图上作业法
- 格式:ppt
- 大小:1.57 MB
- 文档页数:10
表上作业法和图上作业法
表上作业法
●定义;表上作业法是指用列表的方法求解线性规划问题中
运输模型的计算方法。
是线性规划一种求解方法。
当某些线性规划问题采用图上作业法难以进行直观求解时,就可以将各元素列成相关表,作为初始方案,然后采用检验数来验证这个方案,否则就要采用闭合回路法、位势法等方法进行调整,直至得到满意的结果。
这种列表求解方法就是表上作业法。
●表上作业法: 建立在运输费用矩阵的求解运输问题的方
法。
表上作业法求解运输问题的思想和单纯形法完全类似:确定一个初始基本可行解——根据最优性判别准则来检查这个基本可行解是不是最优的?
如果是,则计算结束;
如果不是,则进行换基。
——直至求出最优解为止
图上作业法
●定义;图上作业法是将配送运输量任务反应在交通图上,
通过对交通图初始调运方案的调整,求出最优配送车辆运行调度方法。
运用这种方法时,要求交通图上没有货物对流现象,以运行最短路、最低运费或最高行程利用率为优
化目标。
返程或起程空驶的解决方案或措施是:
1) 顺路运输.发布返程或起程空驶信息,寻找搭载.
2) 加收运费; 对单程运输加收运费.
3) 建立联系; 与相关单位或同业建立互通有无的合作关系,联合行动。
图上作业法训练设有A1、A2、A3三个配送点分别有化肥40t 、30t 、30t ,需送往四个客户点B1、B2、B3、B4,而且已知各配送点和客户点的地理位置及它们之间的距离,可据此制出相应的交通调运图,并比较最终方案与初始方案的优劣。
(假设断开的是A3—B3)第一步:判断全圈长=40+40+50+60+20=210半圈长=210÷2=105里圈长=40+40+50+60=190外圈长=0综上所述,由于里圈长>半圈长,不是最优方案,需调整。
(20)(50) (40) A 330B 110 A 140 B 440B 330B 220A 230(40) (30) (60)(50) × × × × A 330B 110 A 140 B 440B 330 B 220 A 230×× × × 3040 60 50 2020第二步:调整全圈长=40+40+50+60+20=210半圈长=210÷2=105里圈长=40+40+60=140外圈长=20综上所述,由于里圈长>半圈长,不是最优方案,需再调整。
第三步:再调整全圈长=40+40+50+60+20=210半圈长=210÷2=105里圈长=40+60=100外圈长=70综上所诉,外圈长和里圈长都小于半圈长,为最优方案。
A 330B 110 A 140 B 440B 330 B 220A 230××× × 201040 20 40 30 A 330B 110 A 140 B 440B 330 B 220 A 230××× × 3030 20 40 20 10。
规划商品运输方案的数学方法合理地规划产销联系是实现商品合理运输的重要手段之一。
商品产销联系规划,实质上就是为各种商品规化最有利的供应范围和流通路径,把生产地和销售地之间的联系具体化。
因此合理规划产销联系的基本原则是:在满足需要的前提下,使商品的运输费用最小或运输吨公里最少。
1.运输问题的数学模型假如某运输企业,要将某种商品从m 个产地,即A 1、A 2、……、A m ;运往n 个销售地,即B 1、B 2、……、B n 已知产地A i (i=l 、2、……、m )的发运量为a i (i=1、2、……、m ),销售地B j (j=1、2、……、n )的需要量为b j (j=1、2、……、n )。
并且每个生产地到各售地的单位运价为C ij (i=1、2、……、m ,;j=1、2、……、n );运输距离为 L ij (i=1、2、……、m ,j=l 、2、……、n )。
问应如何规划运输方案,是总的运费最低或运输吨公里最小? 在此仅讨论产销平衡问题的数学模型。
当产销平衡时,总的生产量=总的销售量; 单位运价=C ij假设从生产地Ai 运往销售地Bj 的商品数量为Xij (i=1、2、……、m ,j=l 、2、…… 、n ),当目标函数为最小运输费用时,目标函数可表示为: Smin =C 11X 11+…+C 1n ·X 1n +C 21·X 21…+C 2n ·X 2n +…+C m1·X m1+…Cmn·Xmnm n= ∑ ∑ C ij ·X ij j=1 i=1同理,当目标函数为总运输吨公里最小时,目标函数可表示为:m nSmin = ∑ ∑ L ij ·X ij j=1 i=1约束条件为:n∑ X ij =ai ,i=l 、2、……、mj=1(表示从每个产地运往各个销地的商品数量之和,即等于此产地的总产量)m∑ X ij =bj ,j=l 、2、……、n i=1(表示从各个产地运到某个销地的商品数量之和,即等于该销地的总需要量) m n∑ai = ∑ bj (总产量等于总销量) i=1 j=1X≥0 i=1、2、……、m, j=l、2、……、n(运量为非负数)ij的值,便可以得到总运费或运输总吨公里最小的商品运输方案。
奇偶点图上作业法奇偶点图作业法(graphical method based on an odd-even-point approach)是求最优邮递路线的一种方法。
方法介绍其特点是:对有奇点的街道,方法是求邮递员递送邮件的路线为最短.设在某条路线中的边w, , v;〕上重复走了几次,在v;,v,之间增加几条边,令每条边的权和原来的权相等,并把新增加的边称为重复边.这样,就把原问题变为:在一个有奇点的图中,要求增加一些重复边,使新图不含奇点,并且重复边的总权为最小.把使新图不含奇点而增加的重复边,简称可行(重复边)方案.使总权最小的可行方案称为最优方案。
转变方法1.第一个可行方案的确定方法.若图中有奇点,则把它配成对,每一对奇点之间必有一条链,把这条链的所有边作为重复边加到图中去,新图中必无奇点.便给出了第一个可行方案.2.调整可行方案,使重复边总长度下降.当边w,,v;]上有两条或两条以上的重复边时,从中去掉偶数条,得到一个总长度较小的方案.于是,有:1)在最优方案中,图的每条边上最多有一条重复边.2)在最优方案中,图中每个圈上的重复边的总权不大于该圈总权的一半.3.判断最优方案的标准一个最优方案一定是满足上述1)和2)的可行方案.反之,一个可行方案若满足上述1)和2),则这个可行方案一定是最优方案.根据判断标准,对给定的可行方案,检查它是否满足上述条件1)和2).若满足,所得方案即为最优方案;若不满足,则对方案进行调整,直至上述条件1)和2)均得到满足时为止.例子:求图 G 的最优环游①配对图 G 中有 6 个奇点 v2,v4,v5,v7,v9,v10 ,把它们配成三对: v2 与 v5 , v4 与 v7 , v9 与 v10 。
②添加重边,去掉奇点在图 G 中,取一条连接 v2 与 v5 的路 v2v3v4v5 ,把边 (v2,v3) , (v3,v4) , (v4,v5) 作为重复边加入图中;再取 v4 与 v7 之间一条路 v4v5v6v7 ,把边 (v4,v5) , (v5,v6) , (v6,v7) 作为重复边加入图中;最后在 v9 和 v10 之间加一条重复边 (v9,v10) ,则图中没有奇点,是一个欧拉图。