第十一章 化学动力学二
- 格式:ppt
- 大小:2.87 MB
- 文档页数:88
南京⼤学《物理化学》练习第⼗⼀章化学动⼒学基础_⼆_第⼗⼀章化学动⼒学基础(⼆)返回上⼀页1. 将1.0 g氧⽓和0.1 g氢⽓于300 K时在1 dm3的容器内混合,试计算每秒钟内单位体积内分⼦的碰撞数为若⼲?设O2和H2为硬球分⼦,其直径分别为0.339和0.247 nm.2. 某双原⼦分⼦分解反应的阈能为83.68 kJ/mol,试分别计算300 K及500 K时,具有⾜够能量可能分解的分⼦占分⼦总数的分数为多少?3. 某⽓相双分⼦反应, 2A(g) ---> B(g)+C(g),能发⽣反应的临界能为100 kJ/mol.已知A的相对分⼦量为60,分⼦直径为0.35 nm,试计算在300 K 时,该分解作⽤的速率常数k 值.4. 松节油萜(液体)的消旋作⽤上⼀级反应,在457.6 K和510.1 K时的速率常数分别为2.2×和3.07×min-1,试求反应的实验活化能E a,在平均温度时的活化焓和活化熵.5. 在298 K时某化学反应,如加了催化剂后使其活化熵和活化焓⽐不加催化剂是时分别下降了10 J/(mol·K)和10 kJ/mol,试求不加催化剂与加了催化剂的两个速率常数的⽐值.6. 在298 K时有两个级数相同的基元反应A和B,其活化焓相同,但速率常数k A=10k B,求两个反应的活化熵相差多少?7. 某顺式偶氮烷烃在⼄醇溶液中不稳定,通过计量其分解放出的N2⽓来计算其分解的速率常数k值,⼀系列不同温度下测定的k值如下所⽰:T/ k 248 252 256 260 264k×/s-1 1.22 2.31 4.39 8.50 14.3试计算该反应在298K时的实验活化能,活化焓,活化熵和活化吉布斯⾃由能.8. 对下述⼏个反应,若增加溶液中的离⼦强度,则其反应速率常数是增⼤,减⼩还是不变?(1) NH4+ +CNO- --->CO(NH2)2(2) 酯的皂化作⽤.(3) S2O82- + I- --->P9. 在298 K时,反应N2O4(g)2NO2(g)的速率常数k1=4.80×s-1,已知NO2和N2O4的⽣成吉布斯⾃由能分别为51.3和97.8 kJ/mol,试求(1)298 K时, N2O4的起始压⼒为101.325 kPa时, NO2(g)的平衡分压?(2)该反应的弛豫时间?10. ⽤温度跳跃技术测量⽔的离解反应: H2O H+ + OH-,在298 K时的弛豫时间τ=37×s,试求该反应正向和逆向反应的速率常数k1和k-2.11. 在光的影响下,蒽聚合为⼆蒽.由于⼆蒽的热分解作⽤⽽达到光化平衡.光化反应的温度系数(即温度每增加10K反应速率所增加的倍数)是1.1,热分解的温度系数是2.8,当达到光化平衡时,温度每升⾼10K.⼆蒽产量是原来的多少倍?12. ⽤波长为313nm的单⾊光照射⽓态丙酮,发⽣下列分解反应:(CH3)2CO +hv---> C2H6 + CO ,若反应池的容量是0.059 dm3,丙酮吸收⼊射光的分数为0.915,在反应过程中,得到下列数据:反应温度:840 K 照射时间t=7 h起始压⼒:102.16 kPa ⼊射能48.1×J/s,终了压⼒:104.42 kPa计算此反应的量⼦效率.13. 有⼀酸催化反应A+B C+D,已知该反应的速率公式为d[C]/dt=k[H+][A][B] ,当[A]0=[B]0=0.01 mol·dm-3时,在pH=2的条件下,在298 K时的反应的半衰期为1 h,若其他条件不变,在288 K时t1/2为2 h,试计算(1)在298 K时反应的速率常数k值。
第十一章化学动力学1.反应为一级气相反应,320 ºC时。
问在320 ºC加热90 min的分解分数为若干?解:根据一级反应速率方程的积分式答:的分解分数为11.2%2.某一级反应的半衰期为10 min。
求1h后剩余A的分数。
解:同上题,答:还剩余A 1.56%。
3.某一级反应,反应进行10 min后,反应物反应掉30%。
问反应掉50%需多少时间?解:根据一级反应速率方程的积分式答:反应掉50%需时19.4 min。
4. 25 ºC时,酸催化蔗糖转化反应的动力学数据如下(蔗糖的初始浓度c0为1.0023 mol·dm-3,时刻t的浓度为c)030609013018000.10010.19460.27700.37260.4676使用作图法证明此反应为一级反应。
求算速率常数及半衰期;问蔗糖转化95%需时若干?解:数据标为0 30 60 90 130 1801.0023 0.9022 0.8077 0.7253 0.6297 0.53470 -0.1052 -0.2159-0.3235-0.4648-0.6283利用Powell-plot method判断该反应为一级反应,拟合公式蔗糖转化95%需时5. N -氯代乙酰苯胺异构化为乙酰对氯苯胺为一级反应。
反应进程由加KI溶液,并用标准硫代硫酸钠溶液滴定游离碘来测定。
KI只与A反应。
数据如下:0 1 2 3 4 6 849.3 35.6 25.75 18.5 14.0 7.3 4.6 计算速率常数,以表示之。
解:反应方程如下根据反应式,N -氯代乙酰苯胺的物质的量应为所消耗硫代硫酸钠的物质的量的二分之一,0 1 2 34.930 3.560 2.575 1.8500 -0.3256 -0.6495 -0.980作图。
6.对于一级反应,使证明转化率达到87.5%所需时间为转化率达到50%所需时间的3倍。
对于二级反应又应为多少?解:转化率定义为,对于一级反应,对于二级反应,7.偶氮甲烷分解反应为一级反应。
第十一章化学动力学基础(二)通过本章学习理解碰撞、过渡态和单分子反应理论,了解一些特殊反应的动力学规律。
(一)基本要求和基本内容:基本要求1.了解化学反应动力学的碰撞、过渡态和单分子反应理论的基本内容,弄清几个能量的不同物理意义及相互关系。
2.了解溶液中反应的特点和溶剂对反应的影响。
3.了解快速反应所常用的测定方法及弛豫时间4.了解光化学反应和催化反应的特点。
重点和难点:过渡态理论中E c、E b、E0、ϑmrH#∆、ϑmrS#∆与Ea之间的关系:基本内容一、碰撞理论1.双分子的互碰频率2.硬球碰撞模型3.微观反应和宏观反应之间的关系4.反应阈能与实际活化能的关系5.概率因子二、过渡态理论1.势能面2.由过渡态理论计算反应速率3.E c、E b、E0、θmrH∆、θmrS∆与Ea和指前因子A之间的关系三、单分子反应理论四、在溶液中进行的反应1.溶剂对反应速率的影响2.原盐效应3.扩散控制反应五、快速反应的测试1.弛豫法2.闪光光解六、光化学反应1.光化学基本定律2.量子产率3.分子的能态4.光化反应动力学5.光化平衡和温度对光化学反应的影响6.感光反应、化学发光七、催化反应动力学1.催化剂与催化作用2.均相酸碱催化3.络合催化(配位催化)4.酶催化反应(二) 基本理论及公式1. 碰撞理论 ⑴ 要点① 反应物分子必须经过碰撞过程才有可能变成产物 ② 只有能量较大的活化分子的碰撞才能发生化学反映⑵ 计算公式① 不同种物质分子间的碰撞次数 [][]B A RTLdB dA Z ABπμπ222⎪⎭⎫ ⎝⎛+=② 同种物质分子间的碰撞次数 []2222A RTLd Z AA AA πμπ=③ 有效碰撞分数)e x p (RTE q C -= E C 为临界能,是基元反应所必需的能量。
④ 不同种分子间碰撞反应的速率常数⎪⎭⎫⎝⎛-=RT E M RTLd k C AB exp 82ππ ⑤ 同种分子间碰撞反应的速率常数⎪⎭⎫⎝⎛-=RT E M RTLd k C AA exp 22ππ ⑶ 解决的问题① 揭示了反应究竟是如何进行的一个简明﹑清晰的物理现象 ② 解释了简单反应速率公式及阿累尼乌斯公式成立的依据③ 解决了反应速率常数的求算问题 ④ 说明了Ea 与T 间的关系RT E E C a 21+=2. 过渡状态理论 ⑴ 要点反应物先形成不稳定的活化络合物,活化络合物与反应物之间迅速达成化学平衡,另一方面活化络合物转化为产物[]C B A C B A C B A +-→⋅⋅⋅⋅⋅⋅⇔-+≠⑵ 计算公式① 用统计热力学方法计算速率常数⎪⎭⎫ ⎝⎛-⋅⋅=∏≠RT E f f hT k k BBB 0'exp② 用热力学方法计算速率常数 (ⅰ) ()()⎪⎪⎭⎫ ⎝⎛∆-⋅⋅=≠-ΘRT G Ch T k k l nB exp 1 或,≠⋅=C B K h Tk k 或,()⎪⎪⎭⎫⎝⎛∆-⋅⎪⎪⎭⎫⎝⎛∆-⋅⋅=Θ≠-ΘRT H R S ChT k k m r mr nB exp exp 1 (ⅱ) ⎪⎪⎭⎫⎝⎛∆-⋅⎪⎭⎫⎝⎛⋅=≠-RTG RT P h T k k PnB exp 1 或 ⎪⎪⎭⎫⎝⎛∆-⋅⎪⎪⎭⎫⎝⎛∆-⋅⎪⎭⎫⎝⎛⋅=Θ≠-RT H RS RT P h T k k P r Pr nB exp exp 1 ③ 几个能量及其关系 (ⅰ) RT E EC a 21+=Ea 活化能,Ec 分子发生有效反应所必须超过的临界能 (ⅱ)mRT E E a +=0E 0 活化络合物的零点能与反应物零点能之差式中m 包括了普适常数项中及配分函数项中所有与T 有关的因子,对一定的反应体系,m 有定值。
、主要概念反应速率,依时计量学反应,(非依时计量学反应,)消耗速率,生成速率,基元反应,非基元反应,质量作用定律,级数,总级数,(基元反应的)反应分子数,速率方程,半衰期,反应级数的确定方法(积分法,微分法,初浓度法,隔离法,半衰期法),活化能,指前因子,速率常数,表观活化能或经验活化能2,对行反应,平行反应,连串反应,稳态处理法,平衡态近似法,单分子反应机理,直链反应,支链反应,爆炸,碰撞理论要点,势能面,反应途径,过渡状态理论要点。
笼罩效应,遭遇对,量子效率,催化剂二、主要定义式与公式1 .反应速率:标准反应0=1B V B B ,反应进度:d E =dn B /V B ,反应速率:r = d E /Vdt =dn B/ Vv B dt =(恒V)dC B/v B dt r生成速率(反应物):r B = -dC B/ dt消耗速率(产物):r B = dC B/ dt2. 质量作用定律:对基元反应aA + bB +... —IL +mM速率方程:-dC A/dt = k C A a C B b…a3. 速率方程的一般形式:经验式:-dc A/dt = k c A 分式)式中::反应物A,B的分级数,反应的总级数n=「:; k-速率常数,与温度有关。
4.简单级数反应的动力学特征表、简单反应浓度对反应速率的影响级数微分式积分式半衰期k量纲线形关系式°A=k C AO- CA =ktt=£AO%2 2k[浓度][时间]-1—A0L t・第十一章化学动力学注意:用浓度表示的反应速率如—d c A/d t=k c C A,则k指k c。
若用分压表示的反应速率一dp A/dt=k p p A n,则k 指k p。
两者关系为k p = k c (RT) 1-n5 •确定反应级数的方法C Aa P-dCA/ C A C B ...t(1)积分法:C A,0= k dt(积分式)把实验数据C A~t关系代入各级数的反应积分式中求出k,若k为常数则为此级数,或作其线性关系图,若呈直线则为该级数。
第十一章化学动力学基础(二)(436题)一、选择题( 共72 题)1. 1 分(6001)根据碰撞理论,温度增加反应速率提高的主要原因是:( )(A) 活化能降低(B) 碰撞频率提高(C) 活化分子所占比例增加(D) 碰撞数增加2. 2 分(6002)对于双分子反应 A + A A2,设Z AA= 1032 dm-3·s-1。
如果每次碰撞均能发生反应,则双分子反应速率常数的数量级将是:( )(A) 3.3×10-8 dm3·mol-1·s-1 (B) 3.3 dm3·mol-1·s-1(C) 3.3×108 dm3·mol-1·s-1 (D) 1032 dm3·mol-1·s-13. 2 分(6003)如果碰撞理论正确,则双分子气相反应的指前因子的数量级应当是:( )(A) 10-8 -10-9 dm3·mol-1·s-1 (B) 1023 -1024 dm-3·s-1(C) 1010 -1011 dm3·mol-1·s-1 (D) 1010-1011 dm-3·s-14. 2 分(6004)在碰撞理论中校正因子P小于1的主要因素是:( )(A) 反应体系是非理想的(B) 空间的位阻效应(C) 分子碰撞的激烈程度不够(D) 分子间的作用力5. 2 分(6005)在简单碰撞理论中,有效碰撞的定义是:( )(A) 互撞分子的总动能超过E c(B) 互撞分子的相对总动能超过E c(C) 互撞分子联心线上的相对平动能超过E c(D) 互撞分子的内部动能超过E c6. 2 分(6006)下列双分子反应中:(1) Br + Br →Br2(2) CH3CH2OH + CH3COOH →CH3CH2COOCH3+ H2O(3) CH4+ Br2→CH3Br + HBr碰撞理论中方位因子P的相对大小是∶( )(A) P(1) > P(2) > P(3) (B) P(1) > P(3) > P(2)(C) P(1) < P(2) < P(3) (D) P(1) < P(3) < P(2)7. 2 分(6007)在T = 300 K,如果分子A和B要经过每一千万次碰撞才能发生一次反应,这个反应的临界能将是:( )(A) 170 kJ·mol-1 (B) 10.5 kJ·mol-1(C) 40.2 kJ·mol-1 (D) -15.7 kJ·mol-18. 2 分(6022)设某基元反应在500 K时实验活化能为83.14 kJ·mol-1,则此反应的临界能为:( )(A) 81.06 kJ·mol-1 (B) 2.145 kJ·mol-1(C) 162.1 kJ·mol-1 (D) 4.291 kJ·mol-19. 2 分(6024)某双原子分子分解反应的临界能为83.68 kJ•mol-1,在300 K时活化分子所占的分数是:( )(A) 6.17×1013 % (B) 6.17×10-13 %(C) 2.68×1013 % (D) 2.68×10-13 %10. 1 分(6030)关于反应速率理论中概率因子P的有关描述,不正确的是:( )(A) P与∆≠S m有关(B) P体现空间位置对反应速率的影响(C) P与反应物分子间相对碰撞能有关(D) P值大多数<1,但也有>1的11. 2 分(6031)相同分子B反应,其单位时间,单位体积内的碰撞数为:( )(A) 2d B2(πRT/M B)1/2(B) 12d B2(πRT/M B)1/2(C) 2N B2d B2(πRT/M B)1/2(D) 4LN B2d B2(πRT/M B)1/2式中L是阿伏伽德罗常数,N B是B分子的数密度。
第十一章 化学动力学主要内容1. 化学反应速率的定义转化速率ξ是单位时间内发生的反应进度ξ:B B def d d d d n ξξt t ν=1反应速率υ是单位时间单位体积内化学反应的反应进度:11BB def d d d d n V t V V tξξυν==对于定容反应,1B B d d c tυν=实际反应速率常用反应物A 的消耗速率和产物Z 的生成速率表示。
A A d d c t υ=-ZZ d d ctυ=对反应 A B Y Z a b y z +→+,ABYZabyz υυυυυ====以压力表示的反应速率为:B P B dp dt υν=1 Ap,A dpdtυ=-Zp ,Z dp dtυ=p RT υυ=2. 基元反应和质量作用定律在化学反应过程中每一个简单的反应步骤就是一个基元反应。
基元反应的速率与各反应物浓度的幂乘积成正比,其中各浓度的方次就是反应方程中相应组分的分子个数,这就是质量作用定律。
以方程表示为:AA B d d a b c kc c t-=式中k 为反应速率常数,温度一定时反应速率常数为一定值,与浓度无关。
质量作用定律,它只适用于基元反应。
3. 化学反应速率方程、反应级数A BA A A AB d d n n c k c c t υ=-=叫反应速率的微分形式;反应速率的积分形式即A c 与t的函数关系式。
(1)对于化学计量反应:aA+bB+…=…+yY+zZ ,反应速率方程的一般形式可写成:A BAA AB d n n c kc c dtυ=-=式中:n A 、n B ……分别为组分A 、B ……的反应分级数,量纲为1。
n = n A + n B + ……为总反应级数(简称反应级数)。
(2)用气体组分的分压表示的速率方程:若反应a A 产物,反应级数为n ,则A 的消耗速率为:A Ad d np p k p t -=式中k p 为以分压表示的速率常数。
恒温恒容下A 看作理想气体时,n p k k (RT )-=14. 具简单级数反应的速率公式A A d d nc /t kc =-及其特点反应物反应掉一半所需的时间为反应的半衰期,以t 1/2表示。