随机过程第七章期末练习题
- 格式:pdf
- 大小:110.38 KB
- 文档页数:4
期末复习试题一、填空题1. 假设()0.4,P A =()0.7P A B =, 若A 与B 互不相容,则()________P B =; 若A 与B 相互独立,则()________P B =.2.设0<P (A )<1,0<P (B )<11=+)|()|(B A P B A P ,则A 与B 满足什么关系__________.3.设A 与B 为两个事件,()0.9P A =,()0.3P AB =,则()P AB =___________.4. 设()0.5P A =,()0.3P B =()0.2P B A =,则()P B A ⋃=___________. 5.设随机变量X 的分布率为{}7aP X k ==,( 1, 2, ,7k =)则常数a =_______.6.设随机变量X 的密度函数为, 01,()0, ax x f x <<⎧=⎨⎩其它.则常数a =_________7. 设X 和Y 是两个随机变量,且3(0,0)7P X Y ≥≥=,4(0)(0)7P X P Y ≥=≥=, 则{max(,)0}P X Y ≥= ______________8. 设随机变量()Xπλ,且已知[(1)(2)]1E X X --=,则λ=___________.9.设随机变量(,)XB n p 的二项分布,且()4,()3,E X D X ==则n =___,p =___10. 设X 服从2(,)N μσ,随σ增大,概率{}P X μσ-<的值________________. 11. 设X 服从(1,4)N ,则2()E X 为 ________________.12.设随机变量X 和Y 独立,且都服从(,1)N μ,若{1}0.5P X Y +≤=,则μ为____13.设随机变量X 和Y 独立,且X 服从(1,2)N ,Y 服从(0,1)N ,则23Z X Y =-+服从_________14. 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则由切比雪夫不等式,有{||6}P X Y +≥≤_______________.15. 某人不断地掷骰子.设n X 表示前n 次抛掷中出现的最大点数,那么随机序列{},1n X n ≥的状态空间是____________________.16.设计数过程{(),0}N t t ≥是强度为λ的泊松过程,令00t =,则均值函数为_____,方差函数为_____.17.设{(),0}W t t ≥是以2σ为参数的维纳过程,则0, ()t W t ∀>___________________.18.已知1{,}n X n T ∈为马尔可夫链,12{,,}I a a =为状态空间,对于120,r t t t m ≤<<<<(1,,i t m m n T +∈),都有1122{,,,,}r r m n t i t i i i m i p X a X a X a X a X a +======______二、简单计算题1. 已知1()()(),4P A P B P C ===1()0, ()(),8P AC P AB P BC ===求,,A B C 至少有一个发生的概率2.设X 的密度函数为, 0 1,()0, .ax x f x <<⎧=⎨⎩其他试求:(1)常数a ;(2)1{0}2P X ≤≤.3.设X 的密度函数为121, 0,()20, .x e x f x -⎧>⎪=⎨⎪⎩其他求以a 为未知数的一元二次方程2240a Xa ++=有实根的概率。
.数学与统计学院2013级统计学专业(本科)《应用随机过程》期末试卷(B )2015 — 2016 学年 第一学期 考试时间120 分钟 满分100分一、判断题(每题2分,满分10分)1.布朗运动和排队模型都属于随机过程。
( )2.如果随机过程{}(),X t t T ∈是严平稳过程,则它也是宽平稳过程。
( )3.Poisson 过程是具有独立增量和平稳增量的计数过程。
( )4.i 为零常返状态⇔0lim )(=∞→n iin p。
( ) 5.如果状态i 为非常返状态,且是非周期的,则i 是遍历状态。
( )二、填空题(每空2分,满分20分)1.设{}(),X t t T ∈是平稳过程,则[()]E X t = 。
2.乘客以10人/小时的平均速率到达售票处,则[0,t]内到达的乘客数{}()N t 是强度为 的Poisson 过程。
3.自相关函数(,)X R s t = 。
4.更新过程的时间间隔 ,,21X X 是分布函数为F 的独立同分布序列。
如果允许1X 服从其他分布G ,则称由 ,,21X X 确定的计数过程是 。
5. 有“开”、“关”两种状态的更新过程,称作 。
6.有一类随机过程,它具备 ,即要确定过程将来的状态,只需知道它现在的状态,而不需要知道它过去的状态。
7.设Markov 链一步转移概率矩阵为()ij p P =,n 步转移矩阵为())()(n ij n p P =,则二者之间的关系为 。
8.在Markov 链中,若()11n ii ii n f f ∞===∑,则称状态i 为 。
9.更新过程中有()N t n ≥⇔ 。
10.若状态j i ,同属一类,则两状态的周期)()(j d i d 与的关系是 。
三、计算题(每题10分,满分30分)1.假设某天文台观测到的流行数是一个泊松过程,根据以往资料统计为每小时平均观测到5颗流星。
试求:上午8:00 -12:00期间,该天文台没有观察到流星的概率?观察到3颗的概率?2.设顾客在[0,t)内进入商场的人数是一泊松过程,平均每10min 进入25人。
《随机信号》期末试题学号:姓名:计算题和解答题(注:答题纸上作答,请写出必要的步骤,直接写出答案不得分)1、(10分)设随机过程(),(0,)X t Vt b t =+∈∞,b 为常数,V 是服从正态分布N(0,1)的随机变量。
求X(t)的一维概率密度、均值和相关函数。
2、(15分)设随机过程1nn j j Y X ==∑,其中X j (j=1,2,…,n)是相互独立的随机变量,且P{Xj=1}=p ,P{Xj=0}=1-p=q ,求{Yn ,n=1,2,…}的均值函数和协方差函数。
3、(15分)设电话总机在(0,t]内接到电话呼叫数X(t)是具有强度(每分钟)为λ的泊松过程,求:(1)两分钟内接到3次呼叫的概率;(2)“第二分钟内收到第三次呼叫”的概率;4、(15分)某商店每日8时开始营业,从8时到11时平均顾客到达率线性增加,在8时顾客平均到达率为5人/时,11时到达率达最高峰20人/时。
从11时到13时,平均顾客到达率维持不变,为20人/时,从13时到17时,顾客到达率线性下降,到17时顾客到达率为12人。
假定在不相重叠的时间间隔内到达商店的顾客数是相互独立的,问在8:30-9:30问无顾客到达商店的概率是多少?在这段时间内到达商店的顾客数的数学期望是多少?5、(15分)设马尔科夫链的状态空间为I={1,2,3,4,5,6},状态转移图如下所示,写出转移概率矩阵。
6、(15分)设马尔科夫链的转移概率矩阵分别为(1)11221233⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(2)112233000p q p q q p ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦计算1112,,1,2,3n n f f n =7、(15分)设S(t)是一周期为T 的函数,θ在(0,T )上均匀分布,称X(t)=S(t+θ)为随机相位周期过程,讨论其平稳性。
随机过程考试试题及答案详解1、(15分)设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。
(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。
【理论基础】 (1(2F ((3(F (4,(1)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(tC x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C tCx C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(; 相关函数2)(231)]()([),(C t s Cst t X s X E t s R X +++==; 协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数) 【注】)()()(22X E X E X D -=;)()(),(),(t m s m t s R t s B X X X X -=求概率密度的通解公式|)(|/)(|)(|)()(''y x y f x y y f x f t ==2、(15分)设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量;且对任意的∞<<∞-t ,)(t W 与R 均独立。
令R t W t X +=)()(,求随机过程{}∞<<∞-t t X ),(的均值函数、相关函数和协方差函数。
【解答】此题解法同1题。
依题意,|)|,0(~)(2t N t W σ,)4,1(~N R ,因此R t W t X +=)()(服从于正态分布。
故:均值函数1)()(==t EX t m X ;相关函数5)]()([),(==t X s X E t s R X ;协方差函数4)]}()()][()({[),(=--=t m t X s m s X E t s B X X X (当t s =时为方差函数) 3、(10分)设到达某商场的顾客人数是一个泊松过程,平均每小时有180人,即180=λ;且每个顾客的消费额是服从参数为s 的指数分布。
《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。