机械振动3能量法
- 格式:pdf
- 大小:231.92 KB
- 文档页数:5
机械振动信号分析与故障诊断一、引言机械设备在日常运行中常常会出现各种各样的故障问题,其中振动问题是比较常见的一种。
通过对机械振动信号的分析与诊断,可以提前预知机械设备的潜在故障,从而采取相应的维修措施,保证设备运行的可靠性和安全性。
本文将主要介绍一些常见的机械振动信号分析方法和故障诊断技术。
二、机械振动信号的特点机械设备在运行过程中会产生各种各样的振动信号,这些信号包含了丰富的信息,能够反映出机械设备的工作状态和故障状况。
机械振动信号的特点主要包括以下几个方面:1. 频谱特性:机械振动信号的频谱分布通常是不均匀的,其中包含了各种不同频率的分量。
通过对振动信号的频谱进行分析,可以确定频谱分量的大小和分布情况。
2. 时域特性:振动信号的时域特性主要包括振动波形的幅值、时间和频率等参数。
通过对振动信号的时域分析,可以了解振动信号的动态变化。
3. 能量特性:机械振动信号的能量分布通常是不均匀的,其中一部分能量是由于机械设备本身的运动引起的,另一部分能量则是由于机械故障引起的。
通过对振动信号的能量特性进行分析,可以判断机械设备是否存在故障问题。
三、机械振动信号分析方法为了对机械设备进行故障诊断,需要采用一些有效的机械振动信号分析方法。
下面介绍几种常用的方法:1. 频谱分析法:频谱分析法是一种将振动信号转换为频谱图的方法。
通过对振动信号进行傅里叶变换,可以得到振动信号的频谱分布情况。
通过分析频谱图,可以确定机械设备的主要频率分量和故障频率分量。
2. 小波分析法:小波分析法是一种将振动信号分解成不同频率的分量的方法。
通过小波分析,可以得到振动信号的时间-频率分布情况。
与频谱分析相比,小波分析具有更好的时间-频率分辨率。
3. 瞬时参数分析法:瞬时参数分析法是一种分析振动信号的瞬时变化的方法。
通过对振动信号的瞬时参数进行分析,可以了解到机械设备的动态变化和故障情况。
四、机械故障诊断技术机械故障诊断技术主要是通过对机械振动信号的分析,判断机械设备是否存在故障问题,并确定故障的类型和位置。
机械振动的原理和控制方法机械振动是指物体在弹性介质作用下,出现周期性的膨胀与收缩的现象。
机械振动广泛存在于工业、军事、天文等多个领域中,对于系统的稳定性、工作性能、安全性、寿命等方面都有着重要的影响。
因此,研究机械振动的原理和控制方法显得非常必要。
一、机械振动的原理机械振动是由于物体在弹性介质作用下,出现周期性的膨胀与收缩的现象。
这里主要涉及到两种形式的振动:一种是自由振动,即物体在没有外部作用下自然地振动;另一种是强制振动,即物体受外部强制作用而振动。
自由振动的原理:自由振动的主要原理是由于物体本身的初始形态造成的。
在没有外部作用时,物体会遵循自身特定的固有频率,反复执行某些动作。
这是由于物体受到扰动后,内部的弹性介质会将能量存储起来,随后再释放出来,从而使物体开始振动。
自由振动的特点是在系统中,没有外力或外干扰,其振动的幅度与频率都是恒定的。
强制振动的原理:另一种振动形式是强制振动,其原理是由外部的作用所引起。
通过施加一个外力,物体将发生周期性振动,并随之受到外力的影响。
此外,振动还可以通过参数的变化而被改变。
二、机械振动的控制方法机械振动对于工业生产、精密制造、核航天等领域的其他安全工程具有一定的风险。
因此,开发监控和控制机械振动的方法非常重要。
以下是三种常用的控制方法:1、主动控制主动控制是利用反馈控制来控制机械振动的方法。
它将传感器和控制器紧密结合,并利用控制算法来实现反馈控制。
主动控制可以在短时间内调整扰动力,避免波动的扩大。
这种方法多为闭环控制,实现快速响应和精密控制。
2、被动控制被动控制是通过设计结构或材料本身来抵消机械振动的方法。
例如,在应用中添加减振器、吸振器等来减少机械振动的影响。
被动控制的主要优点是不会引起额外的环境破坏。
3、半主动控制半主动控制通过结合主动控制和被动控制的特点来控制机械振动。
这种控制方法通常涉及添加补偿系统来调整扰动力。
比如,使用半主动液压隔振器来实现机械振动的控制。
振动能量公式振动能量公式是描述振动系统能量的一个重要公式。
它可以用来计算振动系统的总能量,包括动能和势能。
振动能量公式可以表示为E = 1/2mv^2 + 1/2kx^2,其中E表示振动系统的能量,m表示质量,v表示速度,k表示弹性系数,x表示位移。
我们来看一下公式中的第一项,1/2mv^2,它表示振动系统的动能。
动能是由质量和速度决定的,质量越大、速度越大,动能也就越大。
动能可以理解为物体运动时所具有的能量。
公式中的第二项,1/2kx^2,表示振动系统的势能。
势能是由弹性系数和位移决定的,弹性系数越大、位移越大,势能也就越大。
势能可以理解为物体在弹性力的作用下所具有的能量。
振动能量公式将动能和势能结合在一起,可以全面描述振动系统的能量变化。
当振动系统处于运动状态时,动能和势能不断地相互转化,能量在系统中不断地传递。
当振动系统处于平衡位置时,动能和势能相等,总能量达到最小值。
而当振动系统处于最大位移位置时,动能为零,势能达到最大值,总能量也达到最大值。
振动能量公式的应用十分广泛。
在物理学中,它可以用来计算各种振动系统的能量,如弹簧振子、简谐振子等。
在工程中,它可以用来分析和设计各种振动系统,如机械振动系统、电子振动系统等。
在生活中,它也有很多实际应用,如音乐乐器发声的原理、地震波传播的机制等。
振动能量公式的理解和应用对于我们深入了解和研究振动现象具有重要意义。
通过对振动能量的分析,我们可以了解振动系统的能量变化规律,预测和控制振动系统的行为。
同时,振动能量公式也为我们提供了一种计算和比较不同振动系统能量大小的方法,帮助我们选择和优化振动系统。
振动能量公式是描述振动系统能量的一个重要工具。
它通过结合动能和势能,全面描述了振动系统的能量变化。
振动能量公式的理解和应用对于我们研究和应用振动现象具有重要意义,有助于我们深入探索和利用振动的力量。
简谐运动的回复力和能量1.理解简谐运动的运动规律,掌握在一次全振动过程中位移、回复力、加速度、速度变化的规律。
2.掌握简谐运动回复力的特征。
3.对水平的弹簧振子,能定性地说明弹性势能与动能的转化过程。
知识点一简谐运动的回复力[情境导学]如图所示,O点为水平弹簧振子的平衡位置,A′、A分别是振子运动的最左端和最右端,弹簧的劲度系数为k。
请思考:(1)振子在振动过程中位于O点左侧x处时所受合外力的大小怎样表示?方向怎样?产生什么效果?(2)振子在振动过程中位于O点右侧x处时所受合外力的大小怎样表示?方向怎样?产生什么效果?提示:(1)F=kx,方向(向右)指向平衡位置O,产生指向平衡位置的加速度,使物体回到平衡位置。
(2)F=kx,方向(向左)指向平衡位置O,产生指向平衡位置的加速度,使物体回到平衡位置。
[知识梳理]1.回复力(1)定义:使振动物体回到平衡位置的力。
(2)表达式:F=-kx,“-”号表示F与x反向。
(3)方向:总是指向平衡位置。
2.简谐运动:如果物体在运动方向上所受的力与它离开平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
[初试小题]1.判断正误。
(1)回复力的方向总是与位移的方向相反。
(√)(2)回复力的方向总是与速度的方向相反。
(×)(3)回复力的方向总是与加速度的方向相反。
(×)(4)回复力F=-kx中的k一定是弹簧的劲度系数。
(×)2.对于弹簧振子的回复力和位移的关系,下列图中正确的是( )解析:选C 由简谐运动的回复力公式F=-kx可知,弹簧振子做简谐运动时的回复力和位移的关系图像应如图C所示。
知识点二简谐运动的能量[情境导学]如图所示,O点为水平弹簧振子的平衡位置,A′、A分别是振子运动的最左端和最右端。
请思考:(1)振子在振动过程中位于O点时的动能、弹簧的弹性势能的大小怎样?(2)振子在振动过程中位于最左端A′和最右端A时的动能、弹簧的弹性势能的大小怎样?(3)振子经历A→O→A′过程中振子的动能、弹簧的弹性势能怎样转化?提示:(1)动能最大,弹性势能为零。
第3讲简谐运动的回复力和能量[目标定位] 1.知道回复力的概念,了解它的来源.2.理解从力的角度来定义的简谐运动.3.理解简谐运动中位移、回复力、加速度、速度、能量等各物理量的变化规律.4.知道简谐运动中机械能守恒,能量大小与振幅有关.会用能量守恒的观点分析水平弹簧振子中动能、势能、总能量的变化规律.一、简谐运动的回复力1.简谐运动的动力学定义:如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动.2.回复力:由于力的方向总是指向平衡位置,它的作用总是要把物体拉回到平衡位置,所以通常把这个力称为回复力.3.简谐运动的回复力与位移的关系:F=-kx,式中k是比例系数.想一想回复力是不是除重力、弹力、摩擦力等之外的一种新型的力?它有什么特点?答案不是.回复力是指将振动的物体拉回到平衡位置的力,是按照力的作用效果来命名的,不是一种新型的力,所以分析物体的受力时,不分析回复力.回复力可以由某一个力提供(如弹力),也可能是几个力的合力,还可能是某一个力的分力,归纳起来,回复力一定等于物体沿振动方向所受的合力.二、简谐运动的能量1.如果摩擦力等阻力造成的损耗可以忽略,在弹簧振子运动的任意位置,系统的动能与势能之和都是一定的.2.简谐运动是一种理想化的模型.想一想弹簧振子在振动过程中动能与势能相互转化,振子的位移x、回复力F、加速度a、速度v四个物理量中有哪几个与动能的变化步调一致?答案只有速度v.一、简谐运动的回复力1.对回复力的理解(1)回复力是指将振动物体拉回到平衡位置的力,它可以是物体所受的合外力,也可以是一个力或某一个力的分力,而不是一种新的性质力.(2)简谐运动的回复力:F=-kx.①k是比例系数,并非弹簧的劲度系数(水平弹簧振子中k为弹簧的劲度系数),其值由振动系统决定,与振幅无关.②“-”号表示回复力的方向与偏离平衡位置的位移的方向相反.③x是指物体对平衡位置的位移,不一定是弹簧的伸长量或压缩量.④回复力的作用总是把物体拉向平衡位置.2.简谐运动的加速度据牛顿第二定律,a=Fm=-km x,表明简谐运动的加速度大小也与位移大小成正比,加速度方向与位移方向相反.说明:k是比例系数,不能与弹簧的劲度系数相混淆.3.判断振动为简谐运动的方法(1)运动学方法:找出物体的位移与时间的关系,若遵从正弦函数的规律,即它的振动图象(xt 图象)是一条正弦曲线,就可判定此振动为简谐运动.(2)动力学方法:若回复力F与位移x间的关系满足F=-kx,则物体做简谐运动,否则就不是简谐运动.例1如图1所示,弹簧振子在光滑水平杆上的A、B之间做往复运动,下列说法正确的是()图1A.弹簧振子运动过程中受重力、支持力和弹簧弹力的作用B.弹簧振子运动过程中受重力、支持力、弹簧弹力和回复的力作用C.振子由A向O运动过程中,回复力逐渐增大D.振子由O向B运动过程中,回复力的方向指向平衡位置解析回复力是根据效果命名的力,不是做简谐运动的物体受到的具体的力,它是由物体受到的具体的力所提供的,在此情景中弹簧的弹力充当回复力,故A正确,B错误;回复力与位移的大小成正比,由A向O运动过程中位移的大小在减小,故此过程回复力逐渐减小,C错误;回复力总是指向平衡位置,故D正确.答案AD例2如图2所示,将一劲度系数为k,原长为L0的轻弹簧的一端固定在倾角为θ的光滑斜面的顶端,另一端连接一质量为m的小球.将小球沿斜面拉下一段距离后松手.证明:小球的运动是简谐运动.图2证明设小球在弹簧长度为L1时在平衡位置O,弹簧原长为L0,选沿斜面向上为正方向,则由平衡条件得k(L1-L0)-mg sin θ=0.当小球振动经过O点以上距O点为x处时,受力为F合=k(L1-L0-x)-mg sin θ,整理得F合=-kx,当小球振动经过O点以下位置时,同理可证,因此小球的运动是简谐运动.二、简谐运动的能量1.不考虑阻力,弹簧振子振动过程中只有弹力做功,在任意时刻的动能与势能之和不变,即机械能守恒.2.简谐运动的机械能由振幅决定对同一振动系统来说,振幅越大,振动的能量越大.如果没有能量损耗,振幅保持不变,它将永不停息地振动下去,因此简谐运动又称等幅振动.例3如图3所示,一弹簧振子在A、B间做简谐运动,平衡位置为O,已知振子的质量为M.图3(1)简谐运动的能量取决于________,物体振动时动能和________能相互转化,总机械能________.(2)振子在振动过程中,下列说法中正确的是()A.振子在平衡位置,动能最大,势能最小B.振子在最大位移处,势能最大,动能最小C.振子在向平衡位置运动时,由于振子振幅减小,故总机械能减小D.在任意时刻,动能与势能之和保持不变(3)若振子运动到B处时将一质量为m的物体放到M的上面,且m和M无相对滑动而一起运动,下列说法正确的是()A.振幅不变B.振幅减小C.最大动能不变D.最大动能减小解析(1)简谐运动的能量取决于振幅,物体振动时动能和弹性势能相互转化,总机械能守恒.(2)振子在平衡位置两侧往复运动,在最大位移处速度为零,动能为零,此时弹簧的形变最大,势能最大,所以B正确;在任意时刻只有弹簧的弹力做功,所以机械能守恒,D正确;到平衡位置处速度达到最大,动能最大,势能最小,所以A正确;振幅的大小与振子的位置无关,所以C错误.(3)振子运动到B点时速度恰为零,此时放上m,系统的总能量即为此时弹簧储存的弹性势能,由于简谐运动中机械能守恒,所以振幅保持不变,因此选项A正确,B错误;由于机械能守恒,最大动能不变,所以选项C正确,D错误.答案(1)振幅弹性势守恒(2)ABD(3)AC三、简谐运动中各物理量的变化情况如图4所示的弹簧振子图4例4如图5图5A.在第1 s内,质点速度逐渐增大B.在第1 s内,质点加速度逐渐增大C.在第1 s内,质点的回复力逐渐增大D.在第4 s内质点的动能逐渐增大E.在第4 s内质点的势能逐渐增大F.在第4 s内质点的机械能逐渐增大解析在第1 s内,质点由平衡位置向正向最大位移处运动,速度减小,位移增大,回复力和加速度都增大;在第4 s内,质点由负向最大位移处向平衡位置运动,速度增大,位移减小,动能增大,势能减小,但机械能守恒.答案BCD简谐运动的回复力1.如图6所示,弹簧振子B上放一个物块A,在A与B一起做简谐运动的过程中,下列关于A受力的说法中正确的是()图6A.物块A受重力、支持力及弹簧对它的恒定的弹力B.物块A受重力、支持力及弹簧对它的大小和方向都随时间变化的弹力C.物块A受重力、支持力及B对它的恒定的摩擦力D.物块A受重力、支持力及B对它的大小和方向都随时间变化的摩擦力解析物块A受到重力、支持力和摩擦力的作用.摩擦力提供A做简谐运动所需的回复力,其大小和方向都随时间变化,D选项正确.答案 D简谐运动的能量2.沿水平方向振动的弹簧振子在做简谐运动的过程中,下列说法正确的是()A.在平衡位置,它的机械能最大B.在最大位移处,它的弹性势能最大C.从平衡位置向最大位移处运动过程中,它的弹性势能减小D.从最大位移处向平衡位置运动的过程中,它的机械能减小解析弹簧振子在振动过程中机械能守恒,故A、D错误;位移越大,弹簧的形变量越大,弹性势能越大,故B正确,C错误.答案 B3.如图7所示,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a、b 两个小物块粘在一起组成的.物块在光滑水平桌面上左右振动.振幅为A0,周期为T0.当物块向右通过平衡位置时,a、b之间的粘胶脱开;以后小物块a振动的振幅和周期分别为A 和T,则:A______A0(填“>”、“<”或“=”),T______T0(填“>”、“<”或“=”).图7解析物块通过平衡位置时弹性势能为零,动能最大.向右通过平衡位置,a由于受到弹簧弹力做减速运动,b做匀速运动.小物块a与弹簧组成的系统机械能小于原来系统的机械能,所以小物块a的振幅减小,A<A0,由于振子质量减小可知加速度增大,周期减小,T<T0. 答案<<简谐运动中各量的变化情况4.弹簧振子在光滑的水平面上做简谐运动,在振子向着平衡位置运动的过程中() A.振子所受的回复力逐渐增大B.振子离开平衡位置的位移逐渐增大C.振子的速度逐渐增大D.振子的加速度逐渐增大解析在振子向着平衡位置运动的过程中,振子所受的回复力逐渐减小,振子离开平衡位置的位移逐渐减小,振子的速度逐渐增大,振子的加速度逐渐减小,选项C正确.答案 C(时间:60分钟)题组一简谐运动的回复力1.对简谐运动的回复力公式F=-kx的理解,正确的是()A.k只表示弹簧的劲度系数B.式中的负号表示回复力总是负值C.位移x是相对平衡位置的位移D.回复力只随位移变化,不随时间变化解析位移x是相对平衡位置的位移;F=-kx中的负号表示回复力总是与振动物体的位移方向相反.答案 C2.物体做简谐运动时,下列叙述正确的是( ) A .平衡位置就是回复力为零的位置 B .处于平衡位置的物体,一定处于平衡状态 C .物体到达平衡位置,合力一定为零 D .物体到达平衡位置,回复力一定为零解析 平衡位置是回复力等于零的位置,但物体所受合力不一定为零,A 、D 对. 答案 AD3.对于弹簧振子的回复力和位移的关系,下列图中正确的是( )解析 由简谐运动的回复力公式F =-kx 可知,C 正确. 答案 C4.弹簧振子的质量是2 kg ,当它运动到平衡位置左侧2 cm 处时,受到的回复力是4 N ,当它运动到平衡位置右侧4 cm 处时,它的加速度是( ) A .2 m /s 2,向右 B .2 m/s 2,向左 C .4 m /s 2,向右D .4 m/s 2,向左解析 由振动的对称性知右侧4 cm 处回复力为8 N ,由a =-kx m =-Fm 知a =4 m/s 2,方向向左. 答案 D5.如图1所示,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A 、B 之间无相对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于( )图1A .0B .kx C.m M kx D.mM +mkx解析 当物体离开平衡位置的位移为x 时,弹簧弹力的大小为kx ,以整体为研究对象,此时A 与B 具有相同的加速度,根据牛顿第二定律得kx =(m +M )a ,故a =kxM +m.以A 为研究对象,使A 产生加速度的力即为B 对A 的静摩擦力F ,由牛顿第二定律可得F =ma =mM +m kx .故正确答案为D. 答案 D题组二 简谐运动的能量6.关于振幅,以下说法中正确的是( ) A .物体振动的振幅越大,振动越强烈B .一个确定的振动系统,振幅越大,振动系统的能量越大C .振幅越大,物体振动的位移越大D .振幅越大,物体振动的加速度越大解析 振动物体的振动剧烈程度表现为振幅的大小,对一个确定的振动系统,振幅越大,振动越剧烈,振动能量也就越大,A 、B 项正确.在物体振动过程中振幅是最大位移的大小,而偏离平衡位置的位移是不断变化的,因此C 项错.物体振动的加速度是不断变化的,故D 项错. 答案 AB7.振动的物体都具有周期性,若简谐运动的弹簧振子的周期为T ,那么它的动能、势能变化的周期为( )A .2TB .T C.T 2 D.T 4解析 振动中动能、势能相互转化,总机械能不变,动能和势能为标量,没有方向.C 正确. 答案 C8.如图2为一水平弹簧振子的振动图象,由图可知( )图2A .在t 1时刻,振子的动能最大,所受的弹力最大B .在t 2时刻,振子的动能最大,所受的弹力最小C .在t 3时刻,振子的动能最大,所受的弹力最小D .在t 4时刻,振子的动能最大,所受的弹力最大解析 t 2和t 4是在平衡位置处,t 1和t 3是在最大位移处,根据弹簧振子振动的特征,弹簧振子在平衡位置时的速度最大,加速度为零,即弹力为零;在最大位移处,速度为零,加速度最大,即弹力为最大,所以B项正确.答案 B9.如图3所示为某个弹簧振子做简谐运动的振动图象,由图象可知()图3A.在0.1 s时,由于位移为零,所以振动能量为零B.在0.2 s时,振子具有最大势能C.在0.35 s时,振子具有的能量尚未达到最大值D.在0.4 s时,振子的动能最大解析弹簧振子做简谐运动,振动能量不变,选项A错;在0.2 's时位移最大,振子具有最大势能,选项B对;弹簧振子的振动能量不变,在0.35 s时振子具有的能量与其他时刻相同,选项C错;在0.4 s时振子的位移最大,动能为零,选项D错.答案 B题组三简谐运动的综合应用10.一弹簧振子振动过程中的某段时间内其加速度数值越来越大,则在这段时间内() A.振子的速度逐渐增大B.振子的位移逐渐增大C.振子正在向平衡位置运动D.振子的速度方向与加速度方向一致解析振子由平衡位置向最大位移处运动过程中,振子的位移越来越大,加速度逐渐增大,速度方向与加速度方向相反,振子做减速运动,速度越来越小,故A、D错误,B正确;振子向平衡位置运动的过程中,位移减小,回复力变小,加速度变小,故C错误.答案 B11.甲、乙两弹簧振子,振动图象如图4所示,则可知()图4A .两弹簧振子完全相同B .两弹簧振子所受回复力最大值之比F 甲∶F 乙=2∶1C .振子甲速度为零时,振子乙速度最大D .两弹簧振子的振动频率之比f 甲∶f 乙=2∶1解析 由题图可知f 甲∶f 乙=1∶2,因此两振子不相同,A 、D 错误;由题图可知C 正确;因F 甲=k 甲A 甲,F 乙=k 乙A 乙,由于k 甲和k 乙关系未知,因此无法判断F 甲与F 乙的比值,所以B 错误. 答案 C12.一质点做简谐运动,其位移和时间关系如图5所示.图5(1)求t =0.25×10-2 s 时的位移;(2)在t =1.5×10-2 s 到2×10-2 s 的振动过程中,质点的位移、回复力、速度、动能、势能如何变化?(3)在t =0到8.5×10-2 s 时间内,质点的路程、位移各多大?解析 (1)由题图可知A =2 cm ,T =2×10-2 s ,振动方程为x =A sin ⎝⎛⎭⎫ωt -π2=-A cos ωt =-2cos2π2×10-2t cm =-2cos 100πt cm当t =0.25×10-2 s 时,x =-2cos π4 cm =- 2 cm.(2)由题图可知在1.5×10-2~2×10-2 s 内,质点的位 移变大,回复力变大,速度变小,动能变小,势能变大.(3)从t =0至8.5×10-2 s 时间内为174个周期,质点的路程为s =17A =34 cm ,质点0时刻在负的最大位移处,8.5×10-2 s 时刻质点在平衡位置,故位移为2 cm. 答案 (1)- 2 cm (2)变大 变大 变小 变小 变大 (3)34 cm 2 cm。
机械振动学总结 第一章 机械振动学基础第二节 机械振动的运动学概念第三节机械振动是种特殊形式的运动。
在这运动过程中,机械振动系统将围绕其平衡位置作往复运动。
从运动学的观点看,机械振动式研究机械系统的某些物理量在某一数值近旁随时间t 变化的规律。
用函数关系式来描述其运动。
如果运动的函数值,对于相差常数T 的不同时间有相同的数值,亦即可以用周期函数来表示,则这一个运动时周期运动。
其中T 的最小值叫做振动的周期,Tf 1=定义为振动的频率。
简谐振动式最简单的振动,也是最简单的周期运动。
一、简谐振动物体作简谐振动时,位移x 和时间t 的关系可用三角函数的表示为式中:A 为振幅,T 为周期,ϕ和ψ称为初相角。
如图所示的正弦波形表示了上式所描述的运动,角速度ω称为简谐振动的角频率简谐振动的速度和加速度就是位移表达式关于时间t 的一阶和二阶导数,即可见,若位移为简谐函数,其速度和加速度也是简谐函数,且具有相同的频率。
因此在物体运动前加速度是最早出现的量。
可以看出,简谐振动的加速度,其大小与位移成正比,而方向与位移相反,始终指向平衡位置。
这是简谐振动的重要特征。
在振动分析中,有时我们用旋转矢量来表示简谐振动。
图P6旋转矢量的模为振幅A ,角速度为角频率ω若用复数来表示,则有)sin()cos()(ψωψωψω+++==+t jA t A z Ae z t j用复指数形式描述简谐振动,给计算带来了很多方便。
因为复指数t j e ω对时间求导一次相当于在其前乘以ωj ,而每乘一次j ,相当于有初相角2π。
二.周期振动满足以下条件:1)函数在一个周期内连续或只有有限个间断点,且间断点上函数左右极限存在;2)在一个周期内,只有有限个极大和极小值。
则都可展成Fourier 级数的形式,若周期为T 的周期振动函数,则有式中22n n n b a A += nn n b a =ψt a n 三、简谐振动的合成一、同方向振动的合成1.俩个同频率的简谐振动)sin(222ψω+=t A x ,)sin(2222ψω+=t A x它们的合成运动也是该频率的简谐振动2.俩个不同频率振动的合成若21ωω≤,则合成运动为若21ωω≥ ,对于A A A ==21 ,则有上式可表示为二、两垂直方向振动的合成1.同频率振动的合成如果沿x 方向的运动为沿y 方向的运动为2不同频率振动的合成对于俩个不等的简谐运动它们的合成运动也能在矩形中画出各种曲线。
机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。
例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。
因为:乒乓球没有在平衡位置附近做往复运动。
(1)平衡位置:①物体所受回复力为零的位置。
②振动方向上,合力为零的位置。
③物体原来静止时的位置。
(2)机械振动的平衡位置不一定是振动范围的中心。
(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。
(4)回复力:沿振动方向,指向平衡位置的合力。
①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。
②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。
曲线振动(如单摆):回复力不一定等于振子的合外力。
③平衡位置,回复力为零。
例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。
答:错误。
正例:弹簧振子的平衡位置是合外力为零的位置。
反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。
(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。
(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。
振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。
正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。
专题29求解振动周期的四种方法一、公式法例1 如图29-1所示为一机械振动装置,两轻弹簧的劲度系数分别为k1和k2,它们离自由转动轴O的距离分别为a和b,杆OAB的质量不计,振子质量为m,平衡时杆OAB恰好水平,求振子做微小振动时的周期.二、能量法例2 位于竖直平面内的“V”型管粗细均匀、两端开口,两臂分别与水平面成a角和β角,如图29-2所示,其内盛有长为l、质量为m的液柱,受扰动后,液柱将沿管做振动,求振动周期.设管壁无阻力.三、等效法例3 长度为l的轻杆和固定在杆自由端上的小铅球组成一个单摆,小铅球的质量为m.现在杆上再套一颗同质量的珍珠,它可以沿着过轻杆中点的水平线自由地滑动,如图29-3所示,求这种异型摆微小振动时的周期.忽略空气阻力和一切摩擦.四、比较法例4 如图29-4所示,细轴环用铰链固定于A点,开始使它的质心位于A点的正上方,轴环受微扰后自由落下,经t=0.5s后,轴环的质心处于最低位置.有一摆是小重球B固定在轻杆上,杆的长度等于轴环的半径,小球从最高位置由静止开始摆下.求此摆的振动周期.体验感悟1.如图29-5所示,用6根拉伸的、长度均为10cm的弹簧将一质量为m=10g的物体悬挂起来,每根弹簧上的拉力均为5N.如果将物体垂直于纸面向外稍微拉动一下然后释放,则该物体的振动频率为_____Hz.2.牛顿曾证明:一个均匀球壳,对球壳内物质的万有引力为零,而对球壳外物质的万有引力不为零,且其作用效果相当于球壳的质量都集中到球心那样.假设有一沿着地轴、穿过地球的通道,在地球表面把一小球从洞口由静止释放,如图29-6所示,试求小球到达通道另一洞口所用的时间.忽略摩擦、阻力等影响,假设地球是半径为R、质量为M一个均匀球体.3.如图29-7所示为一弹簧摆,在原单摆两侧各加一个劲度系数均为k0的轻质弹簧,设摆球静止时两弹簧均处于原长状态,求其振动周期.4.一个质量为M的小球用一根长细线悬挂在很高的天花板上,其右侧有一质量为m的小球用长为l的细线悬挂在O点,两球用一根短轻杆相连,平衡时轻杆水平且两细线竖直平行,如图29-8所示,现将两小球从平衡位置拉离左边使细线偏离一个小角度后静止释放,不计空气阻力,求该系统的振动周期T.5.如图29-9所示,用三根竖直的、长度相同且不可伸长的细轻绳将一个细圆环水平悬挂,环上拴绳点彼此距离相等,细圆环微小扭转后的转动周期为T1,现借助一些重量不计的辐条,将一与环等质量的重物固定于环心处,此时细圆环微小扭转后的振动周期为T2,试求T1与T2之比.。
机械工程中的机械振动分析机械振动是机械工程领域中的一个重要研究方向,它涉及到机械系统中的动力学问题。
机械振动的研究对于解决机械系统中的振动和噪声问题、提高机械系统的可靠性和性能具有重要意义。
本文将介绍机械工程中的机械振动分析方法。
一、机械振动的基本概念机械振动是指机械系统中物体在其平衡位置附近做周期性的来回运动。
机械振动可以分为自由振动和强迫振动两种。
自由振动是指物体在没有外力作用下,在初始位移和初始速度条件下做振动。
强迫振动是指物体在外力的作用下做振动。
二、机械振动的分析方法1. 动力学分析机械振动的动力学分析是研究机械系统中物体受力和作用力之间的关系。
通过建立机械系统的动力学方程可以推导出物体的振动特性,如振动频率、振动幅度等。
在动力学分析中,常用的方法有受力分析、动量平衡和能量平衡等。
2. 模态分析模态分析是研究机械系统中物体的固有振动特性。
固有振动特性是指机械系统在没有外力作用下的振动特性。
模态分析可以通过数值计算和实验方法进行。
数值计算方法主要有有限元法和模态超振共振法等。
实验方法主要有模态试验和激励响应试验等。
3. 频谱分析频谱分析是研究机械系统中振动信号的频域特性。
通过对振动信号进行频谱分析,可以了解机械系统中存在的振动模态、频率和幅值等信息。
频谱分析常用的方法有傅里叶变换和小波变换等。
4. 振动响应分析振动响应分析是研究机械系统在外力作用下的振动响应情况。
通过对机械系统的振动响应进行分析,可以评估机械系统的可靠性和性能。
振动响应分析可以通过数值计算和实验方法进行。
数值计算方法主要有有限元法和时域分析法等。
实验方法主要有模态试验和激励响应试验等。
5. 振动控制分析振动控制分析是研究如何减小机械系统中的振动和噪声。
通过对机械系统的振动进行控制和调整,可以提高机械系统的可靠性和性能。
振动控制分析常用的方法有主动控制和被动控制两种。
主动控制是指通过主动干预机械系统的振动来实现振动控制。
被动控制是指通过改变机械系统的结构和材料等来实现振动控制。