第八章 配位化学基础
- 格式:ppt
- 大小:827.50 KB
- 文档页数:40
第八章络合物(配位化合物)化学基础【竞赛要求】场理论。
Ti(H2O)36的颜色。
路易斯酸碱的概念。
【知识梳理】一、配合物基本知识1、配合物的定义由中心离子(或原子)和几个配体分子(或离子)以配位键相结合而形成的复杂分子或离子,通常称为配位单元。
凡是含有配位单元的化合物都称作配位化合物,简称配合物,也叫络合物。
[Co(NH3)6]3+,[Cr(CN)6]3–,Ni(CO)4都是配位单元,分别称作配阳离子、配阴离子、配分子。
[Co(NH3)6]Cl3、K3[Cr(CN)6]、Ni(CO)4都是配位化合物。
[Co(NH3)6]、[Cr(CN)6]也是配位化合物。
判断的关键在于是否含有配位单元。
思考:下列化合物中哪个是配合物①CuSO4·5H2O②K2PtCl6③KCl·CuCl2④Cu(NH2CH2COO)2⑤KCl·MgCl2·6H2O⑥Cu(CH3COO)2注意:①配合物和配离子的区别②配合物和复盐的区别2、配合物的组成中心离子内界单齿配体配位体多齿配体配合物螯合配体外界(1)配合物的内界和外界以[Cu(NH3)4]SO4为例:[Cu(NH3)4]2+SO24内界外界内界是配位单元,外界是简单离子。
又如K3[Cr(CN)6]之中,内界是[Cr(CN)6]3–,外界是-1-K可以无外界,如Ni(CO)4但不能没有内界,内外界之间是完全电离的。
(2)中心离子和配位体中心离子:又称配合物的形成体,多为金属(过渡金属)离子,也可以是原子。
如Fe3+、Fe、Co、Ni、Cu、Co等,只要能提供接纳孤对电子的空轨道即可。
配位体:含有孤对电子的阴离子或分子。
如NH3、H2O、Cl-、Br-、I-、CN-、CNS-等。
(3)配位原子和配位数配体中给出孤对电子与中心离子直接形成配位键的原子,叫配位原子。
配位单元中,中心离子周围与中心离子直接成键的配位原子的个数,叫配位数。
配位化合物[Cu(NH3)4]SO4的内界为[Cu(NH3)4]2+,中心Cu2+的周围有4个配体NH3,每个NH3中有1个N原子与Cu2+配位。
配位化学知识点总结配位化学是化学的一个重要分支,它探讨的是化学中的配位作用,即两个或多个分子相互作用形成复合物。
在高分子材料、医药、冶金、土木工程和环境科学等领域应用广泛。
配位化学的基础知识和技能是化学专业学生和研究人员必备的求生技能之一。
本文将介绍配位化学的基本概念、重要原则以及主要应用。
一、配位化学的基本概念1. 配位体在化学中,配位体是指通过给体原子与金属中心之间的化学键与金属形成配合物的分子或离子。
著名的例子有氨、水、五硝基吡啶、乙二胺等。
2. 配位作用配位作用是指配位体的给体原子利用孤对电子与金属中心形成协同共振化学键的过程。
配位能力取决于给体原子的化学性质。
一般来说,仅具有孤对电子的原子或离子能够作为配位体。
在配位作用中,给体原子发生了电子的向金属中心的迁移,原子中的孤对电子与金属中心的未配对电子形成共价键。
3. 配位数配位数是一个复合物中与离子或分子互相作用的中心原子数量。
通常,金属离子具有高配位数,而范德瓦尔斯复合物和氢键配合物具有较低的配位数。
二、配位化学的重要原则1. 八面体配位八面体配位是指配合物中金属中心周围八个空间位置上配位体的均匀分布,也是最常见的配位几何形态之一。
一些典型的八面体配位化合物包括六氟合铁酸钾和硫脲铜硫脲。
2. 方阵配位方阵配位是一种由四个配位体组成的四面体形态的配位体,常见的方阵配位化合物包括四氟合镍和四氯合钴。
3. 配体场理论配体场理论是解释元素化学、配位化学和配位化合物性质的一种理论。
该理论通过将配位体组合成简单的场点,进而表征复合物的化学键结构和物理性质。
三、配位化学的主要应用1. 工业催化工业化学中的催化剂往往是由配位化合物构成,钯的催化反应、铂的催化脱氢和钨的催化氧化反应都是利用了配位体的协同作用完成的。
例如,五氯甲基钌配合物和卟啉钴配合物在氧气氧化和n 桥苯甲基乙烯二醇转移反应中均被用作催化剂。
2. 生物学知识生物配合物(例如血红蛋白和维生素B12)中的重要化学反应是由于配位体与活性中心原子之间的化学反应所形成的。
配位化学基础配位化学是在无机化学基础上发展起来的一门具有很强交叉性的学科,配位化学旧称络合物化学,其研究对象是配合物的合成、结构、性质和应用。
配位化学的研究范围,除最初的简单无机加和物外,已包括含有金属-碳键的有机金属配位化合物,含有金属-金属键的多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成的大环配位化合物,以及生物体内的金属酶等生物大分子配位化合物。
一、配合物的基本概念1.配合物的定义及构成依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子的一定数目的离子或分子(统称为配体)和具有接受孤对电子或多个不定域电子的空位的原子或离子(统称为中心原子),按一定的组成和空间构型所形成的化合物。
结合以上规定,可以将定义简化为:由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,统称为配体单元。
含配体单元(又称配位个体)的化合物称为配位化合物。
配体单元可以是配阳离子,配阴离子和中性配分子,配位阳离子和阴离子统称配离子。
配离子与与之平衡电荷的抗衡阳离子或阴离子结合形成配位化合物,而中性的配位单元即时配位化合物。
但水分子做配体的水合离子也经常不看成配离子。
配位化合物一般分为内界和外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元的配位化合物则无外界。
配合物的内界由中心和配体构成,中心又称为配位化合物的形成体,多为金属,也可以是原子或离子,配体可以是分子、阴离子、阳离子。
2.配位原子和配位数配位原子:配体中给出孤对电子与中心直接形成配位键的原子配位数:配位单元中与中心直接成键的配位原子的个数配位数一般为偶数,以4、6居多,奇数较少配位数的多少和中心的电荷、半径及配体的电荷、半径有关:一般来说,中心的电荷高、半径大有利于形成高配位数的配位单元,如氧化数为+1的中心易形成2配位,氧化数为+2的中心易形成4配位或6配位,氧化数为+3的易形成6配位。
第八章配位化合物【教学基本要求】(1)掌握配合物的基本概念和结构特点,尤其是配合物化学式的书写及命名。
(2)熟悉配合物价键理论的基本要点,能用该理论说明配合物形成体的杂化类型与配合物的几何构型、内外轨键型以及稳定性之间的关系。
(3)了解晶体场理论的基本要点。
(4)熟练掌握配合物稳定常数的意义;掌握有关配位平衡的计算,包括配位平衡与其他平衡共存时的有关计算。
(5)掌握螯合物的定义和特点;理解螯合物特殊稳定性的形成原因。
【教学重点和难点】重点(1)配合物的组成、命名等基本概念。
(2)杂化轨道类型与配合物的空间构型(3) 配位离解平衡及各种计算。
难点配合物的稳定性、磁性与键型的关系。
(2) 配位离解平衡及各种计算。
【引言】配位化合物(coordination compound)简称配合物,早期也称为络合物(complex compound,或简称complex),它是一类组成复杂、用途极为广泛的化合物。
历史上最早有记载的配合物是1704年德国涂料工人Diesbach合成并作为染料和颜料使用的普鲁士蓝,其化学式为(KFe[Fe(CN)6]。
但通常认为配合物的研究始于1789年法国化学家塔萨厄尔(B.M.Tassert)对分子加合物CoCl3·NH3的发现。
19世纪后陆续发现了更多的配合物,1893年维尔纳(Werner A,1866-1919)在前人和他本人研究的基础上,首先提出了配合物的配位理论,揭示了配合物的成键本质,奠定了现代配位化学的基础,使配位化学的研究得到了迅速的发展,他本人也因此在1913年获诺贝尔化学奖。
20世纪以来,由于结构化学的发展和各种物理化学方法的采用,使配位化学成为化学科学中一个十分活跃的研究领域,并已逐渐渗透到有机化学、分析化学、物理化学、量子化学、生物化学等许多学科中,对近代科学得发展起了很大的作用。
元素周期表中绝大多数金属元素都能形成配合物。
配合物广泛应用于分析化学、配位催化、冶金工业、生物医药、临床检验、环境检测等领域。