再探实际问题与二元一次方程组2
- 格式:doc
- 大小:64.00 KB
- 文档页数:3
第8章第3节实际问题与二元一次方程组2
辅导科目
数学年级七年级教材版本人教版
讲义类型提升版(适用于考试得分率介于60%-80%之间的学员)
教学目的1.以含有多个未知数的实际问题为背景,让学生经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数问题的数学模型。
2. 使学生熟练掌握用方程组解决实际问题。
重、难点重点:销售问题、顺逆问题、相遇问题、追击问题、环路问题、工程问题难点:从实际问题中抽象出方程组
授课时长建议授课时长2小时
教学内容
【课程导入】
张强和李毅二人分别从相距20千米的A.B两地出发,相向而行,如果张强比李毅早出发30分钟,那么在李毅出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米。
求张强、李毅每小时各走多少千米。
【新知讲解】
※知识点六:其它行程问题
常见的主要有过桥、错车、上下坡/变速问题。
1. 过桥问题
车辆或火车行驶的路程=桥梁(隧道)长度+车身长度
2. 错车问题
①相遇错车问题(相向而行)
→
结论:两车相向而行,路程为两车车长总和,速度为两列车的速度之和;
②追击错车问题(同向而行)
→
结论:两车同向而行,路程为两车车长总和,速度为两列车的速度之差;
※例题
1. 已知某一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间为40秒钟,求火车的长度和火车的速度。
关于“再探实际问题与二元一次方程组”一节课的教学设计思考【摘要】本文主要阐述了人民教育出版社七年级下学期数学教材在第八章“二元一次方程组”第三小节“再谈实际问题与二元一次方程组”第一课时教学设计思考,以及在教、学过程中如何实施等问题。
主要内容包括:一、新课引入的设计;二、讲授新知的设计;三、课堂练习的设计;四、课堂小结的设计;五、布置作业、教学评价、板书的设计。
【关键词】二元一次方程组;估算;教学评价;数学思想;教学方法人民教育出版社七年级下学期数学教材在第八章“二元一次方程组”第三小节中,又特别安排了“再探实际问题与二元一次方程组”的内容,选择了三个具有一定综合性的问题:“牛饲料问题”、“种植计划问题”、“成本与产出问题”。
;提供给学生利用方程组为工具进行具有一定深度的思考,增加运用方程组解决实际问题的实践,将全章所强调的以方程组为工具,把实际问题模型化的思想提到了新的高度。
这一小节内容的问题形式包括:估算与精确计算的比较,如探究1;开放地寻求设计方案,如探究2;根据图表所表示的实际问题的数据信息列方程组,如探究3。
安排这节的目的在于:一方面,通过实际生活中的问题,进一步突出方程组这种数学模型应有的广泛性和有效性;另一方面,使学生能在解决实际问题的情境下运用所学知识,进一步提高分析问题和解决问题的综合能力。
下面就这一小节的第一课时,即探究1的教学过程设计谈一点自己粗浅的想法。
1.关于新课引入的设计建议播放反映新疆美丽自然风光和介绍新疆畜牧业发展较好的短片或照片,并配上巴哈尔古丽的演唱的歌曲《新疆好》。
其目的有三:一是激发和增强学生学习数学的兴趣;二是教师借机可对学生进行热爱祖国、热爱家乡的德育教育;三是为本节课的引入、探究活动中问题的展示,做了一个很好的引子。
2.关于讲授新知的设计探究1:养牛场原有30只母牛和15只小牛,1天约需饲料675kg,一周后又购进12只母牛和5只小牛,这时一天需用饲料940kg,饲养员李大叔估计平均每只母牛一天需要饲料18~20kg,每只小牛一天约需用饲料7~8kg,你能否通过计算检验他的估计?2.1先给学生充足的时间(大约5分钟~8分钟)进行独立思考、小组讨论,探索分析解决这个问题的方法。
2024七年级下册数学第八章二元一次方程组《实际问题与二元一次方程组:探究2农作物常量问题》听课记录一、导入教师行为:1.1 激发兴趣:“同学们,我们都知道中国是一个农业大国,农作物的产量和种植情况对我们的生活非常重要。
今天,我们就来探究一个与农作物常量有关的问题,看看如何通过数学方法来解决实际问题。
”1.2 提出问题:“假设一个农场里有两种农作物,小麦和玉米。
小麦每公顷的产量是5吨,玉米每公顷的产量是8吨。
农场主告诉我们,他今年总共收获了100吨的农作物。
同时,我们还知道农场里小麦和玉米的种植面积之比为3:2。
那么,农场里小麦和玉米各种植了多少公顷呢?”学生活动:•学生思考并尝试回答教师提出的问题,对即将学习的内容产生好奇和兴趣。
•认真聆听教师的导入,理解问题的背景和实际意义。
过程点评:•教师通过农业生产的实际问题引入,使学生能够将数学与现实生活联系起来,增加学习的趣味性。
•问题的设置既具有挑战性,又能够引导学生思考如何将实际问题转化为数学问题。
二、教学过程2.1 教师行为:2.1.1 分析问题:“首先,我们需要明确这个问题中的两个未知数,分别是小麦和玉米的种植面积。
然后,我们可以根据题目中的信息,建立两个方程来表示这两个未知数之间的关系。
”2.1.2 建立方程组:“假设小麦的种植面积为x公顷,玉米的种植面积为y公顷。
根据题目,我们可以得到以下两个方程:5x + 8y = 100(表示总收获量为100吨)和x/y = 3/2(表示小麦和玉米种植面积之比为3:2)。
”2.1.3 讲解解法:“为了解这个方程组,我们可以先将第二个方程转化为线性方程,即2x = 3y。
然后,我们可以使用代入法或消元法来解这个方程组。
”学生活动:•学生跟随教师的讲解,理解问题的分析过程和方程组的建立方法。
•尝试自己建立方程组,并思考如何解这个方程组。
过程点评:•教师通过详细的问题分析和方程组的建立过程,使学生理解了如何将实际问题转化为数学问题,并建立了相应的数学模型。
实际问题与二元一次方程组(2)学习检测1.(2003·陕西)为保护生态环境,我省某山区某县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180km 2,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各位多少平方千米,设耕地面积为x km 2,林地面积为y km 2,根据题意,列出如下四个方程组,其中正确的是( )A 、B 、C 、D 、 2.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是 ↑↓60cm3.某林牧场面积为162公顷,为了保持生态平衡,需把牧区中的27公顷牧场改造成林区,使林区面积是牧区面积的5倍,那么林牧区原来林区、牧区的面积各是多少?4.山区有23名中、小学生因贫困失学需要捐助。
资助一名中学生的学习费用需要a 元,资助一名小学生的学习费用需要b 元。
某校学生各级捐款,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况好下表:(1)a 、b 的值。
(2)初一年级学生的捐款解决了其余..贫困中小学生的学习费用,请将初一年级学生可捐助的贫困中、小学生人数直接填入上表中(不需要写出计算过程)。
5.王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%, 乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗?6.(江西07)2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?x +y =180 y =x ·25% x +y =180 x =y ·25% x +y =180 x -y =25% x +y =180y -x =25%再探实际问题与二元一次方程组(3)学习检测1.某哨卡运回一箱苹果,若每个战士分6个,则少6个;若每个战士分5个,•则多5个,那么这个哨卡共有________名战士,箱中有_______个苹果.2.如果长方形的周长是20cm,长比宽多2cm.若设长方形的长为xcm,宽为ycm,•则所列方程组为_________.3.一张试卷有25道题,做对一道得4分,做错一道扣1分.•小英做了全部试题得70分,则她做对了________道题.4.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分.•一支青年足球队参加15场比赛,负4场,共得29分,则这支球队胜了()A.2场 B.5场 C.7场 C.9场5.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,•求两种球各有多少个?若设篮球有x个,排球有y个,依题意,得到的方程组是()A.23,32x yx y=-⎧⎨=⎩ B.23,32x yx y=+⎧⎨=⎩ C.23,23x yx y=-⎧⎨=⎩ D.23,23x yx y=+⎧⎨=⎩6.甲、乙二人按2:5的比例投资开办了一家公司,约定除去各项开支外,•所得利润按投资比例分成.若第一年赢得14000元,那么甲、乙二人分别应分得()A.2000元,5000元 B.5000元,2000元C.4000元,10000元 D.10000元,4000元7.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,用多少张铁皮做盒身,多少张铁皮做盒底可以使盒身与盒底正好配套?8.(1)(2005年,南通)某校初三(2)班40名同学为“希望工程”捐款,•共捐款100元.捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.27,2366x yx y+=⎧⎨+=⎩ B.27,23100x yx y+=⎧⎨+=⎩ C.27,3266x yx y+=⎧⎨+=⎩ D.27,32100x yx y+=⎧⎨+=⎩。
8.3再探实际问题与二元一次方程组☆趣味导读许多实际问题都可以通过设两个(或更多)未知数,列出方程或方程组来解决,这种方法要比其他方法简单、容易得多.下面这则小故事最早出现于《希腊文选》,读完后,试试看,聪明的你能否知道驴和骡各驮着几个包裹呢?(假定每个包裹重量相等)驴和骡肩并肩走在街上,各自都驮着几个包裹,驴抱怨主人给它压的担子太重,骡却说:“老兄,别抱怨,你的负担并不算重!你瞧,假如你从背上拿一个包裹给我,我的负担就是你的两倍;而假如你从你的背上取走一个包裹,你的负担也不过和我相同呀!”☆智能点拨【例1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?【点拨】两个未知数是制盒身、盒底的铁皮张数,两个相等关系是:①制盒身铁皮张数+制盒底铁皮张数=190;②制盒身铁皮张数的2倍=制盒底铁皮张数.【答案】设x 张铁皮制盒身,y 张铁皮制盒底,根据题意,得{1902822x y x y+=⨯=解这个方程组,得{11080x y ==答:用110张制盒身,800张制盒底,正好制成一批完整的盒子. 【例2】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.【点拨】题目中涉及的未知数较多:甲、乙单独完成所需的时间,甲、乙单独完成所需的工钱.我们可以根据第一类等量关系:(1)甲、乙两个装饰公司合作6周完成;(2)甲公司单独做4周后,剩下的由乙公司来做,还需9周完成;列方程组求出甲、乙单独完成所需的时间.再根据另一类等量关系:(1)甲、乙两个装饰公司合作6周完成需工钱5.2万元;(2)甲公司单独做4周后剩下的由乙公司来做,还需9周完成,需工钱4.8万元,由此在得到一个方程组.【答案】设甲公司单独完成需x 周,需工钱a 元;乙公司单独完成需y 周,需工钱b 元,依题意可得661491x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩采取换元法可解得{1510y x ==∴依题意可得 5.2101549 4.81015a b a b ⎧+=⎪⎨⎪⨯+⨯=⎩解得 {64a b == 即甲公司单独完成需6万元,乙公司单独完成需4万元,故从节约的角度考虑,应选乙公司单独完成.【例3】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为 3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)【点拨】扣税的情况:本金×年利率×(1-20%)×年数=利息(其中,利息所得税=利息 金额×20%).不扣税时:利息=本金×年利率×年数.【答案】设第一种储蓄的年利率为x ,第二种储蓄的年利率为y ,根据题意,得{2000(120%)1000(120%)43.923.24%x y x y -+-=+=整理得{160080043.920.00324x y x y +=+=解这个方程组,得 {0.0225 2.25%0.00990.99%x y ==== 答:第一种储蓄的年利率为2.25%,第二种储蓄的年利率为0.99%.☆随堂反馈*画龙点睛1.小明对小飞说:“我想了两个数,如果第一个数加上第二个数的一半得90;若果第二个数减去第一个数的三分之一得68.”小飞很快说出了小明想好的数.小明想好的两个数是 .2.某车间有62个工人,生产甲、乙两种零件,每3个甲种零件和2个一种零件配成一套.已知每人每天能加工甲种零件12个或乙种零件23个;现将62个工人分成2组,其中x 人加工甲种零件,y 人加工乙种零件,要使每天生产的零件配成套,则x= ,y= .3.甲、乙两个团体共100人去风景区旅游风景区规定超过60人可购买团体票,已知每张团体票比个人票优惠20%,而甲、乙两团体人数均不足60人;两团体决定合起来买团体票,共优惠1600元.则团体票为每张 元.4.某人只带2元和5元两种货币,他要买一件27元的商品;而商店不给他找钱,要他恰好付27元,他有 种付款方式.*慧眼识金1.有一个两位数,它的十位上的数与个位上的数的和是6,则符合条件的两位数有( )A.4个B.5个C.6个D.无数个2.商店购进某种商品的进价是每件8元,销售价是每件10元,现为了扩大销售量,将每件降低x%出售,但要求每件商品所获得的利润是降价前的90%,则x 等于( )A.10B.4C.2D.1.83.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分,答错一题扣1分,不答记0分;已知李同学不答的题比答错的题多2个,他的总分为74分,则他答对了( )A.18个B.19个C.20个D.21个☆课后沟通1.甲、乙两人的收入之比为4∶3,支出之比为8∶5,一年间两人各存了500元,求两人的年收入各是多少?2.甲轮船从A 码头顺流而下,乙轮船从B 码头逆流而上,两船同时出发相向而行,相遇于中点;而乙船顺流航行的速度是甲船逆流航行的速度的2倍.已知水流速度是4km/h ,求两船在静水中的速度.3.有两个长方形,其中第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.☆同步闯关某一弹簧悬挂2kg物体时长13cm,悬挂5kg物体时长14.5cm,问:(1)弹簧原长是多少?(2)当悬挂3kg的物体时,该弹簧的长度是多少?☆能力比拼在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京二环路、三环路、四环路的车流量(每小时通过观测点的汽车量数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆.”乙同学说:“四环路比三环路车流量每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?☆创新乐园一位农场主,又老又病,觉得自己的日子不多了.这是他打算,按如下的次序和方式分配他的财产:第一个儿子分100美元换剩下的财产的10%;第二个儿子分200美元和剩下的财产的10%;第三个儿子分300美元和剩下的财产的10%;第四个儿子分400美元和剩下的财产的10%;……结果,没个儿子分的一样多,你能猜到这位老人共有几个儿子吗?☆单元中考链接1.(2002年,湖南省)二元一次方程组{1021x y x y +=-=-的解是( ) A. {37x y == B. 113193x y ==⎧⎪⎨⎪⎩ C. {28x y == D. {73x y == 【点拨】根据二元一次方程组的解的定义知道,二元一次方程组的解必须同时使两个方程都成立.【答案】A2.(吉林省)二元一次方程组{3827x y x y +=-=的解是 . 【点拨】利用加减消元法【答案】{31x y ==- 3.(新疆乌鲁木齐)今年世界杯足球赛的积分方法如下:赢一场得3分,平一场得1分,输一场得0分.某小组四个队进行单循环赛后,其中一队积了7分,若该队赢了x 场,平了y 场,则(x,y)是( )A.(1,4)B.(2,1)C.(0,7)D.(3,-2)【点拨】由题意可知3x+y=7 ∵x 、y 都是整数,且0≤x ≤3,0≤y ≤3,∴只有当x=2,y=1时,符合单循环赛制,有3×2+1=7.【答案】B.☆单元课题研究【提出问题】要用20张白卡纸做包装盒,每张白卡纸可以做盒身2个,或者做盒盖3个。
再探实际问题与二元一次方程组(第1课时)山阳县城区一中贾礼勇一、教学内容:人教版七年级数学下册8.3再探实际问题与二元一次方程组P105-108二、设计思路教学设计思想:本节知识是探究如何用元二元一次方程解决实际问题。
在前面我们结合实际问题,讨论了如何分析数量关系、利用相等关系列方程组以及如何解方程组,在此基础上我们才可以进一步探究用二元一次方程组解决实际问题。
在课堂中教师出示例题,启发学生思考,师生共同探讨,学生找等量关系,列出方程,教师出示巩固性练习,学生解答,达到巩固所学知识的目的。
学情与教材分析由于七年级学生以形象思维为主,更加上争强好动的特点,采用动手操作这一手脑并用的方式,既可以解决数学知识抽象性与初中生思维形象性之间的矛盾,又可以使他们在丰富的情感体验中由“要我学”的被动性转变为“我要学”的主动性。
三、教学目标1、知识与技能(1)能正确分析实际问题中的数量关系,建立二元一次方程组模型并能解决实际问题。
(2)学会比较估算与精确计算,以及检验方程组的解是否符合题意,并正确回答。
(3)能将实际问题转化为数学问题,掌握列方程组解决实际问题的方法,进一步提高学生逻辑思维能力和分析问题、解决问题的能力。
2、过程与方法经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型,体会代数方法的优越性。
3、情感态度与价值观通过实际问题的建模,师生之间合作交流,使学生养成合作互助意识,提高数学交流和数学表达能力,体会探索带来的成功的喜悦,提高学习数学的兴趣。
四、教学重点让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。
五、教学难点在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题即二元一次方程组。
六、教学准备PPT多媒体课件,《南非世界杯足球赛》视频七、教学方法分析讨论,讲练结合,归纳点拨八、教学过程九、课后反思本节课是在学生学会用方程组表示问题中的条件以及能运用代入法、加减法解二元一次方程组的基础上,探究如何用二元一次方程组解决实际问题。
再探实际问题与二元一次方程组(探究1)
融安县初级中学覃美香
一、教学目标
1、知识与技能
(1)能正确分析实际问题中的数量关系,建立二元一次方程组模型并能解决实际问题。
(2)学会比较估算与精确计算,以及检验方程组的解是否符合题意,并正确作答。
(3)能将实际问题转化为数学问题,掌握列方程组解决实际问题的方法,进一步提高学生逻辑思维能力和分析问题、解决问题的能力。
2、过程与方法
经历把实际问题抽象为数学方程组的过程,体会方程组是刻画现实世界的有效数学模型,进一步体会数学建模思想,培养学生的数学应用意识。
3、情感态度与价值观
(1)通过实际问题的解决,使学生获得成功的体验,提高学习数学的兴趣。
(2)在探究学习中培养学生独立思考、自主探索、勇于创新的精神,并敢于发表自己的见解,养成良好的学习态度。
(3)通过合作交流,养成学生的合作互助意识,提高数学交流和数学表达能力。
二、教学重难点
重点:让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。
难点:在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题即二元一次方程组。
三、教学流程安排
引入新课探究新知巩固提高知识整合感悟反思课后作业
四、教学过程
师生互动
②你能估计出平均每
只母牛和每只小牛一天各
需饲料多少千克吗?
③如何检验你的估计是
否准确?
学生独立思考,发表自
己的见解
学生寻找解决问题的方
法:
(1)找出题中的未知
量,设出未知数。
(2)设出未知数后,根
据题意列出二元一次方程组
(3)求出二元一次方程
组的解。
(4)根据方程组的解来
检验估算的准确性。
学生积极思考,自主探
索,合作交流,解决问题:
解:设平均每只母牛1天
需用饲料x千克,小牛需用y
千克,则:
30x+15y=675
42x+20y=940
解得:x=20
y=5
答:平均每只母牛1天需用
饲料20千克,小牛需用5千
克
鼓励学生大胆猜
想、估计。
发现解决问题的
方法,把实际问题转
化为二元一次方程组
解决。
引导学生主动地
参与教学活动,发扬
数学民主,让学生在
独立思考、合作交流
等数学活动中,培养
学生合作互助意识,
提高数学交流与数学
表达能力,发展学生
多角度思维能力,培养
学生严谨的思维方式
和良好的学习氛围,
在学习活动中获得成
功感,树立自信心,
并进一步形成对数学
知识的理解,培养数
学应用意识,体会将
实际问题转化为数学
问题的过程。
三、
巩固提高1、练一练,相信你能行
融安县初级中学七年
级(5)班51名同学为“希
望工程”捐款,共捐款181
元,捐款情况如下表,表
格中捐款3元和4元的人
数不小心被墨水污染已看
不清楚。
若设捐款3元的有x名
同学,捐款4元的有y名
同学,根据题意,可列方
程组为:
学生独立思考,自主探
索,列出二元一次方程组:
x+y=30
3x+4y=100
通过此题训练让
学生明确实际问题转
化为数学问题关键是
找出问题中的相等关
系,列出二元一次方
程组,从而体会方程
组的应用价值。