扫描电镜与能谱仪介绍
- 格式:ppt
- 大小:3.93 MB
- 文档页数:34
扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM是一种强大的实验仪器,它能够帮助我们开启微观世界的大门,从而深入了解物质在最基本层面的性质和结构。
本文将在以下几个方面对SEM及其应用进行介绍。
一、扫描电子显微镜SEM的原理扫描电子显微镜SEM是一种采用电子束的显微镜,通过高能电子束与样品相互作用,透过扫描线圈产生扫描信号,实现对样品表面形貌的观察和获取高清晰度的图像。
SEM和光学显微镜有很大的不同,光学显微镜是使用光来观察物质的显微镜,而SEM则是使用电子来观察物质。
扫描电子显微镜SEM的工作原理主要分为以下三个步骤:1、获得高能电子束:扫描电子显微镜SEM内部有个电子枪,电子枪发射出的电子经过加速器的加速器和聚焦极的聚焦,成为高能电子束。
2、扫描样品表面:高能电子束射向样品表面,样品表面反弹回来的电子信号被SEM仪器捕获。
3、产生扫描信号:把从样品表面反弹回来的电子信号进行放大,形成显微图像。
二、能谱仪的原理能谱仪是SEM中的重要组成部分,它可以检测电子在样品中的反应和监测样品中所含的化学元素,以及相应元素的含量。
能谱仪的工作原理是通过检测样品产生的X射线来分析样品组成,电子束与样品相互作用,产生一系列的X射线能量峰值。
每个元素都有不同能级的电子,其X射线产生的能量也分别对应不同的峰值。
因此,通过表征能谱仪所发现的不同X射线能量峰的位置和强度,可以确定样品中所含元素。
三、SEM的应用1、矿物学SEM被广泛应用于矿物学研究中,因为它能够提供很高的图像分辨率。
将样品与高能电子束相互作用可使样品表面反射的电子被收集,从而形成高分辨率的矿物学图像。
2、材料科学在材料科学中,SEM被用于表面形貌研究以及微观结构解析。
通过SEM可以获取材料的内部结构和力学特性,为材料研发和工业应用提供了有力支持。
3、医学SEM在医学领域也有极为重要的应用,例如用于人体组织医学研究。
SEM可以提供高质量且精细的人体组织图像,进一步促进了医学领域的研究和治疗。
扫描电镜和能谱仪一、实验目的1.了解能谱仪的原理、结构。
2.运用扫描电子显微镜/能谱仪进行样品微观形貌观察及微区成分的分析。
3.掌握扫描电镜及能谱仪的样品制备方法。
二、实验原理能谱仪(EDS)是利用X光量子有不同的能量,由Si(li)探测器接收后给出电脉冲讯号,经放大器放大整形后送入多道脉冲分析器,然后在显像管上把脉冲数-脉冲高度曲线显示出来,这就是X光量子的能谱曲线。
1.简介特征X射线分析法是一种显微分析和成分分析相结合的微区分析,特别适用于分析试样中微小区域的化学成分。
其原理是用电子探针照射在试样表面待测的微小区域上,来激发试样中各元素的不同波长(或能量)的特征X射线(或荧光X射线)。
然后根据射线的波长或能量进行元素定性分析,根据射线强度进行元素的定量分析。
2.了解EX-250能谱仪的原理及构造X 射线的产生是由于入射电子于样品发生非弹性碰撞的结果,当高能电子与原子作用时, 它可能使原子内层电子被激发,原子处于激发状态,内层出现空位,此时,可能有外层电子向内层跃迁,外层和内层电子的能量差就以光子的形式释放出来,它就是元素的特征X射线。
1)分析原理高能电子束与样品原子相互作用,可引起一个内层电子的发射,使原子处于高能激发态。
在原子随后的去激过程中,即外层的电子发生跃迁时,会发射出某个能量的特征X-射线或俄歇电子,使原子降低能量。
若以辐射特征X-射线的形式释放能量,则λ=hc/E λ=hc/EK -EL2式中,λ-特征X射线的波长;E -特征X射线的能量;h —普朗克常数;c —光子。
元素的特征 X 射线能量和波长各有其特征值。
莫塞莱定律确定了特征 X-射线波长与元素的原子序数Z之间的关系:λ= P(Z −σ)-2式中,P —对特定始、终态的跃迁过程P为常数;σ—核屏蔽系数,K系谱线时σ=1。
2)能谱仪构造能谱仪主要由控制及指令系统、X射线信号检测系统、信号转换及储存系统、数据输出及显示系统组成。
扫描电镜能谱仪工作原理
扫描电镜能谱仪是一种常用的表征材料表面化学组成的仪器。
其工作原理主要包括以下步骤:
1. 准备样品:将需要分析的样品制备成某种形式(如薄片、粉末等)并进行处理,以便观察其表面。
2. 电子束扫描:扫描电镜能谱仪通过发射高能电子束照射样品表面。
电子束是通过一种称为热阴极的装置产生的。
这些高能电子束可以穿透样品的表面,与样品相互作用并激发样品中的原子和分子。
3. X射线产生:当电子束与样品相互作用时,会产生一些能量较低的次级电子。
这些次级电子在与样品中原子相互作用后掉电,并释放出特定能量的X射线。
这些X射线的能量与样品中不同元素的能级结构有关。
4. 能谱分析:扫描电镜能谱仪会将这些释放的X射线传递到能谱仪器中。
能谱仪会将X射线的能量进行分析,以确定样品中存在的不同元素及其相对含量。
5. 结果展示:通过与数据库中的标准能谱进行比较,可以确定样品中不同元素的存在和相对含量,并将结果以图形或数值形式展示出来。
总之,扫描电镜能谱仪通过扫描电子束照射样品表面,并分析
所释放的X射线的能谱,从而确定样品表面的化学组成。
这一技术广泛应用于材料科学、生物科学等领域的研究和分析。
扫描电镜-能谱仪实验技术在《材料分析方法》课程教学中的应用引言材料分析方法是材料科学与工程专业的一门重要课程,主要介绍材料分析的方法和技术。
扫描电镜-能谱仪是一种先进的材料分析仪器,具有高分辨率、高灵敏度和多功能性等特点,被广泛应用于材料表面形貌和成分分析中。
本文将介绍扫描电镜-能谱仪实验技术在《材料分析方法》课程教学中的应用,并探讨其在教学中的意义和作用。
一、扫描电镜-能谱仪实验技术的基本原理扫描电镜-能谱仪是将扫描电子显微镜(SEM)和能谱仪(EDS)相结合的一种先进材料分析仪器。
它利用电子束对样品进行扫描,通过收集样品发出的电子、X射线和光子等信息,实现样品表面形貌和成分的分析。
扫描电镜-能谱仪的基本原理是利用电子与物质相互作用产生的多种信号,包括二次电子显微图像、反射电子显微图像、能谱图像等,来获取样品的形貌、化学成分和晶体结构等信息。
二、扫描电镜-能谱仪实验技术在《材料分析方法》课程教学中的应用1. 观察样品表面形貌扫描电镜-能谱仪可以对样品进行高分辨率、三维的表面形貌观察,为学生展示材料表面的微观结构和形貌特征。
通过观察样品的表面形貌,学生可以直观地了解材料的微观结构、表面粗糙度和晶粒形貌等信息,对材料的特性有更深入的理解。
2. 分析样品成分扫描电镜-能谱仪还可以对样品进行化学成分分析,通过能谱技术获取样品的元素分布和含量信息。
学生可以通过实验操作,了解不同元素的能谱特征、能谱仪的工作原理和数据分析方法,从而掌握材料的定性和定量分析技术。
3. 研究样品结构扫描电镜-能谱仪还可以对样品的晶体结构和微观组织进行研究,通过显微观察和能谱分析,揭示材料的晶体结构、晶粒大小和形貌等重要信息。
这对于学生深入理解材料的微观组织和性能关系具有重要意义。
4. 实验结果分析与报告撰写扫描电镜-能谱仪实验在《材料分析方法》课程教学中,学生需要进行样品制备、实验操作、数据分析与结果报告等过程。
通过这些实验活动,学生可以培养实验操作技能、数据处理能力、科学研究精神和报告撰写能力,提高学生的综合素质和实际能力。
扫描电镜质谱仪原理一.样品表面产生信号电子的过程真空状态下加热钨灯丝时会产生电子束,电子束照射于样品上,和样品相互作用产生信号电,包括:二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子、透射电子等。
通常所说的扫描电镜像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。
能谱图:横轴为X射线能量(KeV),纵轴为X射线光子数。
当用强电子束照射试样,产生大量的特征X射线。
对于试样产生的特征X射线,有两种展成谱的方法:X射线能量色散谱方法(EDS:energy dispersive X-ray spectroscopy)和X射线波长色散谱方法(WDS:wavelength dispersive X-ray spectroscopy)。
在分析电子显微镜中均采用探测率高的EDS。
强电子束照射试样,同时产生二次电子和特征X射线,二次电子用于成像,X射线用于能谱的成分分析。
二. 扫描电镜成像原理二次电子信号闪烁晶体转换为光子光电倍增管放大并转换为电流信号电信号放大器转换成信号电压送到信号处理和成像系统,完成成像信息的电子学过程三.X射线能谱仪原理样品的X射线信号冷冻的锂漂移硅检测器产生空穴-电子对外加偏压下移动而形成电荷脉冲前置放大器电压脉冲,经放大、整形多道脉冲高度分析器计算机处理谱线(横坐标代表能量,纵坐标代表X 射线光子数目)注意:每一个X射线光子产生的电子-空穴对在外加偏压下移动而形成一个电荷脉冲。
四.不同信号电子的产生原理1.二次电子入射电子受样品的散射与样品的原子进行能量交换,使样品原子的外层电子受激发而逸出样品表面,这些逸出样品表面的电子就叫二次电子。
还有一部分二次电子是背散射电子逸出样品表面时激发的,在成像时形成本底。
从样品得到的二次电子产率既与样品成分有关,又与样品的表面形貌有更密切的关系。
2.特征X射线特征X射线:是原子的内层电子受到激发之后,在能级跃迁过程中直接释放的具有特征能量和波长的一种电磁波辐射,其波长极短约0.1nm左右。
扫描电子显微镜/X射线能谱仪(SEM/EDS)美信检测扫描电子显微镜/X射线能谱仪(SEM/EDS)是依据电子与物质的相互作用。
当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。
原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。
SEM/EDS 正是根据上述不同信息产生的机理,对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息,对x射线的采集,可得到物质化学成分的信息。
电子束激发样品表面示意图应用范围:1.材料组织形貌观察,如断口显微形貌观察,镀层表面形貌观察,微米级镀层厚度测量,粉体颗粒表面观察,材料晶粒、晶界观察等。
2.微区化学成分分析,利用电子束与物质作用时产生的特征X射线,来提供样品化学组成方面的信息,可定性、半定量检测大部分元素(Be4-PU94),可进行表面污染物的分析,焊点、镀层界面组织成分分析。
根据测试目的的不同可分为点测、线扫描、面扫描;3.显微组织及超微尺寸材料分析,如钢铁材料中诸如马氏体、回火索氏体、下贝氏体等显微组织的观察分析,纳米材料的分析4.在失效分析中主要用于定位失效点,初步判断材料成分和异物分析。
主要特点:1.样品制备简单,测试周期短;2.景深大,有很强的立体感,适于观察像断口那样的粗糙表面;3.可进行材料表面组织的定性、半定量分析;4.既保证高电压下的高分辨率,也可提供低电压下高质量的图像;技术参数:分辨率:高压模式:3nm,低压模式:4nm放大倍数:5~100万倍检测元素:Be4-PU94最大样品直径:200mm图象模式:二次电子、背散射应用图片:日立3400N+IXRF。
扫描电镜加能谱扫描电镜和能谱是一种常用的材料表面分析技术。
它们在材料科学、生物学、化学、地质学等领域具有广泛的应用。
下面将从扫描电镜和能谱的原理、特点、应用等方面进行介绍。
一、扫描电镜原理扫描电镜是一种利用电子束扫描样品表面,通过检测电子与样品相互作用产生的信号,来获取样品表面形貌和信息的显微镜。
扫描电镜主要由电子枪、透镜系统、扫描系统、信号检测系统和成像系统等组成。
1. 电子枪:产生电子束,电子束经过透镜系统聚焦后,照射到样品表面。
2. 透镜系统:对电子束进行聚焦,使电子束在样品表面形成高分辨率的光斑。
3. 扫描系统:控制电子束在样品表面的扫描路径,实现样品表面的逐点扫描。
4. 信号检测系统:检测电子束与样品相互作用产生的信号,如二次电子、背散射电子等。
5. 成像系统:将检测到的信号转换为图像,显示在显示器上。
二、能谱原理能谱是一种通过分析样品在电子束照射下产生的特征X射线,来确定样品元素组成和含量的分析方法。
能谱仪主要由样品室、X射线探测器、信号放大器和数据处理系统等组成。
1. 样品室:放置样品,样品在电子束照射下产生特征X射线。
2. X射线探测器:检测样品产生的特征X射线,将X射线能量转换为电信号。
3. 信号放大器:放大电信号,提高信噪比。
4. 数据处理系统:处理放大后的电信号,绘制能谱图,分析样品的元素组成和含量。
三、扫描电镜加能谱的特点1. 高分辨率:扫描电镜可以实现高分辨率的表面形貌观察,能谱可以精确地分析样品的元素组成和含量。
2. 空间分辨率:扫描电镜具有较好的空间分辨率,可以观察到样品表面的微小区域。
3. 灵敏度高:能谱对微量元素的检测灵敏度高,可以检测到样品中的微量元素。
4. 无损检测:扫描电镜和能谱都是无损检测技术,对样品没有损伤。
5. 适用范围广:扫描电镜和能谱可以应用于各种材料,包括金属、非金属、生物样品等。
四、扫描电镜加能谱的应用1. 材料科学:研究材料的微观形貌、晶体结构、相组成等。
扫描电子显微镜和能谱分析技术扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种基于电子束和样品间相互作用的高分辨率显微镜,具有较大的放大倍数和较高的解析能力。
能谱分析技术则是一种通过测量样品与电子束相互作用的产生的能量谱,来分析样品中元素成分的方法。
下面将详细介绍扫描电子显微镜和能谱分析技术。
通过扫描电子显微镜,我们可以观察到样品表面的微观结构,这对于材料科学、生命科学等领域的研究具有重要意义。
相比传统光学显微镜,扫描电子显微镜具有更高的分辨率和更大的放大倍数,可以观察到纳米级别的细节。
此外,扫描电子显微镜还具有较大的深度和聚焦区域,可以观察到样品的三维形态。
因此,扫描电子显微镜广泛应用于材料科学、地质学、生物学、医学等领域。
除了观察样品的形貌结构,扫描电子显微镜还可以进行能谱分析。
在扫描电子显微镜中,样品与电子束相互作用会产生多种信号,其中包括二次电子信号(Secondary Electron,简称SE)和反射电子信号(Backscattered Electron,简称BSE)等。
这些信号包含了样品表面的形貌信息和组成成分。
能谱分析技术则是通过测量样品与电子束相互作用产生的能量谱,来分析样品中元素成分的方法。
在扫描电子显微镜中,我们可以使用能谱分析仪来收集样品中产生的X射线信号。
当电子束与样品相互作用时,样品中的原子会被激发产生X射线。
这些X射线的能量是特定的,与所激发原子的种类相关。
通过能谱分析技术,我们可以确定样品中元素的种类和含量。
当能谱分析仪接收到X射线信号时,会根据信号的能量对其进行解析,从而确定元素的组成。
能谱分析技术在材料科学、地质学、环境科学等领域广泛应用。
例如,在材料研究中,我们可以通过能谱分析来确定材料的化学成分,从而了解其性质和性能。
总结起来,扫描电子显微镜和能谱分析技术是一种用于观察和分析样品的有效工具。
通过应用这两种技术,我们可以观察样品的表面形貌和内部组成,从而深入理解样品的特性和行为。
扫描电镜-能谱仪实验技术在《材料分析方法》课程教学中的应用一、引言材料分析方法是材料科学与工程学科中的重要课程之一,通过该课程的教学可以使学生掌握材料分析的基本原理和方法,提高他们的实验操作能力和分析问题的能力。
在材料分析方法课程中,扫描电镜-能谱仪实验技术是一项重要的实验内容,它可以帮助学生了解材料的微观形貌和化学成分,为他们深入理解材料的结构和性能奠定基础。
二、扫描电镜-能谱仪实验技术概述扫描电镜-能谱仪实验技术是一种利用电子束与物质相互作用的技术,通过扫描电镜对材料的形貌进行观察和分析,并通过能谱仪对材料的化学成分进行分析。
其主要特点包括分辨率高、成像清晰、分析快速等优点。
通过该技术,可以观察到材料的表面形貌和结构,同时还可以了解材料的元素组成和化学成分,对于材料的分析和研究具有非常重要的意义。
在《材料分析方法》课程中,扫描电镜-能谱仪实验技术通常作为重要的实验内容进行教学。
通过该实验,学生可以学习到扫描电镜的工作原理和操作方法,了解能谱仪的原理和使用技巧,并通过实际操作获得扫描电镜-能谱仪的应用经验。
1. 学生通过实际操作掌握扫描电镜的使用方法在课程中,老师可以通过实验教学的方式,让学生亲自操作扫描电镜,掌握其使用方法和操作技巧。
学生可以通过观察样品的不同部位,了解到材料的微观形貌和表面结构,对于材料的特性和性能有更加直观的认识。
2. 学生通过实验操作了解能谱仪的原理和分析方法在实验过程中,学生还可以学习到能谱仪的工作原理和分析方法,了解能谱仪是如何对样品进行化学成分分析的。
通过操作能谱仪,学生可以获取到样品的化学成分信息,从而对材料的成分和结构有深入的了解。
3. 学生通过实验获得扫描电镜-能谱仪的应用经验通过实验操作,学生可以获得扫描电镜-能谱仪的应用经验,掌握这一重要实验技术。
这对于提高学生的实验操作能力、培养他们的分析问题能力和创新能力具有重要意义。
1. 提高学生的实验操作能力通过观察样品的形貌和化学成分,学生可以对材料的特性和性能进行分析,提高了他们的分析问题能力。
扫描电子显微镜SEM和能谱分析技术EDS 扫描电子显微镜(Scanning Electron Microscope,SEM)和能谱分析技术(Energy Dispersive X-ray Spectroscopy,EDS)是一种常用于材料科学和生物科学领域的先进工具,它们相互结合可以提供高分辨率的图像、元素成分分析以及相关属性的定量信息。
SEM是一种利用电子束扫描样品表面并形成二维或三维显微图像的技术。
与传统光学显微镜相比,SEM具有更高的分辨率和放大倍数,可以观察到微米级的细节。
SEM的工作原理是在真空或高真空环境中,通过加速电子束轰击样品表面,激发出一系列相互作用过程产生的信号。
这些信号包括次级电子(SE)和反射电子(BSE)等,它们与样品的形貌和组成有关。
SEM采用特殊的电子透镜和探测器系统,可以将这些信号转化为电子显微图像。
与SEM相结合的EDS能谱分析技术可以提供关于样品元素组成的定性和定量信息。
EDS是一种通过分析样品中X射线的能量和强度,来确定其元素成分的方法。
在SEM中,当电子束与样品相互作用时,会激发样品中的原子内层电子跃迁,产生特定能量的特征X射线。
EDS探测器可以测量这些X射线的能量,通过能量的定量分析,可以确定样品中的元素种类和相对含量。
EDS技术的定量分析需要校正和标定,校正是指校正探测器的能量响应,以准确测量X射线的能量;标定是指使用已知组成和浓度的实验样品进行这些校正和定量分析。
EDS技术对元素的检测范围和限量有一定的限制,对于轻元素的检测灵敏度较低,同时在多元素样品和复杂衬底的情况下,定量分析的精度也会受到影响。
SEM和EDS技术的结合可以提供更为全面和细致的样品分析。
SEM提供了样品的形貌和组织信息,可以观察到样品的微观结构和表面特征。
通过SEM观察到的微观特征,可以帮助解释材料的性能和行为。
而EDS的能谱分析可以提供关于样品成分的定性和定量信息,对材料的组成和标识也具有重要的作用。
扫描电子显微镜及能谱仪(SEM&EDX)测试服务项目负责人:马文witsin.marvingmail.仪器简介扫描电镜检测电子束与样品相互左右后产生的各种物理信号,用于成像或者得到样品表面的元素信息。
它具有分辨率高、景深大、放大倍数连续可调、制样简单、保真度好的特点,可广泛应用于企业生产和科学研究中的显微形貌与成分分析中。
服务领域●材料表面形貌观测;●微粒物质EDX元素分析;●纳米材料形貌及尺度分析;●断口形貌观测;●镀膜厚度、形态、失效分析;●未知物元素组成快速检测;更多信息请参照扫描电镜典型实例服务价格典型应用1.材料表面形貌:纤维基体(AN)与蛋白质的双组份品性和纤维纵向具有无规则沟槽的特性,使牛奶纤维具有天然纤维优良的吸湿性和合成纤维较好的导湿性,穿着滑爽、透气。
2.镀膜分析观察镀膜的形态,用于分析均匀性、厚度、失效原因等。
3.微观形态及尺度分析利用扫描电镜可以看到粉末产品的形态,用于分析产品的形态特性。
如下图为电熔氧化铬(Cr2O3)的微观形态,并可利用软件自带标尺表示尺度。
4.微小杂物元素分析利用EDS分析生产工艺中微小杂物,如结合生产工艺分析某一微粒子污染物,确认该微粒子为玻璃屑。
5.面扫描技术利用面扫描,可以直观地表达一个平面内不同元素的分布情况,广泛应用于材料的分析研究中。
业务流程一、联系咨询:传真:9-608服务:witsin.servicegmail.QQ:79957169MSN:witsin.servicehotmail.二、准备样品根据前期沟通交流,提供符合测试要求的样品。
三、送样../白字内容添加页脚-新建文件夹5-doc/.witsin../intro/UploadFiles_5640/3songyang.jpg地址:XX市闵行区金平路555弄523号200240 收件人:李成虹:9-601,传真:9-608四、填写测试委托单:witsin.servicegmail.传真:9-608检测周期普通服务:5个工作日;加急服务:3个工作日,测试费按普通服务加收30%附加费;特急服务:1.5个工作日,测试费按普通服务加收100%附加费;有些检测可能需要更长的测试周期,具体以报价单为准。