西南大学20年12月初等数论【0346】大作业答案
- 格式:doc
- 大小:41.50 KB
- 文档页数:2
初等数论练习题一一、填空题1、d(2420)=12; 0(2420)=_880_2、设比n是大于1的整数,若是质数,则a=_2.3、模9的绝对最小完全剩余系是_卜4, -3, -2, -1,0,1,2,3,4}.4、同余方程9x+12=0(mod 37)的解是x三11 (mod 37)。
5、不定方程18x-23y=100 的通解是x=900+23t, y=700+18t t Z。
.6、分母是正整数m的既约真分数的个数为—(山)_。
7、18100被172除的余数是_殛。
9、若p是素数,则同余方程L 1 l(modp)的解数为p-1 。
二、计算题疋11X 20 0 (mod lO5)o1、解同余方程:3解:因105 = 3 5 7,同余方程3x211X 20 0 (mod 3)的解为x 1 (mod 3),同余方程3x211X 38 0 (mod 5)的解为x0, 3 (mod 5),同余方程3x211X 20 0 (mod 7啲解为x2, 6 (mod 7), 故原同余方程有4解。
作同余方程组:x (mod 3), x b2 (mod 5), x b3 (mod 7),其中®=1, b2 = 0, 3, b3 = 2, 6,由子定理得原同余方程的解为x 13, 55, 58, 100 (mod 105)o2. 判断同余方程/三42(mod 107)是否有解?*3x7 2 3 7)=(二)(一)(―-)107 107 107 1072 3 I 。
, 2 v( —) = -1, ( — ) = (-1) 2 2(ArL) = -<±) = L 107 107 3 3.-.(—) = 1 107故同余方程x 2三42(mod 107)有解。
3、求(12715C +34) 23除以ill 的最小非负余数。
解:易知 1271 = 50 (mod 111)0由 502 =58 (mod 111) , 503 三58X50三 14 (mod 111), 509=143=80 (mod111)知 502G = (509)彳x50三803X50三803x50三68x50三70 (mod 111) 从而505C=16 (mod 11 l)o故(12715C +34) 2c = (16+34) 20 =502G =70 (mod 111)三、证明题1、 已知p 是质数,(a,p) =1,证明:(1) 当 Q 为奇数时,a p l +(p-l)A =O (mod p);(2) 当a 为偶数时,衣三°(mod p)。
初等数论答案初等数论是数学中的一门分支,研究整数的性质和规律。
在学习初等数论的过程中,我们经常会遇到一些问题,而这些问题的答案又是多变的。
让我们一起来探索一下初等数论中的一些答案吧。
首先,让我们来看一个经典的问题:质数与合数之间的关系。
质数是只能被1和它自身整除的整数,而合数则是除了1和它本身之外还有其他因子的整数。
那么质数和合数究竟是如何排列的呢?根据数论的基本定理,任何一个大于1的整数都可以唯一地表示为质数的乘积。
换句话说,我们可以把一个合数分解成若干个质数的乘积。
这就是著名的质因数分解定理。
例如,我们可以把数字12分解成2的平方乘以3。
这种分解方式在数论中是非常有用的。
接下来,我们来探究一下素数的分布规律。
素数是只有1和它本身两个因子的整数。
在整数集中,素数众多而分布又显得不规则。
然而,欧拉证明了存在着无穷多个素数。
这个证明非常有趣,虽然是一项古老的研究成果,但至今无人能够给出一种更简便的证明方法。
在素数的分布中,有一类素数叫做孪生素数。
孪生素数指的是相差为2的两个素数,例如(3, 5), (11, 13)等等。
孪生素数的存在一直是数论家们研究的一个问题。
目前已知的最大孪生素数对是(2996863034895, 2996863034897),但是还有很多问题没有得到解决。
除了上述问题,初等数论还涉及到一些有趣且具有挑战性的难题,例如高斯整数和费马大定理等等。
高斯整数是复数平面上的整数,它由实部和虚部都是整数的复数构成。
高斯整数的研究和普通整数有着很多相似之处,但同时也有着很多不同之处。
例如,高斯整数中也存在着质数和素数,但是它们的性质和规律与普通整数并不完全一致。
费马大定理则是数论中一个备受关注的问题。
费马大定理声称当整数n大于2时,不存在整数解x、y、z使得方程x^n + y^n =z^n成立。
这个定理在17世纪由费马提出,并长期未能被证明。
直到1994年,英国数学家安德鲁·怀尔斯给出了一个完美的证明,以此结束了这个问题的疑惑。
初等数论练习题⼀(含答案)《初等数论》期末练习⼆⼀、单项选择题1、=),0(b ().A bB b -C bD 02、如果1),(=b a ,则),(b a ab +=().A aB bC 1D b a +3、⼩于30的素数的个数().A 10B 9C 8D 74、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C (mod )ac bc m ≡/D b a ≠5、不定⽅程210231525=+y x ().A 有解B ⽆解C 有正数解D 有负数解6、整数5874192能被( )整除.A 3B 3与9C 9D 3或97、如果a b ,b a ,则( ).A b a =B b a -=C b a ≥D b a ±=8、公因数是最⼤公因数的().A 因数B 倍数C 相等D 不确定9、⼤于20且⼩于40的素数有().A 4个B 5个C 2个D 3个10、模7的最⼩⾮负完全剩余系是( ).A -3,-2,-1,0,1,2,3B -6,-5,-4,-3,-2,-1C 1,2,3,4,5,6D 0,1,2,3,4,5,611、因为( ),所以不定⽅程71512=+y x 没有解.A [12,15]不整除7B (12,15)不整除7C 7不整除(12,15)D 7不整除[12,15]12、同余式)593(m od 4382≡x ().A 有解B ⽆解C ⽆法确定D 有⽆限个解⼆、填空题1、有理数ba ,0,(,)1ab a b <<=,能写成循环⼩数的条件是(). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( ). 3、不⼤于545⽽为13的倍数的正整数的个数为( ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( )n ,⽽且与n ()的正整数的个数.5、设b a ,整数,则),(b a ()=ab .6、⼀个整数能被3整除的充分必要条件是它的()数码的和能被3整除.7、+=][x x ().8、同余式)321(m od 75111≡x 有解,⽽且解的个数( ). 9、在176与545之间有( )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ).11、b a ,的最⼩公倍数是它们公倍数的( ).12、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求24871与3468的最⼩公倍数?2、求解不定⽅程2537107=+y x .(8分)3、求??563429,其中563是素数. (8分) 4、解同余式)321(m od 75111≡x .(8分) 5、求[525,231]=?6、求解不定⽅程18116=-y x .7、判断同余式)1847(m od 3652≡x 是否有解?8、求11的平⽅剩余与平⽅⾮剩余.四、证明题1、任意⼀个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.(11分)2、证明当n 是奇数时,有)12(3+n .(10分)3、⼀个能表成两个平⽅数和的数与⼀个平⽅数的乘积,仍然是两个平⽅数的和;两个能表成两个平⽅数和的数的乘积,也是⼀个两个平⽅数和的数.(11分)4、如果整数a 的个位数是5,则该数是5的倍数.5、如果b a ,是两个整数,0 b ,则存在唯⼀的整数对r q ,,使得r bq a +=,其中b r ≤0.《初等数论》期末练习⼆答案⼀、单项选择题1、C2、C3、A4、A5、A6、B7、D8、A9、A 10、D 11、B 12、B⼆、填空题1、有理数ba ,1),(,0=b a b a ,能写成循环⼩数的条件是( 1)10,(=b ). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( 3 ). 3、不⼤于545⽽为13的倍数的正整数的个数为( 41 ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( 不⼤于 )n ,⽽且与n (互素)的正整数的个数.5、设b a ,整数,则),(b a ( ],[b a )=ab .6、⼀个整数能被3整除的充分必要条件是它的(⼗进位)数码的和能被3整除.7、+=][x x ( }{x ).8、同余式)321(m od 75111≡x 有解,⽽且解的个数( 3 ). 9、在176与545之间有( 12 )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ab ).11、b a ,的最⼩公倍数是它们公倍数的( 因数 ).12、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、求24871与3468的最⼩公倍数?解:因为(24871,3468)=17所以[24871,3468]= 17346824871?=5073684 所以24871与3468的最⼩公倍数是5073684。
初等数论习题与答案、及测试卷1 证明:n a a a ,,21 都是m 的倍数。
∴存在n 个整数n p p p ,,21使n n n m p a m p a m p a ===,,,222111又n q q q ,,,21 是任意n 个整数m p q p q q p a q a q a q n n n n )(22112211+++=+++∴即n n a q a q a q +++ 2211是m 的整数2 证:)12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n1()1()2)(1(/6+-+++∴n n n n n n从而可知12)(1(/6++n n n3 证: b a , 不全为0∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而有形如by ax +的最小整数00by ax +Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=rax by ax ++∴/00 下证8P 第二题by ax by ax ++/00 (y x ,为任意整数)b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax ba +∴故),(00b a by ax =+4 证:作序列 ,23,,2,0,23,b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使b q a b q 212+<≤成立(i 当q 为偶数时,若.0>b 则令b q a bs a t q s 2 ,2-=-==,则有22220b t b q b q a b q a t bs a <∴<-=-==-≤若0,2+=-=-=,则同样有2b t <)(ii 当q 为奇数时,若0>b 则令b q a bs a t q s 2 1,21+-=-=+=,则有21212b t b q a b q a bs a t b ≤∴<+-=+-=-=≤-若 01,21++=-=+-=则同样有 2b t ≤综上存在性得证下证唯一性当b 为奇数时,设11t bs t bs a +=+=则b s s b t t >-=-)(11而b t t t t b t b t ≤+≤-∴≤≤1112,2矛盾故11,t t s s ==当b 为偶数时,t s ,不唯一,举例如下:此时2b 为整数 2,2),2(2212311b t b t b b b b b ≤=-+?=+=?2,2,222211b t b t t bs t bs a ≤-=+=+=5.证:令此和数为S ,根据此和数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数(1)令S=n14131211+++++,取M=p k 75321-这里k 是使n k≤2最大整数,p 是不大于n 的最大奇数。
(0346)《初等数论》网上作业题及答案1:第一次作业2:第二次作业3:第三次作业4:第四次作业5:第五次作业1:[论述题]数论第一次作业参考答案:数论第一次作业答案2:[单选题]如果a|b,b|c,则()。
A:a=cB:a=-cC:a|cD:c|a参考答案:C马克思主义哲学是我们时代的思想智慧。
作为时代的思想智慧,马克思主义哲学主要具有反思功能、概括功能、批判功能和预测功能。
(1)“反思”是哲学思维的基本特征,是以思想的本身为内容,力求思想自觉其为思想。
通过不断的反思,揭示自己时代的本质和规律,达到对事物本质和规律性的认识。
(2)概括是马克思主义哲学的重要功能,是马克思主义哲学把握人与世界总体性关系的基本思维方式。
(3)马克思主义哲学的批判功能主要是指对现存世界的积极否定。
(4)马克思主义哲学的预测功能在于预见现存世界的发展趋势。
3:[单选题]360与200的最大公约数是()。
A:10B:20C:30D:40参考答案:D数论第一次作业答案4:[单选题]如果a|b,b|a ,则()。
A:a=bB:a=-bC:a=b或a=-bD:a,b的关系无法确定参考答案:C数论第一次作业答案5:[单选题]-4除-39的余数是()。
A:3B:2C:1D:0参考答案:C数论第一次作业答案6:[单选题]设n,m为整数,如果3整除n,3整除m,则9()mn。
A:整除B:不整除C:等于D:小于参考答案:A数论第一次作业答案7:[单选题]整数6的正约数的个数是()。
A:1B:2C:3D:4参考答案:D数论第一次作业答案8:[单选题]如果5|n ,7|n,则35()n 。
A:不整除B:等于C:不一定D:整除参考答案:D数论第一次作业答案1:[论述题]数论第二次作业参考答案:数论第二次作业答案2:[单选题]288与158的最大公约数是()。
A:2B:4C:6D:8参考答案:A数论第二次作业答案3:[单选题]-337被4除余数是()。
西南大学培训与继续教育学院课程考试试题卷学期:2020年秋季
课程名称【编号】:初等数论【0346】 A卷
考试类别:大作业满分:100分
1.解:整除的定义:
设a, b是任意两个整数,其中b不为零,若存在一个整数q使得a=bq,我们就说b 整除a,记为bla.这时b叫a的因数, a叫b的倍数.若这样的q不存在,则说b 不整除a.
6整除24.
8不整除42.
3.解:欧拉函数()a
ϕ是定义在正整数上的函数,它在正整数a上的值等于序列0,1,2,…,a-1中与a互质的数的个数。
(5)
ϕ=4
(6)
ϕ=2.
4.解:220=2²×5×11。
6.解如下图
8.解:素数除了1和自己就没有其他约数了.4m-1或4m+1,其中4m-1看成4m+3,即一切奇素数都可以表示成4m+3或4m+1的形式.因为,一切奇素数不可以写成4m的形式(约数4),但也不能写成4m+2(约数2).所以一切奇素数都可以表示成4m-1或4m+1的形式,即41
m±.
- 1 -。
初等数论练习题答案(优选.)初等数论练习题答案原点教育培训学校初等数论练习题⼀⼀、填空题1、d(2420)=12; ?(2420)=_880_2、设a,n 是⼤于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最⼩完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余⽅程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定⽅程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_?(m )_。
7、18100被172除的余数是_256。
8、??? ??10365 =-1。
9、若p 是素数,则同余⽅程x p - 1 ≡1(mod p )的解数为 p-1 。
⼆、计算题1、解同余⽅程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3?5?7,同余⽅程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余⽅程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余⽅程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余⽅程有4解。
作同余⽅程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙⼦定理得原同余⽅程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余⽅程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(()(解:故同余⽅程x 2≡42(mod 107)有解。