);plot(error1)hold onplot(error2)hold onplot(error3)hold onplot(error4)hold onplot(error5,'r')hold onplot(error6,'r')title('参数估计误差')xlabel('迭代次数')ylabel('误差')hold offfigure(2);plot(-1.5-error1,'b');hold onplot(0.7-error2,'c')hold onplot(1-error3,'g')hold onplot(0.5-error4,'y')hold onplot(-1-error5,'m')hold onplot(0.2-error6,'r')legend('a1','a2','b1','b2','d1','d2',-1) title('参数估计值变化') xlabel('迭代次数') ylabel('参数') hold off3. 程序运行结果表3-I 模型参数辨识结果被估参数 a1 a2 b1 b2 d1 d2 真实值 -1.5 0.7 1.01 0.5 -1.0 0.2 估计值-1.47110.68170.96870.5875-0.95260.191参数估计值的变化过程曲线如图3.2所示,参数误差估计曲线如图3.3所示。