扫描电子显微镜 SEM 和能谱分析技术 EDS PPT
- 格式:ppt
- 大小:9.24 MB
- 文档页数:35
扫描电子显微镜/X射线能谱仪(SEM/EDS)美信检测扫描电子显微镜/X射线能谱仪(SEM/EDS)是依据电子与物质的相互作用。
当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。
原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。
SEM/EDS 正是根据上述不同信息产生的机理,对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息,对x射线的采集,可得到物质化学成分的信息。
电子束激发样品表面示意图应用范围:1.材料组织形貌观察,如断口显微形貌观察,镀层表面形貌观察,微米级镀层厚度测量,粉体颗粒表面观察,材料晶粒、晶界观察等。
2.微区化学成分分析,利用电子束与物质作用时产生的特征X射线,来提供样品化学组成方面的信息,可定性、半定量检测大部分元素(Be4-PU94),可进行表面污染物的分析,焊点、镀层界面组织成分分析。
根据测试目的的不同可分为点测、线扫描、面扫描;3.显微组织及超微尺寸材料分析,如钢铁材料中诸如马氏体、回火索氏体、下贝氏体等显微组织的观察分析,纳米材料的分析4.在失效分析中主要用于定位失效点,初步判断材料成分和异物分析。
主要特点:1.样品制备简单,测试周期短;2.景深大,有很强的立体感,适于观察像断口那样的粗糙表面;3.可进行材料表面组织的定性、半定量分析;4.既保证高电压下的高分辨率,也可提供低电压下高质量的图像;技术参数:分辨率:高压模式:3nm,低压模式:4nm放大倍数:5~100万倍检测元素:Be4-PU94最大样品直径:200mm图象模式:二次电子、背散射应用图片:日立3400N+IXRF。
了光子,发明扫描电子显微镜,“照”出了微观物质的相。
Q1:为什么电子束能当光源?1、仪器构造及原理扫描电子显微镜主要由电子光学系统、信号收集、检测系统、真空系统组成。
电子光学系统包括电子枪、电磁透镜、物镜光阑、扫描线圈、信号探测器组成。
蔡司Gemini500选用热场发射式电子枪,一般选用钨或六硼化镧作为灯丝,一旦通电加热,无数电子从灯丝表面发射出来,热场发射式电子枪对真空要求较小,但灯丝的寿命有限,需要经常更换;电磁透镜具有汇聚电子束作用,将发射出几十微米的电流汇聚为1nm的电子束;物镜光阑主要用来控制束流,光阑孔径在操作界面可选择,从而调节景深;最后极细的电子束到达扫描线圈,扫描线圈用于控制电子束在样品表面的扫描方向以及速度,使电子束进行栅网式扫描,最后电子束与样品表面原子发生碰撞而产生一系列的物理效应,如图3所示产生背散射电子、二次电子、吸收电子、透射电子、X射线等,通过信号探测器对这些信息的接受、放大,获得测试样品表面形貌、组成和结构的丰富信息。
Q2:为什么不能测试强磁性的样品?磁性样品可能会改变电子束的汇聚方向而离开样品台,打在透镜上,轻则有可能影响未来设备的成像效果(电子束无法很好聚焦),重则可能打坏透镜。
Q3:扫描电镜为什么在真空环境中工作?电子束系统中的灯丝在普通大气中会迅速氧化而失效,空气会使电子束变型,影响成像分辨率。
高能电子与样品作用能获得哪些物理信号?高速运动的电子束轰击样品表面,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,有一些电子被反射出样品的表面,其余的渗入样品中,逐渐失去其动能,最后被阻止,并被样品吸收。
在此过程中有99%以上的入射电子能量转变成热能,只有约1%的入射电子能量从样品中激发出各种信号。
今天我们主要来学习背散射电子、二次电子、x射线的产生机理以及应用。
这三个物理信号所产生的作用深度不同,二次电子产生在样品表面5-10nm处,背散射电子产生在样品几十到100nm处,特征X射线则产生在样品表面微米范围处。
扫描电子显微镜SEM和能谱分析技术EDS 扫描电子显微镜(Scanning Electron Microscope,SEM)和能谱分析技术(Energy Dispersive X-ray Spectroscopy,EDS)是一种常用于材料科学和生物科学领域的先进工具,它们相互结合可以提供高分辨率的图像、元素成分分析以及相关属性的定量信息。
SEM是一种利用电子束扫描样品表面并形成二维或三维显微图像的技术。
与传统光学显微镜相比,SEM具有更高的分辨率和放大倍数,可以观察到微米级的细节。
SEM的工作原理是在真空或高真空环境中,通过加速电子束轰击样品表面,激发出一系列相互作用过程产生的信号。
这些信号包括次级电子(SE)和反射电子(BSE)等,它们与样品的形貌和组成有关。
SEM采用特殊的电子透镜和探测器系统,可以将这些信号转化为电子显微图像。
与SEM相结合的EDS能谱分析技术可以提供关于样品元素组成的定性和定量信息。
EDS是一种通过分析样品中X射线的能量和强度,来确定其元素成分的方法。
在SEM中,当电子束与样品相互作用时,会激发样品中的原子内层电子跃迁,产生特定能量的特征X射线。
EDS探测器可以测量这些X射线的能量,通过能量的定量分析,可以确定样品中的元素种类和相对含量。
EDS技术的定量分析需要校正和标定,校正是指校正探测器的能量响应,以准确测量X射线的能量;标定是指使用已知组成和浓度的实验样品进行这些校正和定量分析。
EDS技术对元素的检测范围和限量有一定的限制,对于轻元素的检测灵敏度较低,同时在多元素样品和复杂衬底的情况下,定量分析的精度也会受到影响。
SEM和EDS技术的结合可以提供更为全面和细致的样品分析。
SEM提供了样品的形貌和组织信息,可以观察到样品的微观结构和表面特征。
通过SEM观察到的微观特征,可以帮助解释材料的性能和行为。
而EDS的能谱分析可以提供关于样品成分的定性和定量信息,对材料的组成和标识也具有重要的作用。