零件孔及孔系的常规加工
- 格式:ppt
- 大小:787.50 KB
- 文档页数:29
工程制图孔的类型
包含如下几种:
通孔,盲孔,阶梯孔,螺纹孔。
举例来讲机械加工中,孔的分类方法有多种,例如有通孔和盲孔;有大孔和小孔;直通孔和阶梯孔;圆柱孔和锥孔,攻丝的有螺孔和底孔;浅孔和深孔;毛坯有铸孔和预留孔等等。
一、铰孔加工
模具中常有一部分销钉孔、顶杆孔、芯子固定孔等需要在划线后或组装时加工,其加工精度一般为IT6~IT8级,粗糙度不低于Ra3.2μm。
二、淬硬件
通过淬硬件的孔铰孔,首先应检查孔是否变形,应用标准硬质合金铰刀铰削,或用旧铰刀铰削,然后用铸铁研磨棒,研至所需尺寸。
铰不通孔铰不通孔时,铰孔深度应加深些,留出铰刀切削部分的长度,以保证有效直径的孔深;也可用标准铰刀铰孔,再用磨去切削部分的旧铰刀铰去孔的未铰出的底部三、深孔加工
塑料模中的冷却水道孔、加热器孔及一部分顶杆孔等需进行深孔加工。
一般冷却水孔精度要求不高,但要防止偏斜;加热器孔为保证热传导效率,孔径及粗糙
度都有一定要求,孔径比加热棒大0.1~0.3mm,粗糙度为Ra12.5~6.3μm;而顶杆孔要求较高,一般精度为IT8并有垂直度、粗糙度要求。
四、孔系加工
模具上许多孔都要求保证孔距、孔边距、各孔轴线的平行度、与端面的垂直度及两个零件组装后孔的同轴度。
这类孔系加工时一般先加工基准,然后划线加工各孔。
机械加工工序顺序的安排原则文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]机械加工工序顺序的安排原则在安排加工顺序时一般应遵循以下原则:1) 先基准面后其它应首先安排被选作精基准的表面的加工,再以加工出的精基准为定位基准,安排其它表面的加工。
该原则还有另外一层意思,是指精加工前应先修一下精基准。
例如,精度要求高的轴类零件,第一道加工工序就是以外圆面为粗基准加工两端面及顶尖孔,再以顶尖孔定位完成各表面的粗加工;精加工开始前首先要修整顶尖孔,以提高轴在精加工时的定位精度,然后再安排各外圆面的精加工。
2) 先粗后精这是指先安排各表面粗加工,后安排精加工。
3) 先主后次主要表面一般指零件上的设计基准面和重要工作面。
这些表面是决定零件质量的主要因素,对其进行加工是工艺过程的主要内容,因而在确定加工顺序时,要首先考虑加工主要表面的工序安排,以保证主要表面的加工精度。
在安排好主要表面加工顺序后,常常从加工的方便与经济角度出发,安排次要表面的加工。
例如,图5.5所示的车床主轴箱体工艺路线,在加工作为定位基准的工艺孔时,可以同时方便地加工出箱体顶面上所有紧固孔,故将这些紧固孔安排在加工工艺孔的工序中进行加工。
此外,次要表面和主要表面之间往往有相互位置要求,常常要求在主要表面加工后,以主要表面定位进行加工。
4) 先面后孔这主要是指箱体和支架类零件的加工而言。
一般这类零件上既有平面,又有孔或孔系,这时应先将平面(通常是装配基准)加工出来,再以平面为基准加工孔或孔系。
此外,在毛坯面上钻孔或镗孔,容易使钻头引偏或打刀。
此时也应先加工面,再加工孔,以避免上述情况的发生。
6.6.1 制定加工工艺路线应遵循的一般原则制定工艺路线时,必须充分考虑采用确保产品质量,并以最经济的办法达到所要求的生产纲领的必要措施,即应该作到:技术上先进、经济上合理,并有良好、安全的劳动条件。
6.6.2 工艺阶段的划分零件加工时,一般不是依次加工完各个表面,而是将各表面的粗、精加工分开进行,为此,通常将整个工艺过程划分为以下四个加工阶段:1、粗加工阶段本阶段的主要作用是切去大部分加工余量,为半精加工提供定位基准和均匀而适当的余量。
普通铣床加工常规孔和异形孔在机械制造中,经常遇到有位置精度ˎ尺寸精度要求高的孔系加工,对于精度要求不高的单件或小批量生产,一般采用划线加工即可;中批或大批量生产,为稳定质量和提高生产率,可以用专用设备或专用工装加工。
对精度要求高的产品,中.小批量或单件生产必须用高精度的坐标镗床来进行加工;而大批量生产则需采用特殊工艺措施或特殊专用设备加工。
通过多年的加工实践我发现一种不配特殊附件,又不进行任何改造,直接在现有普通铣床用调整法加工精密孔系的方法。
现将我在这方面的实践和经验总结如下。
为说明问题方便,现结合图一所示模板座孔的加工过程来叙述其方法。
图1是模板做孔加工的工序图。
本文中取X1=100㎜,X2=40㎜,X3=120㎜,Y1=40㎜,Y2=80㎜,H=30㎜,φD=3000.021㎜,三孔的位置度公差为φ0.02㎜,由此看出,该座孔的精度要求是较高的。
此模板具体加工步骤如下:(1)分别以BˎC面为基准(AˎB,C等六个面已加工好),划出三孔中心线,并分别钻出底孔。
取底孔直径φD1=φD—(5~8)㎜。
本例中取φD1=24㎜。
(2)另外加工出如图2所示的轴套,其数量等于座孔数目,外径φd=φD,内径等于模板底孔直径φD1,长度L=(1~1.5)H。
本例中取φD1=24㎜,φd=φ300-0.02㎜,L=30㎜。
(3)用M16的螺栓将轴套装到模板上,并稍加拧紧。
(4)将装好轴套的模板用B面放在平板上,用杠杆千分表调整轴套在Y方向上的位置(图3)。
调整时,先按轴套高度找出量块,使杠杆千分表调到零位。
轴套准确高度应为模板座孔中心高度加上轴套实际半径。
如装在1孔上的轴套实际直径为φ29.99㎜,则轴套1的调零尺寸为Y΄1=Y1+d实/2=40+29.99/2=54.995㎜用量块组成54.995㎜,对杠杆千分表调零。
然后用调整好的千分表去测轴套的上表面,适当调整轴套的上ˎ下位置,使千分表的读数仍为零。
这样,轴套的中心线在Y方向便处于准确的位置。
孔加工工艺解析大全与外圆表面加工相比;孔加工的条件要差得多;加工孔要比加工外圆困难..这是因为:1孔加工所用刀具的尺寸受被加工孔尺寸的限制;刚性差;容易产生弯曲变形和振动;2用定尺寸刀具加工孔时;孔加工的尺寸往往直接取决于刀具的相应尺寸;刀具的制造误差和磨损将直接影响孔的加工精度;3加工孔时;切削区在工件内部;排屑及散热条件差;加工精度和表面质量都不易控制..一、钻孔与扩孔1、钻孔钻孔是在实心材料上加工孔的第一道工序;钻孔直径一般小于80mm ..钻孔加工有两种方式:一种是钻头旋转;另一种是工件旋转..上述两种钻孔方式产生的误差是不相同的;在钻头旋转的钻孔方式中;由于切削刃不对称和钻头刚性不足而使钻头引偏时;被加工孔的中心线会发生偏斜或不直;但孔径基本不变;而在工件旋转的钻孔方式中则相反;钻头引偏会引起孔径变化;而孔中心线仍然是直的..常用的钻孔刀具有:麻花钻、中心钻、深孔钻等;其中最常用的是麻花钻;其直径规格为破解加工难题--孔加工的分类及其对比..由于构造上的限制;钻头的弯曲刚度和扭转刚度均较低;加之定心性不好;钻孔加工的精度较低;一般只能达到IT13~IT11;表面粗糙度也较大; Ra一般为50~12.5μm;但钻孔的金属切除率大;切削效率高..钻孔主要用于加工质量要求不高的孔;例如螺栓孔、螺纹底孔、油孔等..对于加工精度和表面质量要求较高的孔;则应在后续加工中通过扩孔、铰孔、镗孔或磨孔来达到..2、扩孔扩孔是用扩孔钻对已经钻出、铸出或锻出的孔作进一步加工;以扩大孔径并提高孔的加工质量;扩孔加工既可以作为精加工孔前的预加工;也可以作为要求不高的孔的最终加工..扩孔钻与麻花钻相似;但刀齿数较多;没有横刃..与钻孔相比;扩孔具有下列特点:1扩孔钻齿数多3~8个齿、导向性好;切削比较稳定;2扩孔钻没有横刃;切削条件好;3加工余量较小;容屑槽可以做得浅些;钻芯可以做得粗些;刀体强度和刚性较好..扩孔加工的精度一般为IT11~IT10级;表面粗糙度Ra为12.5~6.3..扩孔常用于加工直径小于的孔..在钻直径较大的孔时D ≥30mm ;常先用小钻头直径为孔径的0.5~0.7倍预钻孔;然后再用相应尺寸的扩孔钻扩孔;这样可以提高孔的加工质量和生产效率..扩孔除了可以加工圆柱孔之外;还可以用各种特殊形状的扩孔钻亦称锪钻来加工各种沉头座孔和锪平端面示..锪钻的前端常带有导向柱;用已加工孔导向..二、铰孔铰孔是孔的精加工方法之一;在生产中应用很广..对于较小的孔;相对于内圆磨削及精镗而言;铰孔是一种较为经济实用的加工方法..1、铰刀铰刀一般分为手用铰刀及机用铰刀两种..手用铰刀柄部为直柄;工作部分较长;导向作用较好;手用铰刀有整体式和外径可调整式两种结构..机用铰刀有带柄的和套式的两种结构..铰刀不仅可加工圆形孔;也可用锥度铰刀加工锥孔..2、铰孔工艺及其应用铰孔余量对铰孔质量的影响很大;余量太大;铰刀的负荷大;切削刃很快被磨钝;不易获得光洁的加工表面;尺寸公差也不易保证;余量太小;不能去掉上工序留下的刀痕;自然也就没有改善孔加工质量的作用..一般粗铰余量取为0.35~0.15mm;精铰取为01.5~0.05mm..为避免产生积屑瘤;铰孔通常采用较低的切削速度高速钢铰刀加工钢和铸铁时;v <8m/min进行加工..进给量的取值与被加工孔径有关;孔径越大;进给量取值越大;高速钢铰刀加工钢和铸铁时进给量常取为0.3~1mm/r..铰孔时必须用适当的切削液进行冷却、润滑和清洗;以防止产生积屑瘤并及时清除切屑..与磨孔和镗孔相比;铰孔生产率高;容易保证孔的精度;但铰孔不能校正孔轴线的位置误差;孔的位置精度应由前工序保证..铰孔不宜加工阶梯孔和盲孔..铰孔尺寸精度一般为IT9~IT7级;表面粗糙度Ra一般为3.2~0.8 ..对于中等尺寸、精度要求较高的孔例如IT7级精度孔;钻—扩—铰工艺是生产中常用的典型加工方案..三、镗孔镗孔是在预制孔上用切削刀具使之扩大的一种加工方法;镗孔工作既可以在镗床上进行;也可以在车床上进行..1、镗孔方式镗孔有三种不同的加工方式..1工件旋转;刀具作进给运动在车床上镗孔大都属于这种镗孔方式..工艺特点是:加工后孔的轴心线与工件的回转轴线一致;孔的圆度主要取决于机床主轴的回转精度;孔的轴向几何形状误差主要取决于刀具进给方向相对于工件回转轴线的位置精度..这种镗孔方式适于加工与外圆表面有同轴度要求的孔..2刀具旋转;工件作进给运动镗床主轴带动镗刀旋转;工作台带动工件作进给运动..3 刀具旋转并作进给运动采用这种镗孔方式镗孔;镗杆的悬伸长度是变化的;镗杆的受力变形也是变化的;靠近主轴箱处的孔径大;远离主轴箱处的孔径小;形成锥孔..此外;镗杆悬伸长度增大;主轴因自重引起的弯曲变形也增大;被加工孔轴线将产生相应的弯曲..这种镗孔方式只适于加工较短的孔..2、金刚镗与一般镗孔相比;金刚镗的特点是背吃刀量小;进给量小;切削速度高;它可以获得很高的加工精度IT7~IT6和很光洁的表面Ra为0.4~0.05 ..金刚镗最初用金刚石镗刀加工;现在普遍采用硬质合金、CBN和人造金刚石刀具加工..主要用于加工有色金属工件;也可用于加工铸铁件和钢件..金刚镗常用的切削用量为:背吃刀量预镗为 0.2~0.6mm;终镗为0.1mm ;进给量为0.01~0.14mm/r ;切削速度加工铸铁时为100~250m/min ;加工钢时为150~300m/min ;加工有色金属时为300~2000m/min..为了保证金刚镗能达到较高的加工精度和表面质量;所用机床金刚镗床须具有较高的几何精度和刚度;机床主轴支承常用精密的角接触球轴承或静压滑动轴承;高速旋转零件须经精确平衡;此外;进给机构的运动必须十分平稳;保证工作台能做平稳低速进给运动..金刚镗的加工质量好;生产效率高;在大批大量生产中被广泛用于精密孔的最终加工;如发动机气缸孔、活塞销孔、机床主轴箱上的主轴孔等..但须引起注意的是:用金刚镗加工黑色金属制品时;只能使用硬质合金和CBN制作的镗刀;不能使用金刚石制作的镗刀;因金刚石中的碳原子与铁族元素的亲和力大;刀具寿命低..3、镗刀镗刀可分为单刃镗刀和双刃镗刀..4、镗孔的工艺特点及应用范围镗孔和钻—扩—铰工艺相比;孔径尺寸不受刀具尺寸的限制;且镗孔具有较强的误差修正能力;可通过多次走刀来修正原孔轴线偏斜误差;而且能使所镗孔与定位表面保持较高的位置精度..镗孔和车外圆相比;由于刀杆系统的刚性差、变形大;散热排屑条件不好;工件和刀具的热变形比较大;镗孔的加工质量和生产效率都不如车外圆高..综上分析可知; 镗孔的加工范围广;可加工各种不同尺寸和不同精度等级的孔;对于孔径较大、尺寸和位置精度要求较高的孔和孔系;镗孔几乎是唯一的加工方法..镗孔的加工精度为IT9~IT7级;表面粗糙度Ra为 ..镗孔可以在镗床、车床、铣床等机床上进行;具有机动灵活的优点;生产中应用十分广泛..在大批大量生产中;为提高镗孔效率;常使用镗模..四、珩磨孔1、珩磨原理及珩磨头珩磨是利用带有磨条油石的珩磨头对孔进行光整加工的方法..珩磨时;工件固定不动;珩磨头由机床主轴带动旋转并作往复直线运动..珩磨加工中;磨条以一定压力作用于工件表面;从工件表面上切除一层极薄的材料;其切削轨迹是交叉的网纹..为使砂条磨粒的运动轨迹不重复;珩磨头回转运动的每分钟转数与珩磨头每分钟往复行程数应互成质数..珩磨轨迹的交叉角与珩磨头的往复速度及圆周速度有关; 角的大小影响珩磨的加工质量及效率;一般粗珩时取°;精珩时取..为了便于排出破碎的磨粒和切屑;降低切削温度;提高加工质量;珩磨时应使用充足的切削液..为使被加工孔壁都能得到均匀的加工;砂条的行程在孔的两端都要超出一段越程量..为保证珩磨余量均匀;减少机床主轴回转误差对加工精度的影响;珩磨头和机床主轴之间大都采用浮动连接..珩磨头磨条的径向伸缩调整有手动、气动和液压等多种结构形式..2、珩磨的工艺特点及应用范围1珩磨能获得较高的尺寸精度和形状精度;加工精度为IT7~IT6级;孔的圆度和圆柱度误差可控制在的范围之内;但珩磨不能提高被加工孔的位置精度..2珩磨能获得较高的表面质量;表面粗糙度Ra为0.2~ 0.025um ;表层金属的变质缺陷层深度极微2.5~25um..3与磨削速度相比;珩磨头的圆周速度虽不高vc=16~60m/min;但由于砂条与工件的接触面积大;往复速度相对较高va=8~20m/min;所以珩磨仍有较高的生产率..珩磨在大批大量生产中广泛用于发动机缸孔及各种液压装置中精密孔的加工;孔径范围一般为或更大;并可加工长径比大于10的深孔..但珩磨不适用于加工塑性较大的有色金属工件上的孔;也不能加工带键槽的孔、花键孔等..五、拉孔1、拉削与拉刀拉孔是一种高生产率的精加工方法;它是用特制的拉刀在拉床上进行的..拉床分卧式拉床和立式拉床两种;以卧式拉床最为常见..拉削时拉刀只作低速直线运动主运动..拉刀同时工作的齿数一般应不少于3个;否则拉刀工作不平稳;容易在工件表面产生环状波纹..为了避免产生过大的拉削力而使拉刀断裂;拉刀工作时;同时工作刀齿数一般不应超过6~8个..拉孔有三种不同的拉削方式;分述如下:1分层式拉削这种拉削方式的特点是拉刀将工件加工余量一层一层顺序地切除..为了便于断屑;刀齿上磨有相互交错的分屑槽..按分层式拉削方式设计的的拉刀称为普通拉刀..2分块式拉削这种拉削方式的特点是加工表面的每一层金属是由一组尺寸基本相同但刀齿相互交错的刀齿通常每组由2-3个刀齿组成切除的..每个刀齿仅切去一层金属的一部分..按分块拉削方式设计的拉刀称为轮切式拉刀..3综合式拉削这种方式集中了分层及分块式拉削的优点;粗切齿部分采用分块式拉削;精切齿部分采用分层式拉削..这样既可缩短拉刀长度;提高生产率;又能获得较好的表面质量..按综合拉削方式设计的拉刀称为综合式拉刀..2、拉孔的工艺特征及应用范围1拉刀是多刃刀具;在一次拉削行程中就能顺序完成孔的粗加工、精加工和光整加工工作;生产效率高..2拉孔精度主要取决于拉刀的精度;在通常条件下;拉孔精度可达IT9~IT7;表面粗糙度Ra可达6.3~1.6 μm..3拉孔时;工件以被加工孔自身定位拉刀前导部就是工件的定位元件;拉孔不易保证孔与其它表面的相互位置精度;对于那些内外圆表面具有同轴度要求的回转体零件的加工;往往都是先拉孔;然后以孔为定位基准加工其它表面..4拉刀不仅能加工圆孔;而且还可以加工成形孔;花键孔..5拉刀是定尺寸刀具;形状复杂;价格昂贵;不适合于加工大孔..拉孔常用在大批大量生产中加工孔径为Ф10~80mm 、孔深不超过孔径5倍的中小零件上的通孔..。
机械加工精度作为机械制造工程学课程的重要内容之一,在教学中一般按照工艺系统的几何误差、受力变形等分立的内容进行教学。
为提高学生综合运用所需知识分析解决具体问题的能力,我们开展了“专题驱动式”教学方法研究。
下面以箱体零件的孔系加工为专题,对其工艺方案与加工精度进行分析。
箱体类零件是机械传动装置中重要的基础件,箱体上若干有相互位置精度要求的孔构成箱体孔系,包括平行孔系、同轴孔系等。
孔系的加工方法与孔系的加工精度对保证传动装置的性能和质量具有重要影响。
一、平行孔系加工平行孔系的精度要求主要是各孔轴线之间及轴线与基准面之间的尺寸精度和轴线间的平行度等几何精度。
可以通过以下几种方法保证平行孔系精度要求。
1.找正法。
采用辅助装置来确定各个被加工孔的正确位置,如划线找正、心轴块规找正等。
2.镗模法。
镗模是引导镗刀杆在工件上镗孔用的机床夹具,利用镗模板上的孔系保证箱体孔系位置精度,镗杆与镗床主轴多采用浮动连接,以减小机床主轴的回转精度对加工精度的影响。
3.坐标法。
首先将被加工孔之间的孔距尺寸换算为两个相互垂直的坐标尺寸,然后精确地调整机床主轴与工件在水平和垂直方向的相对位置,以间接保证孔距精度。
为保证工作台和主轴的位移精度,必须在镗床上加上坐标测量装置。
二、同轴孔系加工在成批生产中,常采用镗模加工箱体同轴孔系以保证其轴线的同轴度。
在单件小批生产时,一般不采用镗模,常采用如下两种方法保证其轴线孔的同轴度。
1.利用已加工孔作支承导向。
在加工好的箱体前壁孔内装一个导向套,对镗杆起支承支撑和引导作用。
它适用于加工壁间距较小的箱体同轴孔。
2.利用镗床后立柱作支承导向。
镗床后立柱上的导向套作支承导向,可解决因镗杆悬臂过长而挠度大进而影响同轴度的问题。
这种方法需用较长的镗杆,而且调整后立柱导套比较麻烦、费时,通常适用于大型箱体的孔系加工。
三、孔系加工的精度分析(一)受力变形的影响1.镗杆受力变形的影响。
镗削过程中,随着镗杆的回转,径向力Fy 与切向力Fz 的合力Fyz 方向不断改变。
箱体孔系加工和常用工艺装备一、箱体零件孔系加工箱体上一系列相互位置有精度要求的孔的组合,称为孔系。
孔系可分为平行孔系「图8-35(a)〕、同轴孔系[图8-35(b)」和交叉孔系[图8-35(c)]。
孔系加工不仅孔本身的精度要求较高,而且孔距精度和相互位置精度的要求也高,因此是箱体加工的关键。
孔系的加工方法根据箱体批量不同和孔系精度要求的不同而不同,现分别予以讨论。
(一)平行孔系的加工平行孔系的主要技术要求是各平行孔中心线之间及中心线与基准面之间的距离尺寸精度和相互位置精度。
生产中常采用以下几种方法1.找正法找正法是在通用机床上借助辅助工具来找正要加工孔的正确位置的加工方法。
这种方法加工效率低,一般只适用于单件小批生产。
根据找正方法的不同,找正法又可分为以下几种:(l)划线找正法。
加工前按照零件图在毛坯上划出各孔的位置轮廓线,然后按划线一一进行加工。
划线和找正时间较长,生产率低,而且加工出来的孔距精度也低,一般在±0.5 mm 左右。
为提高划线找正的精度,往往结合试切法进行。
即先按划线找正镗出一孔再按线将主轴调至第二孔中心,试镗出一个比图样要小的孔,若不符合图样要求,则根据测量结果更新调整主轴的位置,再进行试镗、测量、调整,如此反复几次,直至达到要求的孔距尺寸。
此法虽比单纯的按线找正所得到的孔距精度高,但孔距精度仍然较低且操作的难度较大,生产效率低,适用于单件小批生产。
(2)心轴和块规找正法。
镗第一排孔时将心轴插人主轴孔内(或直接利用镗床主轴),然后根据孔和定位基准的距离组合一定尺寸的块规来校正主轴位置,如图8-36所示。
校正时用塞尺测定块规与心轴之间的间隙,以避免块规与心轴直接接触而损伤块规。
镗第二排孔时,分别在机床主轴和加工孔中插入心轴,采用同样的方法来校正主轴线的位置,以保证孔心距的精度。
这种找正法的孔心距精度可达±0.3mm 。
(3)样板找正法。
用10~20mm 厚的钢板制造样板,装在垂直于各孔的端面上(或固定于机床工作台上),如图8-37所示。
6.3 孔加工及固定循环6.3.1 孔加工概述孔加工是最常见的零件结构加工之一,孔加工工艺内容广泛,包括钻削、扩孔、铰孔、锪孔、攻丝、镗孔等孔加工工艺方法。
在CNC铣床和加工中心上加工孔时,孔的形状和直径由刀具选择来控制,孔的位置和加工深度则由程序来控制。
圆柱孔在整个机器零件中起着支承、定位和保持装配精度的重要作用。
因此,对圆柱孔有一定的技术要求。
孔加工的主要技术要求有:⑴尺寸精度:配合孔的尺寸精度要求控制在IT6~IT8,精度要求较低的孔一般控制在IT11。
⑵形状精度:孔的形状精度,主要是指圆度、圆柱度及孔轴心线的直线度,一般应控制在孔径公差以内。
对于精度要求较高的孔,其形状精度应控制在孔径公差的1/2~1/3。
⑶位置精度:一般有各孔距间误差,各孔的轴心线对端面的垂直度允差和平行度允差等。
⑷表面粗糙度:孔的表面粗糙度要求一般在Ra12.5~0.4 μm之间。
加工一个精度要求不高的孔很简单,往往只需一把刀具一次切削即可完成;对精度要求高的孔则需要几把刀具多次加工才能完成;加工一系列不同位置的孔需要计划周密、组织良好的定位加工方法。
对给定的孔或孔系加工,选择适当的工艺方法显得非常重要。
6.3.2 孔加工固定循环格式1.孔加工固定循环的概念钻孔、铰孔、攻丝以及镗削加工时,孔加工路线包括X、Y方向的点到点的点定位路线,Z轴向的切削运动。
所有孔加工运动过程类似,其过程至少包括:①在安全高度刀具X、Y向快速点定位于孔加工位置;②Z轴方向快速接近工件运动到切削的起点;③以切削进给率进给运动到指定深度;④刀具完成所有Z方向运动离开工件返回到安全的高度位置。
一些孔的加工或有更多的动作细节。
孔加工运动可用G00、G01编程指令表达,但为避免每次孔加工编程时,编写G00、G01运动信息的重复,数控系统软件工程师把类似的孔加工步骤、顺序动作编写成预存储的微型程序,固化存储于计算机的内存里,该存储的微型程序就称为固定循环。