第2讲 流体静力学基本方程式
- 格式:ppt
- 大小:1.13 MB
- 文档页数:20
第一章 流体流动与输送机械1. 流体静力学基本方程:gh p p ρ+=022. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p )3. 伯努力方程:ρρ222212112121p u g z p u g z ++=++4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρρ222212112121+ 5. 雷诺数:μρdu =Re6. 范宁公式:ρρμλfp d lu u d l Wf ∆==⋅⋅=22322 7. 哈根-泊谡叶方程:232d lup f μ=∆ 8. 局部阻力计算:流道突然扩大:2211⎪⎭⎫ ⎝⎛-=A A ξ流产突然缩小:⎪⎭⎫ ⎝⎛-=2115.0A A ξ第二章 非均相物系分离1. 恒压过滤方程:t KA V V V e 222=+令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22第三章 传热1. 傅立叶定律:n t dAdQ ϑϑλ-=,dxdt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:bt t AQ 21-=λ,或mA b tQ λ∆=4. 单层圆筒壁的定态热传导方程: )ln1(21221r r t t l Q λπ-=或m A b tt Q λ21-=5. 单层圆筒壁内的温度分布方程:C r l Qt +-=ln 2λπ(由公式4推导)6. 三层圆筒壁定态热传导方程:34123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-=7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数223μρβtl g Gr ∆= 9. 流体在圆形管内做强制对流:10000Re >,1600Pr 6.0<<,50/>d lk Nu Pr Re 023.08.0=,或kCp du d ⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=λμμρλα8.0023.0,其中当加热时,k=,冷却时k= 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+=无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:21211111d d d d b K m ⋅+⋅+=αλα 12. 考虑热阻的总传热系数方程:212121211111d d R R d d d d b K s s m ⋅++⋅+⋅+=αλα 13. 总传热速率方程:t KA Q ∆=14. 两流体在换热器中逆流不发生相变的计算方程:⎪⎪⎭⎫⎝⎛-=--22111112211lnp m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:⎪⎪⎭⎫ ⎝⎛+=--22111122111lnp m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2221ln p m c q KAt T t T =--第四章 蒸发1. 蒸发水量的计算:110)(Lx x W F Fx =-=2. 水的蒸发量:)1(1x x F W -= 3. 完成时的溶液浓度:WF F x -=4. 单位蒸气消耗量:rr D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热5. 传热面积:mt K QA ∆=,对加热室作热量衡算,求得Dr h H D Q c =-=)(,1t T t -=∆,T 为加热蒸气的温度,t 1为操作条件下的溶液沸点。
流体静力学方程式流体静力学是研究流体在静止状态下的力学性质的学科。
它是流体力学的一个分支,研究流体静止时的压力、密度、重力等因素对流体的影响。
本文将介绍流体静力学的方程式及其应用。
正文流体静力学方程式是描述流体静止时的力学行为的数学表达式。
主要包括两个方程式:流体静力平衡方程和流体连续性方程。
一、流体静力平衡方程流体静力平衡方程是基于力的平衡原理得出的。
它可以用来描述流体内外压力的均衡状态。
在一个封闭的容器中,流体的压力在各个方向上必须保持平衡。
这个平衡关系可以用以下方程式表示:P = ρg其中,P是压力场的梯度,ρ是流体的密度,g是重力加速度。
这个方程式表明流体中各个点的压力梯度与密度和重力加速度之间存在着一定的关系。
二、流体连续性方程流体连续性方程是基于流体质量守恒原理得出的。
它描述了流体在任意两个点之间质量的守恒关系。
对于一个不可压缩的流体(密度恒定),流体连续性方程可以用以下方程式表示:·v = 0其中,·v表示流体速度场的散度。
这个方程式表明流体在任意两个点之间的流量守恒,流出的质量等于流入的质量。
这两个方程式是流体静力学中的基本方程,通过它们可以计算流体静止时的压力分布和速度分布。
在实际的工程应用中,它们被广泛用于分析和设计涉及流体静力学的系统,如水坝、水管等。
总结起来,流体静力学方程式是描述流体静止时力学行为的基本数学表达式。
通过流体静力平衡方程和流体连续性方程,我们可以了解流体静态时的压力分布和速度分布,进而应用于实际工程中的设计和分析。
这些方程式为我们提供了深入理解流体静力学的基础,有助于我们更好地应对与流体静力学相关的问题。
流体力学中的流体静力学方程流体力学是研究流体运动和流体行为的物理学科。
它涉及到各种复杂的力学现象,其中之一就是流体静力学方程。
流体静力学方程描述了静止流体中各个点的力学平衡条件,它是流体力学的基础。
在介绍流体静力学方程之前,我们先来了解一下流体静力学的基本概念。
流体是一种无固定形状的物质,包括液体和气体。
流体的特性在很大程度上受到压力的影响。
流体静力学研究的是流体在静止状态下的力学行为,即不考虑流体的运动情况。
流体静力学方程可以通过两个基本方程来描述,分别是压力方程和流体压强分布方程。
1. 压力方程:在流体静力学中,压力是一个非常重要的参数。
它可以通过以下方程来描述:∇P = -ρg其中P是压力,∇P表示压力梯度,ρ是流体的密度,g是重力加速度。
上述方程意味着压力梯度的方向是压力降低的方向。
当流体静止时,压力在任意两点之间的变化只受到重力的影响。
这是因为重力会使流体向下运动,从而导致压力的变化。
2. 流体压强分布方程:流体压强分布方程是描述流体静止状态下压强分布的方程。
它可以通过以下方程来表示:P = P0 + ρgz其中P是流体某一点的压强,P0是参考点的压强,ρ是流体的密度,g是重力加速度,z是从参考点到目标点的垂直距离。
上述方程表明了流体压强随着高度的增加而递减。
这是因为在静止流体中,压强的变化只取决于液体的密度和重力的作用。
除了上述两个基本方程外,流体静力学还涉及到一些附加的方程,如流体的静力平衡方程和流体的表面张力方程。
这些方程在一些特殊情况下起到重要的作用,能够进一步描述流体静止时的行为。
总结起来,流体静力学方程是描述流体静止状态下的力学平衡条件的方程。
它们包括压力方程和流体压强分布方程,能够很好地描述流体静态行为。
在流体力学的研究中,深入理解和应用这些方程对于解决各种与流体静力学相关的问题非常重要。
图卜2流体静力学皐木方程式的推导(3) 作用于整个液柱的重力 GG = JgA(Z i -Z 2)(N) 0由于液柱处于静止状态,在垂直方向上的三个作用力的合力为零,即 :p i A+ :?gA(Z i -Z 2) - — p 2 A = 0令:h= (Z i -Z 2) 整理得: p 2 = p i +「gh若将液柱上端取在液面,并设液面上方的压强为p o ; 则:p 0 = p i + :'gh上式均称为流体静力学基本方程式,它表明了静止流体内部压力变化的规律。
即:静止流体内部某一点的压强等于作用在其上方的压强加上液柱的重力压强。
2、 静力学基本方程的讨论:(1) 在静止的液体中,液体任一点的压力与液体密度和其深度有关。
(2) 在静止的、连续的同一液体内,处于同一水平面上各点的压力均相等。
(3) 当液体上方的压力有变化时,液体内部各点的压力也发生同样大小的变化。
三、流体静力学基本方程式1、 方程的推导设:敞口容器内盛有密度为 二的静止流体,取任意一个垂直流体液柱,上下底面积2均为Am 。
作用在上、下端面上并指向此两端面的压力分别为P 1和P 2。
该液柱在垂直方向上受到的作用力有: (1) 作用在液柱上端面上的总压力 P iPi = p i A (N) 也 (2) 作用在液柱下端面上的总压力 P 2P = p A (N)压强差的也大小可利用一定高度的液体柱来表示。
p P (5) 整理得:z 1g1二z 2g 也为静力学基本方程P g (6) 方程是以不可压缩流体推导出来的,对于可压缩性的气体,只适用于压强变 化不大的情况。
3、静力学基本方程的应用(1)测量流体的压差或压力①U 管压差计U 管压差计的结构如图。
对指示液的要求:指示液要与被测流体不互溶,不起 A化学作用,且其密度:7指应大于被测流体的密度:、。
通常采用的指示液有:水、油、四氯化碳或汞等。
I测压差:设流体作用在两支管口的压力为 p 1和P 2,且P i > P 2 , A-B 截面为等压面 即:P A 二P B 根据流体静力学基本方程式分别对 U 管左侧和U 管右侧进行计算整理得: P i - P 2 =:〔'指一'Rg讨论: (a )压差(p i -P 2)只与指示液的读数 R 及指示液冋被测流体的密度差有关。
第⼆章-流体静⼒学⼀、学习导引1、流体静⽌的⼀般⽅程(1)流体静⽌微分⽅程x p f x ??=ρ1,y p f y ??=ρ1,zpf z ??=ρ1 (2)压强微分)(dz f dy f dx f dp z y x ++=ρ(3)等压⾯微分⽅程0=++dz f dy f dx f z y x2、液体的压强分布重⼒场中,液体的位置⽔头与压强⽔头之和等于常数,即C pz =+γ如果液⾯的压强为0p ,则液⾯下深度为h 处的压强为h p p γ+=03、固体壁⾯受到的静⽌液体的总压⼒物体受到的⼤⽓压的合⼒为0。
计算静⽌液体对物⾯的总压⼒时,只需考虑⼤⽓压强的作⽤。
(1)平⾯壁总压⼒:A h P c γ= 压⼒中⼼Ay J y y c cc D += 式中,坐标y 从液⾯起算;下标D 表⽰合⼒作⽤点;C 表⽰形⼼。
(2)曲⾯壁总压⼒:222z y x F F F F ++=分⼒:x xc x A h F γ=,y yc y A h F γ=,V F z γ=4、难点分析(1)连通器内不同液体的压强传递流体静⼒学基本⽅程式的两种表达形式为C pz =+γ和h p p γ+=0。
需要注意的是这两个公式只适⽤于同⼀液体,如果连通器⾥⾯由若⼲种液体,则要注意不同液体之间的压强传递关系。
(2)平⾯壁的压⼒中⼼压⼒中⼼的坐标可按式Ay J y y c cc D +=计算,⾯积惯性矩c J 可查表,计算⼀般较为复杂。
求压⼒中⼼的⽬的是求合⼒矩,如果⽤积分法,计算往往还简便些。
(3)复杂曲⾯的压⼒体压⼒体是这样⼀部分空间体积:即以受压曲⾯为底,过受压曲⾯的周界,向相对压强为零的⾯或其延伸⾯引铅垂投影线,并以这种投影线在相对压强为零的⾯或其延伸⾯上的投影⾯为顶所围成的空间体积。
压⼒体内不⼀定有液体。
正确绘制压⼒体,可以很⽅便地算出铅垂⽅向的总压⼒。
(4)旋转容器内液体的相对静⽌液体随容器作等⾓速度旋转时,压强分布及⾃由⾯的⽅程式为c z gr p +-=)2(22ωγc gr z +=2220ω恰当地选取坐标原点,可以使上述表达式简化。
第二讲流体静力学基本方程及其应用【学习要求】1.理解流体静力学方程的意义;2.掌握流体静力学方程的应用。
【预习内容】1.在均质流体中,流体所具有的与其所占有的之比称为。
任何流体的密度都随它的和而变化,但对液体的密度影响很小,可忽略,故常称液体为的流体。
2.流体静压力的两个重要特性分别是:(1);(2)。
3.1atm = mmHg = Pa = mH2O【学习内容】一、流体静力学基本方程式1.流体静力学基本方程式的形式p2 = p1+ ρ ( z1—z2 )g 或p2 = p1+ hρg流体静力学方程表明:在重力作用下静止液体内部的变化规律。
即在液体内部任一点的流体静压力等于。
2.流体静力学基本方程式的意义流体静力学方程表明:(1)当作用于流体面上方的压强有变化时;(2)当流体面上方的压强一定时,静止流体内部任一点压强的大小与流体本身的和有关,因此在的的同一液体处,处在都相等。
二、流体静力学基本方程式的应用1.流体进压强的测量(1)U形管压差计①U形管压差计由、及管内指示液组成。
②指示液要与被测流体不,不起,其密度要,通常采用的指示液有、、及等。
③U形管压差计可用来测量压强差,也可以用来测量或。
【典型例题】例1用U形管测量管道中1、2两点的压强差。
已知管内流体是水,指示液是密度为1595 kg/m3的CCl4,压差计读数为40cm,求压强差(p1– p2)。
若管道中的流体是密度为2.5kg/m3的气体,指示液仍为CCl4,U形管读数仍为40cm,则管道中1、2两点的压强差是多少Pa?【例2】某蒸汽锅炉用本题附图中串联的汞-水U形管压差计以测量液面上方的蒸气压。
已知汞液面与基准面的垂直距离分别为h1 = 2.3 m,h2 = 1.2 m,h3 = 2.5 m,h4 = 1.4m,两U形管间的连接管内充满了水。
锅炉中水面与基准面的垂直距离h5 = 3.0m,大气压强p a = 99kPa。
试求锅炉上方水蒸汽的压强p0为若干(Pa)?【随堂练习】1.大气压强为750mmHg时,水面下20m深处水的绝对压强为多少Pa?2.水平导管上的两点接一盛有水银的U形管压差计(如图所示),压差计读数为26mmHg。
第一节 流体静力学基本方程式流体静力学是研究流体在外力作用下达到平衡的规律。
在工程实际中,流体的平衡规律应用很广,如流体在设备或管道内压强的变化与测量、液体在贮罐内液位的测量、设备的液封等均以这一规律为依据。
1-1-1流体的密度一、密度单位体积流体所具有的质量,称为流体的密度,其表达式为:Vm =ρ (1-1) 式中 ρ——流体的密度,kg/m 3;m ——流体的质量,kg ;V ——流体的体积,m 3。
不同的流体密度不同。
对于一定的流体,密度是压力P 和温度T 的函数。
液体的密度随压力和温度变化很小,在研究流体的流动时,若压力和温度变化不大,可以认为液体的密度为常数。
密度为常数的流体称为不可压缩流体。
流体的密度一般可在物理化学手册或有关资料中查得,本教材附录中也列出某些常见气体和液体的密度值,可供查用。
二、气体的密度气体是可压缩的流体,其密度随压强和温度而变化。
因此气体的密度必须标明其状态,从手册中查得的气体密度往往是某一指定条件下的数值,这就涉及到如何将查得的密度换算为操作条件下的密度。
但是在压强和温度变化很小的情况下,也可以将气体当作不可压缩流体来处理。
对于一定质量的理想气体,其体积、压强和温度之间的变化关系为将密度的定义式代入并整理得'''Tp p T ρρ= (1-2) 式中 p ——气体的密度压强,Pa ;V ——气体的体积,m 3;T ——气体的绝对温度,K ;上标“'”表示手册中指定的条件。
一般当压强不太高,温度不太低时,可近似按下式来计算密度。
RTpM =ρ (1-3a ) 或 000004.22Tp p T Tp p T M ρρ== (1-3b ) 式中 p ——气体的绝对压强,kPa 或kN/m 2;M ——气体的摩尔质量,kg/kmol ;T ——气体的绝对温度,K ;R ——气体常数,8.314kJ/(kmol ·K )下标“0”表示标准状态(T 0=273K ,p 0=101.3kPa )。
流体静力学公式范文1.流体静力学公式:1.1压力:压力是指单位面积上的力的大小。
在流体静力学中,压力可以用公式P=F/A来表示,其中P表示压力,F表示作用在面积A上的力。
根据流体静力学公式,压力是均匀分布的,即流体内任意一点的压力相等。
1.2密度:密度是指单位体积上的质量。
在流体静力学中,密度可以用公式ρ=m/V来表示,其中ρ表示密度,m表示流体的质量,V表示流体的体积。
根据流体静力学公式,密度是常量,即流体内密度相等。
1.3重力:重力是指天体间的引力。
在流体静力学中,重力可以用公式F = mg来表示,其中F表示重力的大小,m表示物体的质量,g表示重力加速度。
根据流体静力学公式,重力是垂直于表面的。
2.颗粒静力学公式:颗粒静力学公式描述了颗粒静止的情况下的力学平衡。
它是针对粒子或颗粒的力学性质而言的。
在颗粒静力学中,主要研究的参数有重力、摩擦力和支持力。
2.1重力:重力在颗粒静力学中的表达式与流体静力学中相同。
2.2摩擦力:摩擦力是指两个物体表面之间的力,它的大小与两个物体之间的接触面积和材料的类型有关。
在颗粒静力学中,摩擦力可以用公式Ff=μN来表示,其中Ff表示摩擦力的大小,μ表示摩擦系数,N表示支持力的大小。
2.3支持力:支持力是指支持物体的力,它的大小与物体的重力和受到的其他力有关。
在颗粒静力学中,支持力可以用公式N = mg来表示,其中N表示支持力的大小,m表示物体的质量,g表示重力加速度。
3.流体位能公式:流体位能公式描述了流体在重力作用下的位能。
它是以流体的高度和重力为基础的。
在流体静力学中,主要研究的参数有流速、高度和重力。
3.1流速:流速是指流体单位时间内通过其中一横截面的体积。
在流体位能公式中,流速可以用公式v=Q/A来表示,其中v表示流速,Q表示流量,A表示横截面积。
3.2高度:高度是指流体其中一点相对于一个参考平面的高度差。
在流体位能公式中,高度可以用公式h=z2-z1来表示,其中h表示高度,z1和z2表示两个点的高度。