无源高通滤波电路设计和Multisim仿真
- 格式:docx
- 大小:1.38 MB
- 文档页数:7
无源滤波器的设计及仿真研究无源滤波器是一种滤波器,以被动元件(电阻、电感、电容等)构成,不需要外部电源驱动。
它在许多电子电路中被广泛应用,可以对电路信号进行滤波、放大、衰减等处理。
在本篇文章中,我们将介绍无源滤波器的设计及仿真研究方法。
首先,无源滤波器的设计需要确定滤波器的类型和特性。
常见的无源滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
根据实际需求选择合适的滤波器类型。
其次,根据设计要求和滤波器类型选择合适的滤波器传输函数。
传输函数可以决定滤波器的频率响应特性。
常见的传输函数有巴特沃斯(Butterworth)、切比雪夫(Chebyshev)、椭圆(Elliptic)等。
接下来,根据选择的传输函数和滤波器类型,推导滤波器的网络结构。
无源滤波器的网络结构可以通过阻抗转换、阶梯电阻网络和π型网络等方法实现。
设计完成后,使用电路仿真软件进行无源滤波器的仿真研究。
常用的电路仿真软件有Multisim、PSPICE、LTspice等。
通过仿真研究,可以验证设计的滤波器的性能是否符合要求,进一步优化设计。
在电路仿真软件中,可以设置滤波器的输入信号和理想频率响应,然后观察输出信号的频率响应特性。
根据仿真结果,可以进行一系列的分析和优化,例如:调整电路元素数值、改变滤波器阶数、改变滤波器类型等。
最后,对设计完成的滤波器进行实验验证。
通过实验测量滤波器的频率响应特性,与仿真结果进行比较,评估滤波器的性能。
若有差异,可以进一步对滤波器进行调整和优化。
总结起来,无源滤波器的设计及仿真研究可以分为确定滤波器类型、选择传输函数、推导网络结构、电路仿真研究和实验验证等步骤。
通过设计和仿真优化,可以得到性能符合要求的滤波器。
滤波的Multisim仿真1. 引言在电子电路设计中,滤波器是一种常用的电路组件,用于去除信号中的噪声或者选择特定频率范围内的信号。
滤波器可以通过不同的滤波算法和电路结构来实现,其中Multisim是一款常用的电子电路仿真软件,可以用于设计和验证各种类型的滤波器。
本文将介绍如何使用Multisim进行滤波器的仿真。
首先会详细介绍Multisim软件的基本操作和界面布局,然后会以一个低通滤波器为例,演示如何利用Multisim进行仿真并分析其输出结果。
2. Multisim软件介绍Multisim是由美国国家仪器(National Instruments)公司开发的一款集成电路设计与仿真软件。
它提供了丰富的元件库和强大的仿真功能,能够帮助工程师们快速设计、验证和优化各种类型的电子电路。
Multisim软件具有直观友好的用户界面,可以轻松实现原理图绘制、参数设置、仿真运行等操作。
它支持多种不同级别的模型库,并且提供了多种仿真分析工具,如直流分析、交流分析、传递函数分析等,可以满足不同需求的设计和验证任务。
3. Multisim的基本操作3.1 界面布局Multisim的界面主要由以下几个部分组成:•工具栏:提供了常用的绘图工具和仿真控制按钮。
•元件库:包含了各种类型的电子元件,可以从中选择并拖放到原理图中。
•原理图编辑区:用于绘制电路原理图。
•参数设置区:用于设置元件的参数和仿真条件。
•输出窗口:显示仿真结果和错误信息。
3.2 元件选择与连接在Multisim中,可以通过从元件库中选择合适的元件,并将其拖放到原理图编辑区来构建电路。
常见的电子元件如电阻、电容、电感等都可以在Multisim中找到。
连接元件时,只需将鼠标指针移动到一个元件上的引脚上,并拖动至另一个元件的引脚上即可完成连接。
Multisim会自动判断引脚之间是否存在合适的连接关系,并进行连线。
3.3 参数设置与仿真运行在设计滤波器之前,需要为每个元件设置合适的参数。
第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。
目录1. Multisim软件入门2. 二极管电路3.基本放大电路4.差分放大电路5. 负反馈放大电路6.集成运放信号运算和处理电路7.互补对称(OCL)功率放大电路8.信号产生和转换电路9.可调式三端集成直流稳压电源电路13.1 Multisim用户界面与基本操作Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。
Multisim用软件方法虚拟电子元器件与仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。
Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。
IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。
1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。
IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。
下面以Multisim10为例介绍其基本操作。
图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。
无源高通滤波电路设计和Multisim仿真1.设计要求2.计算-3dB对应的f0=12πRC ,本设计中要求-3dB对应的频率为10Hz,RC=12πf0=12π∗10=0.0159,确定一个R值,可以算出对应的电容值。
负载的阻抗最小为10k Ω,现在我们通过仿真验证下选不同电阻值的滤波效果。
先取R=100K,计算可得C=0.159uF,取C=0.15uF。
3.仿真图a)R=100K,C=0.15uF仿真图交流分析由Cursor栏可知,x1=9.9831HZ时,y1≈0.085,远没有达到0.707,x2≈20HZ时,y2≈0.175,远没有达到1,后面取不同电阻和电容值时分析方法和本参数下类似,不再详细叙述。
b)取R=10K,C=1.5uF,交流分析c)R=1k,C=15uF,交流分析d)R=0.1k,C=150uF,交流分析由上面几组的仿真参数可知,在RC乘积不变的情况下,减小电阻值,增大电容值,x1=10HZ时,y1逐渐接近0.707,x2=20HZ时,y2逐渐接近1,即滤波电阻与负载电阻的比值越小时,滤波效果越好,即负载电阻对滤波电路造成的影响越小。
e)去掉10K的负载电阻,交流分析和d组参数对比可知,去掉负载电阻后,x1=10HZ,x2=20HZ时,y1和y2都有所增加,即增加负载电阻后,滤波电路的截止频率会向右移。
其实很容易理解,因此加上的负载电阻和滤波电路的电阻并联,并联后的阻值减小,导致截止频率增大。
f)R=0.1k,C=159uF,交流分析前面的参数中C取的是近似值,导致x1=10HZ,y1不等于0.707,x2=20HZ,y2不等于1,取R=0.1k,C=159uF 后,通过Cursor栏可知,x1=10HZ,y1=0.706,已经非常接近0.707,达到滤波要求。
4.采用R和C并联结构的滤波电路仿真图a)R=100k,C=0.15uFb)R=10K,C=1.5uFc)R=1k,C=15uFd)R=0.1k,C=150uFe)去掉10k电阻5.结论通过对比两种滤波电路可知,采用传统的高通滤波电路滤波效果好,滤波电阻的阻值远小于负载电阻时滤波效果好。
无源滤波器的设计及仿真研究摘要由于大量非线性电力负荷的增加,给电网的正常运行带来了功率因数降低、电磁干扰和谐波污染的问题。
功率因数过低,将会导致大量的电能浪费、设备利用率降低和电压偏差过大等;谐波电流的存在,则会引起波形畸变、电力设备基波负载容量下降和电力装置产生谐振等严重问题,有的电力系统甚至引起电力设备损坏事故。
文章介绍了无功补偿的必要性以及谐波的产生与危害性,指出无功补偿和谐波治理装置的现状,并结合具体案例做出了相关分析。
关键词:电网无功补偿谐波治理引言随着全球工业化进程的不断加快。
对地球环境的污染和破坏也空前加剧。
为此,在全世界范围内掀起了环境保护的高潮。
当今时代是高度强调环境保护和生态保护的时代,这是全球全人类和全社会的共识。
电力系统也面临着污染,公用电网中的谐波电流和谐波电压就是对电网环境最严重的一种污染。
电力电子装置就是公用电网中最主要的谐波源,随着电力电子装置的应用日益广泛。
电网中的谐波污染也日趋严重。
电网谐波对电气设备的正常运行危害很大,它可导致电容器过流损坏,电动机力矩不稳,继电保护装置误动作,计算机等敏感电器发生功能错误。
本文的内容安排如下:第一部分介绍了本课题的研究背景,无功补偿和谐波治理的意义以及无功补偿装置与谐波治理装置的现状。
第二部分介绍了无源滤波器的设计方法。
第三部分结合工程实际,给出了某大型冶金企业谐波治理与无功补偿的两种方案,并对其中一种方案进行了仿真。
最后,针对两种方案比较其优劣。
第一章无功补偿与谐波治理的意义和现状无功补偿和谐波治理是涉及电力电子技术、电力系统、电气自动化技术、电工理论等领域的重大课题,由于电力电子装置应用日益广泛,谐波和无功问题引起人们越来越多的关注。
同时,也由于电力电子技术的飞速进步,在谐波治理和无功补偿方面也取得了一些突破性的进展。
一、无功补偿与谐波治理的意义无功补偿与谐波治理都与供电系统的电能质量密切相关。
谐波治理本身就属于改善电能质量的范畴,而无功补偿装置在补偿负荷或系统无功功率的同时也直接调节了系统电压,在一些枢纽变电站利用电力电容器和相控电抗器及现代电力电子控制技术组成的静止无功补偿器(SVC)直接作为电压调控的手段,由于其响应迅速调控精准,工程应用十分满意。
无源高通滤波电路设计和Multisim仿真1.设计要求
2.计算
-3dB对应的f0=1
2πRC ,本设计中要求-3dB对应的频率为10Hz,RC=1
2πf0
=
1
2π∗10
=0.0159,确定一个R值,可以算出对应的电容值。
负载的阻抗最小为10k Ω,现在我们通过仿真验证下选不同电阻值的滤波效果。
先取R=100K,计算可得C=0.159uF,取C=0.15uF。
3.仿真图
a)R=100K,C=0.15uF
仿真图
交流分析
由Cursor栏可知,x1=9.9831HZ时,y1≈0.085,远没有达到0.707,x2≈20HZ时,y2≈
0.175,远没有达到1,后面取不同电阻和电容值时分析方法和本参数下类似,不再详细叙述。
b)取R=10K,C=1.5uF,交流分析
c)R=1k,C=15uF,交流分析
d)R=0.1k,C=150uF,交流分析
由上面几组的仿真参数可知,在RC乘积不变的情况下,减小电阻值,增大电容值,x1=10HZ时,y1逐渐接近0.707,x2=20HZ时,y2逐渐接近1,即滤波电阻与负载电阻的比值越小时,滤波效果越好,即负载电阻对滤波电路造成的影响越小。
e)去掉10K的负载电阻,交流分析
和d组参数对比可知,去掉负载电阻后,x1=10HZ,x2=20HZ时,y1和y2都有所增加,即增加负载电阻后,滤波电路的截止频率会向右移。
其实很容易理解,因此加上的负载电阻和滤波电路的电阻并联,并联后的阻值减小,导致截止频率增大。
f)R=0.1k,C=159uF,交流分析
前面的参数中C取的是近似值,导致x1=10HZ,y1不等于0.707,x2=20HZ,y2不等于1,取R=0.1k,C=159uF 后,通过Cursor栏可知,x1=10HZ,y1=0.706,已经非常接近0.707,达到滤波要求。
4.采用R和C并联结构的滤波电路
仿真图
a)R=100k,C=0.15uF
b)R=10K,C=1.5uF
c)R=1k,C=15uF
d)R=0.1k,C=150uF
e)去掉10k电阻
5.结论
通过对比两种滤波电路可知,采用传统的高通滤波电路滤波效果好,滤波电阻的阻值远小于负载电阻时滤波效果好。