2021-2022学年最新鲁教版(五四制)六年级数学下册第九章变量之间的关系章节训练试题(含详解)
- 格式:docx
- 大小:307.85 KB
- 文档页数:16
鲁教版五四制六年级数学上册课本目录第一章丰富的图形世界1 生活中的立体图形2 展开与折叠3 截一个几何体4 从三个方向看物体的形状第二章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数的加减混合运算7 有理数的乘法8 有理数的除法9 有理数的乘方10 科学记数法11 有理数的混合运算12 近似数13 用计算器进行运算第三章整式及其加减1 用字母表示数2 代数式3 整式4 合并同类项5 去括号6 整式的加减7 探索与表达规律第四章一元一次方程1 等式与方程2 解一元一次方程3 一元一次方程的应用鲁教版五四制六年级数学下册课本目录第五章基本平面图形1 线段、射线、直线2 比较线段的长短3 角4 角的比较5 多边形和圆的初步认识第六章整式的乘除1 同底数幂的乘法2 幂的乘方与积的乘方3 同底数幂的除法4 零指数幂与负整数指数幂5 整式的乘法6 平方差公式7 完全平方公式8 整式的除法第七章相交线与平行线1 两条直线的位置关系2 探索直线平行的条件3 平行线的性质4 用尺规作角第八章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表示4 统计图的选择第九章变量之间的关系1 用表格表示变量之间的关系2 用表达式表示变量之间的关系3 用图象表示变量之间的关系鲁教版五四制七年级数学上册课本目录第一章三角形1 认识三角形2 图形的全等3 探索三角形全等的条件4 三角形的尺规作图5 利用三角形全等测距离第二章轴对称1 轴对称现象2 探索轴对称的性质3 简单的轴对称图形4 利用轴对称进行设计第三章勾股定理1 探索勾股定理2 一定是直角三角形吗3 勾股定理的应用举例第四章实数1 无理数2 平方根3 立方根4 估算5 用计算器开方6 实数第五章位置与坐标1 确定位置2 平面直角坐标系3 轴对称与坐标变化第六章一次函数1 函数2 一次函数3 一次函数的图象4 确定一次函数的表达式5 一次函数的应用鲁教版五四制七年级数学下册课本目录第七章二元一次方程组1 二元一次方程组2 解二元一次方程组3 二元一次方程组的应用4 二元一次方程与一次函数*5 三元一次方程组综合与实践哪一款“套餐”更合适?第八章平行线的有关证明1 定义与命题2 证明的必要性3 基本事实与定理4 平行线的判定定理5 平行线的性质定理6 三角形内角和定理第九章概率初步1 感受可能性2 频率的稳定性3 等可能事件的概率第十章三角形的有关证明1 全等三角形2 等腰三角形3 直角三角形4 线段的垂直平分线5 角平分线第十一章一元一次不等式和一元一次不等式组1 不等关系2 不等式的基本性质3 不等式的解集4 一元一次不等式5 一元一次不等式与一次函数6 一元一次不等式组总复习题第一章因式分解1 因式分解2 提公因式法3 公式法第二章分式与分式方程1 认识分式2 分式的乘除法3 分式的加减法4 分式方程第三章数据的分析1 平均数2 中位数与众数3 从统计图分析数据的集中趋势4 数据的离散程度第四章图形的平移与旋转1 图形的平移2 图形的旋转3 中心对称4 图形变化的简单应用第五章平行四边形1 平行四边形的性质2 平行四边形的判定3 三角形的中位线4 多边形的内角与外角和第六章特殊平行四边形1 菱形的性质与判定2 矩形的性质与判定3 正方形的性质与判定第七章二次根式1 二次根式2 二次根式的性质3 二次根式的加减4 二次根式的乘除第八章一元二次方程1 一元二次方程2 用配方法解一元二次方程3 用公式法解一元二次方程4 用分解因式法解一元二次方程5 一元二次方程根与系数的关系6 一元二次方程的应用第九章图形的相似1 成比例线段2 平行线分线段成比例3 相似多边形4 探索三角形相似的条件5 相似三角形判定定理的证明6 黄金分割7 利用相似三角形测高8 相似三角形的性质9 利用位似放缩图形第一章反比例函数1 反比例函数2 反比例函数的图像与性质3 反比例函数的应用第二章直角三角形的边角关系1 锐角三角函数2 30°,45°,60°的三角函数值3 用计算器求锐角的三角函数值4 解直角三角形5 三角函数的应用6 利用三角函数测高第三章二次函数1 对函数的再认识2 二次函数3 二次函数y=ax2的图象和性质4 二次函数y=ax2+bx+c的图象和性质5 确定二次函数的表达式6 二次函数的应用7 二次函数与一元二次方程第四章投影与视图1 投影2 视图第五章圆1 圆2 圆的对称性3 垂径定理4 圆周角和圆心角的关系5 确定圆的条件6 直线和圆的位置关系7 切线长定理8 正多边形和圆9 弧长及扇形的面积10 圆锥的侧面积第六章对概率的进一步认识1 用树形图或表格求概率2 生活中的概率3 用频率估计概率。
鲁教版(五四制)八年级数学下册第八章一元二次方程单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用配方法解方程x 2-8x +1=0时,配方所得的方程为( )A .(x -4)2=15B .(x -4)2=17C .(x +4)2=15D .(x -8)2=152、已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则下列选项错误的是( )A .m +n =﹣2B .mn =﹣5C .m 2+2m ﹣5=0D .m 2+2n ﹣5=03、把二次三项式2x 2﹣8xy +5y 2因式分解,下列结果中正确的是( )A .(x )(x )B .(2x ﹣4y y )(x )C .(2x ﹣4y )(x )D .2(x )(x ) 4、一元二次方程x 2+3x =0的根是( )A .x 1=x 2=3B .x 1=x 2=﹣3C .x 1=3,x 2=0D .x 1=﹣3,x 2=05、用配方法解方程2x 4x 2-=,下列配方正确的是( )A .2(2)4x -=B .2(2)6x +=C .2(2)8x -=D .2(26)x -=6、某商品经过连续两次降价,销售单价由原来的125元降到80元.设平均每次降价的百分率为x ,根据题意列出的方程是( )A .125(1﹣x )2=80B .80(1﹣x )2=125C .125(1+x )2=80D .125(1﹣x 2)=807、若3120k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法判断8、将一块长方形桌布铺在长为3m 、宽为2m 的长方形桌面上,各边下垂的长度相同,并且桌布的面积是桌面面积的2倍,那么桌布下垂的长度为( )A .-2.5B .2.5C .0.5D .-0.59、下列方程中,是一元二次方程的是( )A .4(x +2)=25B .2x 2+3x -1=0C .x +y =0D .12x +=4 10、关于x 的方程(a 2+1)x 2+2ax ﹣6=0是一元二次方程,则a 的取值范围是( )A .a ≠±1B .a ≠0C .a 为任何实数D .不存在第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、农机厂计划用两年时间把产量提高44%,如果每年比上一年提高的百分数相同,这个百分数为 ______.2、已知12x x ,是方程2320x x --=的两个实数根,则x 1x 2=____.3、如果关于x 的一元二次方程ax 2+bx +1=0的一个解是x =1,则2021﹣a ﹣b =_____.4、某树主干长出x 根枝干,每个枝干又长出x 根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x 为______.5、若a 是方程26930x x +-=的一个根,则223a a +的值为______.三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)2210x x --=;(2)2(21)4x x -=.2、(1)计算:11()4-+|1(2)解方程:2420x x -+=;3、关于x 的方程24410x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.4、若3260x x c -+=的一个根,求方程的另一个根及c 的值.5、已知关于x 的方程mx 2-(m +2)x +2=0(m ≠0).(1)求证:方程总有两个实数根;(2)若方程的两个根都是正整数,求整数m 的值.-参考答案-一、单选题1、A【解析】【分析】先把常数项移项,然后在等式的两边同时加上一次项系数的一半的平方.【详解】解:移项,得281x x -=-,配方得,2816116x x -+=-+,2x-=.(4)15故选:A.【点睛】本题考查了配方法解一元二次方程,解题的关键是掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.2、D【解析】【分析】利用根与系数的关系及一元二次方程的解的定义求出答案即可判断.【详解】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,m2+2m﹣5=0,n2+2n﹣5=0,∴选项A、B、C正确,选项D错误;故选:D.【点睛】本题主要考查了根与系数的关系及一元二次方程的解的定义,解题的关键是熟练运用一元二次方程的根与系数的关系,本题属于基础题型.3、D【解析】【分析】把x看做未知数,把y看做常数,令2x2﹣8xy+5y2=0,解得x的值,即可得出答案.【详解】解答:解:令2x2﹣8xy+5y2=0,解得x1,x2,∴2x2﹣8xy+5y2=2(x)(x)故选:D.【点睛】本题考查了实数范围内的因式分解,掌握用公式法解一元二次方程是解题的关键.4、D【解析】【分析】将方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x2+3x=0,x(x+3)=0,x+3=0或x=0,解得:x1=﹣3,x2=0,故选:D.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.5、D【解析】【分析】在方程的左右两边同时加上一次项系数-4的一半的平方,把左边配成一个完全平方式,右边化为一个常数,判断出配方结果正确的是哪个即可.2-=x4x224424-+=+x x2(26x-=)故选D.【点睛】本题考查配方法解一元二次方程,解题关键是熟练掌握配方法的基本步骤.6、A【解析】【分析】设平均每次降价的百分率为x,则原价×(1﹣x)2=现价,据此列方程.【详解】解:设平均每次降价的百分率为x,由题意得,125(1﹣x)2=80.故选:A.【点睛】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7、A【解析】【分析】先计算判别式的值,再利用根据判别式的意义进行判断.关于x 的一元二次方程240x x k +-=中1a =,4b =,=-c k ,则224441()164b ac k k ∆=-=-⨯⨯-=+,∵3120k +<,4k ∴<-,1640k ∴+<,即∆<0,∴方程无实数根.故选:A .【点睛】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.8、C【解析】【分析】设桌布下垂的长度为h 米,则有()()3222322h h +⨯+=⨯⨯,计算求解即可.【详解】解:设桌布下垂的长度为h 米则有()()3222322h h +⨯+=⨯⨯解得0.5h =(负值舍去)故选C .本题考查了一元二次方程的应用.解题的关键在于列出正确的一元二次方程.9、B【解析】【分析】只含有一个未知数,并且未知数的最高次数为2的整式方程是一元二次方程,根据定义解答.【详解】解:A. 4(x+2)=25不符合定义,故该项不符合题意;B. 2x2+3x-1=0符合定义,故该项不符合题意;C. x+y=0不符合定义,故该项不符合题意;D.12x=4不符合定义,故该项不符合题意;故选:B.【点睛】此题考查了一元二次方程的定义,熟记定义是解题的关键.10、C【解析】【分析】直接利用一元二次方程的定义分析得出答案.一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】解:∵关于x的方程(a2+1)x2+2ax﹣6=0是一元二次方程,a2+1不可能为0,∴a为任何实数.【点睛】本题考查了一元二次方程的定义,理解一元二次方程的定义是解题的关键.二、填空题1、20%【解析】【分析】设每年比上一年提高的百分数为x,根据农机厂计划用两年时间把产量提高44%,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年比上一年提高的百分数为x,依题意得:(1+x)2=1+44%,解得:x1=0.2=20%,x2=﹣2.2(不合题意).故答案为:20%.【点睛】此题考查了一元二次方程的实际应用—增长率问题,熟记增长率问题的计算公式是解题的关键.2、-2【解析】【分析】直接利用根与系数的关系得到x1x2的值.【详解】解:∵x1、x2为一元二次方程x2-3x-2=0的两根,∴x1x2=-2,故答案为:-2.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=-b a,x 1•x 2=c a. 3、2022【解析】【分析】根据关于x 的一元二次方程ax 2+bx +1=0(a ≠0)的一个解是x =1,可以得到a +b 的值,然后将所求式子变形,再将a +b 的值代入,即可解答本题.【详解】解:∵关于x 的一元二次方程ax 2+bx +1=0(a ≠0)的一个解是x =1,∴a +b +1=0,∴a +b =-1,∴2021-a -b =2021-(a +b ) =2021+1=2022.故答案为:2022.【点睛】本题考查了一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义.4、11【解析】【分析】某树主干长出x 根枝干,每个枝干又长出x 根小分支,则小分支有2x 根,可得主干、枝干和小分支总数为()21x x ++根,再列方程解方程,从而可得答案.解:某树主干长出x 根枝干,每个枝干又长出x 根小分支,则21133,x x21320,x x12110,x x解得:1212,11,x x经检验:12x =-不符合题意;取11,x =答:主干长出枝干的根数x 为11.故答案为:11.【点睛】本题考查的是一元二次方程的应用,理解题意,用含x 的代数式表示主干、枝干和小分支总数是解本题的关键.5、1【解析】【分析】将a 代入26930x x +-=求解即可.【详解】解:∵a 是26930x x +-=的根∴()2269332310a a a a +-=⨯+-=∴2231a a +=故答案为:1.本题考查了二元一次方程的解,求代数式的值.解题的关键在于将方程的根代入方程.三、解答题1、 (1)112x =-,21x =(2)1x =,2x =【解析】【分析】(1)根据题意直接利用十字交叉相乘进行因式分解,进而利用因式分解法求解;(2)根据题意先将方程化为一般形式,进而利用求根公式法求解即可.(1)解:(21)(1)0x x +-=,210x ∴+=或10x -=,112x ∴=-,21x =; (2)解:方程化为一般形式为:24810x x -+=,△246416480b ac =-=-=>,x ∴1x ∴=2x = 【点睛】本题考查解一元二次方程,熟练掌握因式分解法求解以及熟记求根公式是解题的关键.2、 (1)3-(2)12x =22x =【解析】【分析】(1)根据1(0)p pa a a -=≠,平方根的概念,绝对值的概念等逐个求解; (2)根据一元二次方程公式法求解.【详解】解:(1)原式=4(1+--=41-=3-(2)由题意可知:1,4,2a b c ==-=,2=4164128∆-=-⨯⨯=b ac ,∴12==x24=222--==b x a 【点睛】 本题考查1(0)p pa a a -=≠、平方根的概念、绝对值及一元二次方程的解法等,属于基础题,计算过程中细心即可.3、1,121,3x x ==【解析】【分析】根据方程有实数根,则△≥0,确定m 的取值范围,结合m 为正整数,确定m 的值,后解方程即可.【详解】∵x 的方程24410x x m -+-=有实数根,∴△≥0,∴164(41)m --≥0,∴m ≤54, ∵m 为正整数,∴m =1,∴方程变形为:2430x x -+=,∴(x -1)(x -3)=0,解得121,3x x ==.【点睛】本题考查了一元二次方程根的判别式及其解法,根据实数根的情形确定判别式的属性是解题的关键.4、方程的另一个根为3,2c =【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:∵3x =2x则126x x +=,∴23x =312x x c =(332c ∴==. 【点睛】本题主要考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题关键.若12,x x 是一元二次方程()200++=≠ax bx c a 的两根,12b x x a +=-,12c x x a=. 5、 (1)见解析(2)1或2【解析】【分析】(1)根据一元二次方程的二次项系数不为0和根的判别式解答即可;(2)利用因式分解法解一元二次方程可得出x 1=1,x 2=2m ,由已知可得出2m为不等于1的整数,结合m 为整数即可求出m 值.(1)由题意可知:m ≠0,∵Δ=(m +2)2﹣8m=m 2+4m +4﹣8m=m 2﹣4m +4=(m ﹣2)2,∴Δ≥0,故不论m 为何值时,方程总有两个实数根;(2)解:由已知,得(x-1)(mx-2)=0,∴x-1=0或mx-2=0,∴11x=,22xm=,当m为整数1或2时,x2为正整数,即方程的两个实数根都是正整数,∴整数m的值为1或2【点睛】本题考查一元二次方程的根与其判别式的关系、解一元二次方程,熟知一元二次方程的根与其判别式的关系是解答的关键.。
2021-2022学年度第二学期学情分析六年级数学(苏教版)一、教材分析苏教版六年级《数学》下册教材内容分为“数与代数”、“图形与几何”、“统计与概率”和“综合与实践”四个领域,共安排了七个教学单元:扇形统计图、圆柱和圆锥、解决问题的策略、比例、确定位置、正比例和反比例以及小学六年来所学数学内容的总复习。
此外,还安排了3次综合与实践活动:“大树有多高”、“制定旅游计划”、“绘制平面图”;1次探索规律:“面积的变化”。
(一)“数与代数”领域共三个单元,包括“解决问题的策略”、“比例”、“正比例和反比例”,其中在“比例”后面安排了一次探索规律《面积的变化》。
1.“解决问题的策略”从三年级开始教学,先是从条件向问题推理或从问题向条件推理,研究实际问题中的数量关系;接着是列表或画图整理实际问题中的数学信息,沟通条件之间以及已知条件与所求问题之间的联系;然后是列举、转化、假设等思想方法,解决一些有特点的问题。
本册教材不再教学新的策略,而是引导学生灵活选择已有的策略,或者综合应用几种策略解决一些新颖的问题,进一步发展策略意识,提高解决问题的策略水平。
2.“比例”这个单元的教学涉及两个部分的内容。
其中平面图形的放大和缩小(包括比例尺以及有关的实际问题)属于“图形与几何”部分的内容;比例的意义和基本性质属于“数与代数”部分的内容。
图形放大和缩小是图形的相似变换,把图形放大和缩小安排在小学阶段教学,目的是让学生尽量多地接触一些图形变化的实际事例,丰富空间想象,发展空间观念。
比例的意义和基本性质是小学数学的基础知识,有利于后面的正比例与反比例的教学。
利用比例的基本性质可以解比例,解比例是解决有关比例尺问题所需要的技能。
图形的放大与缩小为教学比例提供了鲜活的素材,从图形放大和缩小的现象引出比例,比例的知识就不会枯燥、抽象。
比例能准确表达图形放大和缩小的数学含义,使图形放大和缩小不只是笼统的、直观的表象,而是利用数学模型表达的数学现象。
2用表达式表示变量之间的关系用表达式表示变量之间的关系如图 9-1,三角形一底边上的高是 6 cm . 当三角形该底边的长短发生变化时,三角形的面积发生了变化.老花镜的度数 D/ 度100120200250300镜片与光斑的距离 f / m10.80.50.40.3(1)观察表中的数据,你发现了什么?(2)如果按上述方法测得一副老花镜的镜片与光斑的距离为 0.7 m ,那么你估计这副老花镜的度数是多少.5. 在高海拔(1 500 ~ 3 500 m 为高海拔,3 500 ~ 5 500 m 为超高海拔,5 500 m 以上为极高海拔)地区的人有缺氧的感觉,下面是有关海拔与空气含氧量之间的一组数据:海拔/ m 01 0002 0003 0004 0005 0006 0007 0008 000空气含氧量 /(g / m 3)299.3265.5234.8209.63182.08159.71141.69123.16105.97(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)在海拔 0 m 的地方空气含氧量是多少?在海拔 4 000 m 的地方空气含氧量是多少?(3)你估计一下在海拔 5 500 m 的地方空气含氧量是多少.c 图 9-1(1)在这个变化过程中,自变量、因变量各是什么?(2)如果三角形的底边长为 x (cm ),那么三角形的面积 y (cm 2)可以表示为.用表2第九章变量之间的关系议一议做一做(3)当底边长从 12 cm 变化到 3 cm 时,三角形的面积从cm 2 变化到cm 2.y = 3x 表示了图 9-1 中三角形底边长 x 和面积 y 之间的关系,它是变量 y 随 x 变化的表达式.表达式是我们表示变量之间关系的另一种方法. 利用表达式,如 y = 3x ,我们可以根据任何一个自变量的值求出相应的因变量的值.如图 9-3,圆锥的高是 4 cm ,当圆锥的底面半径由小到大变化时,圆锥的体积也随之发生了变化.你知道什么是“低碳生活”吗?“低碳生活”是指人们生活中尽量减少所耗能量,从而降低碳特别是二氧化碳的排放量的一种生活方式.图 9-2自变量 x因变量 y 表达式y = 3x图 9-3r cm O4 c m(1)在这个变化过程中,自变量、因变量各是什么?(2)如果圆锥的底面半径为 r (cm ),那么圆锥的体积 V (cm 3)与 r 的表达式为.(3)当底面半径由 1 cm 变化到 10 cm 时,圆锥的体积由cm3 变化到cm 3.2用表达式表示变量之间的关系随堂练习(2)在上述表达式中,耗电量每增加 1 kW ·h ,二氧化碳排放量增加kg . 当耗电量从 1 kW ·h 增加到 100 kW ·h ,二氧化碳排放量从 kg增加到kg .(3)小明家本月用电大约 110 kW ·h 、天然气 20 m 3、自来水 5 t 、油 75 L ,请你计算一下小明家这几项的二氧化碳排放量.1. 如图,一个长方形推拉窗,窗高 1.2 m ,当活动窗扇沿图中所示的方向移动时,随着窗扇拉开长度 b (m )的变化,窗户的通风面积 A (m 2)也发生了变化. (1)在这个变化过程中,自变量、因变量各是什么? (2)写出通风面积 A 与拉开长度 b 之间的表达式;(3)当拉开长度 b 从 0.2 m 变化到 0.4 m 时,通风面积 A 从m 2 变化到m 2.(1)家居用电的二氧化碳排放量可以用表达式表示为,其中的字母表示.(第 1 题)(第 2 题)自变量 d因变量 TT = 10 -d1502. 在地球某地,温度 T (℃)与高度 d (m )的关系可以近似地用表达式 T = 10 -d150来 表示. 根据这个表达式,当 d 的值分别是 0,200,400,600,800,1 000 时,计算相应的 T 值,并用表格表示所得结果.3. 仿照“议一议”中的(2),你能说一说家用自来水二氧化碳排放量随自来水使用吨数的变化而变化的情况吗?。
第三章变量之间的关系章节测试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.变量x与y之间的关系是y=2x+1,当y=5时,自变量x的值是( )A. 13B. 5C. 2D. 3.52.在关系式y=2x+5中,当自变量x=6时,因变量y的值为( )A. 7B. 14C. 17D. 213.弹簧挂重物会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系.x01234…y88.599.510…下列说法不正确的是( )A. x与y都是变量,x是自变量,y是因变量B. 所挂物体为6kg,弹簧长度为11cmC. 物体每增加1kg,弹簧长度就增加0.5cmD. 挂30kg物体时一定比原长增加15cm4.某油箱容量为60L的汽车,加满汽油行驶了100km时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为xkm,油箱中剩油量为yL,则y与x之间的关系式和自变量的取值范围分别是( )A. y=0.12x(x>0)B. y=60−0.12x(x>0)C. y=0.12x(0≤x≤500)D. y=60−0.12x(0≤x≤500)5.小明从家出发步行至学校,停留一段时间后乘车返回,则下列图象最能体现他离家的距离(s)与出发时间(t)之间的对应关系的是( )A. B.C. D.6.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系.下列说法错误的是( )A. 第3min时,汽车的速度是40km/ℎB. 第12min时,汽车的速度是0km/ℎC. 从第3min到第6min,汽车行驶了120kmD. 从第9min到第12min,汽车的速度从60km/ℎ减少到0km/ℎ7.某科研小组在网上获取了声音在空气中传播的速度与空气温度之间的关系的一些数据(如下表):温度(℃)−20−100102030声速(m/s)318324330336342348下列说法中错误的是( )A. 在这个变化过程中,自变量是温度,因变量是声速B. 温度越高,声速越快C. 当空气温度为20℃时,5s内声音可以传播1740mD. 温度每升高10℃,声速增加6m/s8.某校七年级数学兴趣小组利用同一块木板测量小车从不同高度斜放的木板上从顶部滑到底部所用的时间,支撑物的高度ℎ(cm)与小车下滑时间t(s)之间的关系如下表所示:支撑物的高度ℎ/cm10203040506070小车下滑时间t/s4.23 3.00 2.45 2.13 1.89 1.71 1.59根据表格提供的信息,下列说法错误的是( )A. 支撑物的高度为40cm时,小车下滑时间为2.13sB. 支撑物的高度ℎ越大,小车下滑时间t越少C. 若小车下滑时间为2s,则支撑物的高度在40cm至50cm之间D. 若支撑物的高度为80cm,则小车下滑时间可以是小于1.59s的任意值9.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A. 1个B. 2个C. 3个D. 4个10.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.( )A. 12B. 16C. 76D. 78二、填空题(本大题共5小题,共15.0分)11.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:数量(千克)0.51 1.52 2.53 3.5…售价(元) 1.53 4.567.5910.5…如果卖出的香蕉数量用x(千克)表示,售价用y(元)表示,则y与x的关系式为______.12.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(时)的关系式为,该汽车最多可行驶小时.13.某公司生产一种产品,前期投资成本为100万元,在此基础上,每生产一吨又要投入5万元成本,那么生产的总成本y万元与产量x吨之间的数量关系是______.14.某日小明步行,小颖骑车,他们同时从小颖家出发,以各自的速度匀速到公园去,小颖先到并停留了8分钟,发现相机忘在了家里,于是沿原路以同样的速度回家去取,已知小明的步行速度为180米/分钟,他们各自距离出发点的路程y与出发时间x之间的关系图象如图所示,则当小明到达公园的时候小颖离家______米.15.甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步1800米(甲的速度大于乙的速度),当甲第一次超出乙300米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则当甲到达终点时,乙跑了________米.三、解答题(本大题共7小题,共55.0分。
2022-2023学年鲁教版(五四学制)九年级数学上册《第2章直角三角形的边角关系》单元综合优生辅导测评(附答案)一.选择题(共8小题,满分40分)1.在Rt△ABC中,cos A=,那么sin A的值是()A.B.C.D.2.如图,梯子(长度不变)跟地面所成的锐角为∠α,关于∠α的三角函数值与梯子的倾斜程度之间,叙述正确的是()A.sinα的值越大,梯子越陡B.cosα的值越大,梯子越陡C.tanα的值越小,梯子越陡D.陡缓程度与∠α的函数值无关3.如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为()A.B.C.D.4.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE =43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m5.无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N 处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M处俯角为35°,则M,N之间的距离为()(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)A.188m B.269m C.286m D.312m6.在正方形网格中,△ABC在网格中的位置如图,则cos B的值为()A.B.C.D.27.如图,两个高度相等且底面直径之比为1:2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.cm B.6cm C.8cm D.10cm8.如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米B.86.7米C.186.7米D.86.6米二.填空题(共8小题,满分40分)9.在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sin A的值为.10.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=.11.如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD =3,则cos∠DCB的值为.12.在△ABC中,若∠A、∠B满足|cos A﹣|+(sin B﹣)2=0,则∠C=.13.如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:,则斜坡AB的长是米.14.数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为米.(结果精确到1米,参考数据:≈1.41,≈1.73)15.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】16.如图,一架长为6米的梯子AB斜靠在一竖直的墙AO上,这时测得∠ABO=70°,如果梯子的底端B外移到D,则梯子顶端A下移到C,这时又测得∠CDO=50°,那么AC 的长度约为米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)三.解答题(共6小题,满分40分)17.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A,B两个观测点,然后选定对岸河边的一棵树记为点M.测得AB=50m,∠MAB =22°,∠MBA=67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m).参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈.19.无人机在实际生活中应用广泛.如图所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼CD楼顶D处的俯角为45°,测得楼AB楼顶A处的俯角为60°.已知楼AB和楼CD之间的距离BC为100米,楼AB的高度为10米,从楼AB的A处测得楼CD的D处的仰角为30°(点A、B、C、D、P在同一平面内).(1)填空:∠APD=度,∠ADC=度;(2)求楼CD的高度(结果保留根号);(3)求此时无人机距离地面BC的高度.20.从2019年底以来,新冠疫情一直困扰着我们的日常生活,今年为进一步加强疫情防控工作,某公司决定安装红外线体温检测仪,这种设备的原理是采用非接触式测温法,只要用红外体温测试仪的镜头对准被测对象进行扫描,其体温就可立刻在显示屏上显示出来,从而有效地避免了其他常规测温法所可能造成的交叉感染,测温区域示意图如图所示,已知最大探测角∠P AO=75°,最小探测角∠PBO=30°.(参考数据:=1.414,=1.732,=2.236)(1)若该设备安装在离水平地面距离为2.2m的P处,即OP=2.2m,请求出图中OB的长度;(结果精确到0.1m)(2)若该公司要求测温区域AB的长度为4m,请求出该设备的安装高度OP的高度.(结果精确到0.1m)21.如图,某种路灯灯柱BC垂直于地面,与灯杆AB相连.已知直线AB与直线BC的夹角是76°,在地面点D处测得点A的仰角是53°,点B仰角是45°,点A与点D之间的距离为3.5米.求:(1)点A到地面的距离;(2)AB的长度.(精确到0.1米)(参考数据:sin53°≈0.8,cos53°≈0.6,sin76°≈0.97,cos76°≈0.24)22.郑州二七纪念塔位于郑州市二七广场,是为纪念京汉铁路工人大罢工中牺牲的烈士,发扬“二七”革命传统而修建的纪念性建筑.如图,某综合实践小组为测量塔顶旗杆的高度,在马路对面建筑物楼下选取了与二七塔的底部C在同一水平线上的测量点D,在建筑物楼上选取测量点E,DE⊥CD.已知,塔身BC高63m,ED=18m,在D处测得旗杆顶部A的仰角为58°,在E处测得旗杆底部B的仰角为45°,求旗杆AB的高度(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6).参考答案一.选择题(共8小题,满分40分)1.解:∵Rt△ABC中,cos A=,∴sin A==,故选:B.2.解:根据锐角三角函数的变化规律,知sinα的值越大,∠α越大,梯子越陡.故选:A.3.解:连接BF,∵CE是斜边AB上的中线,EF⊥AB,∴EF是AB的垂直平分线,∴S△AFE=S△BFE=5,∠FBA=∠A,∴S△AFB=10=AF•BC,∵BC=4,∴AF=5=BF,在Rt△BCF中,BC=4,BF=5,∴CF==3,∵CE=AE=BE=AB,∴∠A=∠FBA=∠ACE,又∵∠BCA=90°=∠BEF,∴∠CBF=90°﹣∠BFC=90°﹣2∠A,∠CEF=90°﹣∠BEC=90°﹣2∠A,∴∠CEF=∠FBC,∴sin∠CEF=sin∠FBC==,故选:A.4.解:∵FD⊥EB,AC⊥EB,∴DF∥AC,∵AF∥EB,∴四边形ACDF是平行四边形,∵∠ACD=90°,∴四边形ACDF是矩形,∴DF=AC,在Rt△ACB中,∵∠ACB=90°,∴AC=AB•sin43°≈1.6×0.7=1.12(m),∴DF=AC=1.12(m),在Rt△DEF中,∵∠FDE=90°,∴tan∠E=,∴DE≈=2.8(m),故选:B.5.解:由题意得:∠N=43°,∠M=35°,AO=135m,BO=AO﹣AB=95m,在Rt△AON中,tan N==tan43°,∴NO=≈150m,在Rt△BOM中,tan M==tan35°,∴MO=≈135.7m,∴MN=MO+NO=135.7+150≈286m.故选:C.6.解:在直角△ABD中,BD=2,AD=4,则AB===2,则cos B===.故选:A.7.解:甲液体的体积等于液体在乙中的体积.设乙杯中水深为x,则π×12×16=π×48×x,解得x=4.在直角△ABP中,已知AP=4cm,AB=8cm,∴BP=12cm.根据三角形的面积公式可知直角△ABP斜边上的高是6cm,所以乙杯中的液面与图中点P的距离是16﹣6﹣4=6(cm).故选:B.8.解:如图作DH⊥AB于H,延长DE交BC于F.在Rt△ADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∵四边形DHBF是矩形,∴BF=DH=50(米),在Rt△EFB中,∠BEF=45°,∴EF=BF=50(米),在Rt△EFC中,FC=EF•tan60°,∴CF=50×≈86.6(米),∴BC=BF+CF=136.6(米).故选:A.二.填空题(共8小题,满分40分)9.解:如图所示:∵∠C=90°,AC=5,BC=12,∴AB==13,∴sin A=.故答案为:.10.解:∵sin A==,∴∠A=60°,∴sin=sin30°=.故答案为:.11.解:∵在△ABC中,∠ACB=90°,点D为AB边的中点,∴AD=BD=CD=AB,又∵CD=3,∴AB=6,∴cos∠DCB=cos∠B===,故答案为:.12.解:∵|cos A﹣|+(sin B﹣)2=0,∴cos A﹣=0,sin B﹣=0,∴cos A=,sin B=,∴∠A=60°,∠B=45°,则∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°,故答案为:75°.13.解:如图所示:过点A作AF⊥BC于点F,∵斜面坡度为1:,∴tan∠ABF===,∴∠ABF=30°,∵在P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°===,解得:PB=20(m),故AB=20m,故答案为:20.14.解:过O点作OC⊥AB于C点,∵当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,∴AC=45米,∠CAO=30°,∴OC=AC•tan30°=(米),∴旗杆的高度=40﹣15≈14(米),故答案为:14.15.解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.16.解:由题意可得:∵∠ABO=70°,AB=6m,∴sin70°==≈0.94,解得:AO=5.64(m),∵∠CDO=50°,DC=6m,∴sin50°=≈0.77,解得:CO=4.62(m),则AC=5.64﹣4.62=1.02(m),答:AC的长度约为1.02米.故答案为:1.02.三.解答题(共6小题,满分40分)17.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC×tan60°=10,∵AB∥CF,∴BM=BC×sin30°=10×=5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.18.解:过点M作MN⊥AB,垂足为N,设MN=x米,在Rt△ANM中,∠MAB=22°,∴AN=≈=x(米),在Rt△MNB中,∠MBN=67°,∴BN=≈=x(米),∵AB=50米,∴AN+BN=50,∴x+x=50,∴x≈17.1,∴这段河流的宽度约为17.1米.19.解:(1)∵∠MP A=60°,∠NPD=45°,∴∠APD=180°﹣∠MP A﹣∠NPD=75°.过点A作AE⊥CD于点E.则∠DAE=30°,∴∠ADC=180°﹣90°﹣30°=60°.故答案为:75;60.(2)由题意可得AE=BC=100米,EC=AB=10米,在Rt△AED中,∠DAE=30°,tan30°=,解得DE=,∴CD=DE+EC=(+10)米.∴楼CD的高度为(+10)米.(3)过点P作PG⊥BC于点G,交AE于点F,则∠PF A=∠AED=90°,FG=AB=10米,∵MN∥AE,∴∠P AF=∠MP A=60°,∵∠ADE=60°,∴∠P AF=∠ADE,∵∠DAE=∠30°,∴∠P AD=30°,∵∠APD=75°,∴∠ADP=75°,∴∠ADP=∠APD,则AP=AD,∴△APF≌△DAE(AAS),∴PF=AE=100米,∴PG=PF+FG=100+10=110(米).∴此时无人机距离地面BC的高度为110米.20.解:(1)在Rt△OPB中,OP=2.2m,∠PBO=30°,∴OB===2.2≈3.8(m),∴OB的长度为3.8m;(2)过点A作AC⊥BP,垂足为C,在Rt△ACB中,∠PBO=30°,AB=4m,∴AC=AB=2(m),BC=AC=2(m),∵∠P AO=75°,∴∠APB=∠P AO﹣∠PBA=45°,在Rt△P AC中,PC===2(m),∴PB=PC+BC=(2+2)m,在Rt△POB中,∠PBO=30°,∴OP=PB=1+≈2.7(m),∴该设备的安装高度OP的高度为2.7m.21.解:(1)过点A作AF⊥CD,垂足为F,在Rt△AFD中,AF=AD sin53°=3.5×0.8=2.8米,答:点A到地面的距离为2.8米;(2)过点A作AG⊥EC,垂足为G,则AF=GC,AG=CF,在Rt△AFD中,DF=AD cos53°=3.5×0.6=2.1米,设CF为x米,则CD为(2.1+x)米,在Rt△BCD中,BC=CD tan45°=(2.1+x)米,∴GB=GC﹣BC=2.8﹣(2.1+x)=(0.7﹣x)米,在Rt△AGB中,tan76°=,∴tan76°=,∴,解得:x≈0.56,∴CF=AG=0.56米,∴AB==≈0.6米.22.解:过点E作EF⊥AC,垂足为F,则DE=FC=18m,EF=CD,∵BC=63m,∴BF=BC﹣CF=45(m),在Rt△BFE中,∠BEF=45°,∴EF===45(m),∴EF=CD=45m,在Rt△ACD中,∠ADC=58°,∴AC=CD tan58°≈45×1.6=72(m),∴AB=AC﹣BC=72﹣63=9(m),∴旗杆AB的高度约为9m.。
六年级数学下册第五章基本平面图形专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有()A.一对B.二对C.三对D.四对2、如图,木工师傅过木板上的A,B两点,弹出一条笔直的墨线,这种操作所蕴含的数学原理是()A .过一点有无数条直线B .两点确定一条直线C .两点之间线段最短D .线段是直线的一部分3、①直线AB 和直线BA 是同一条直线;②平角等于180°;③一个角是70°39',它的补角是19°21';④两点之间线段最短;以上说法正确的有( )A .②③④B .①②④C .③④D .①4、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A 表示养心殿所在位置,点O 表示太和殿所在位置,点B 表示文渊阁所在位置.已知养心殿位于太和殿北偏西2118'︒方向上,文渊阁位于太和殿南偏东5818︒'方向上,则∠AOB 的度数是( )A .7936︒'B .143︒C .140︒D .153︒5、如图,D 、E 顺次为线段AB 上的两点,20AB =,C 为AD 的中点,则下列选项正确的是( )A .若0BE DE -=,则7AE CD -=B .若2BE DE -=,则7AE CD -=C .若4BE DE -=,则7AE CD -= D .若6BE DE -=,则7AE CD -=6、下列命题中,正确的有( )①两点之间线段最短; ②角的大小与角的两边的长短无关;③射线是直线的一部分,所以射线比直线短.A .0个B .1个C .2个D .3个7、将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是( )A .B .C .D .8、如图,C 为线段AB 上一点,点D 为BC 的中点,且30cm AB =,4AC CD =.则AC 的长为( )cm .A .18B .18.5C .20D .20.59、如图,O 是直线AB 上一点,则图中互为补角的角共有( )A .1对B .2对C .3对D .4对10、上午8:30时,时针和分针所夹锐角的度数是( )A .75°B .80°C .70°D .67.5°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3,∠2=55°,那么∠4=_____度.2、如图,直线AB 与直线CD 相交于点O ,OE AB ⊥,已知30BOD ∠=︒,则COE ∠=______________.3、如图,C 是线段AB 上一点,D 是线段CB 的中点,10AB =,7AD =.若点E 在线段AB 上,且2CE =,则BE =______.4、若∠A =522942︒''',则∠A 的补角为__________.5、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.三、解答题(5小题,每小题10分,共计50分)1、如图,O 为直线AB 上一点,AOC ∠与AOD ∠互补,OM ,ON 分别是AOC ∠,AOD ∠的平分线.(1)根据题意,补全下列说理过程:∵AOC ∠与AOD ∠互补,∴180AOC AOD ∠+∠=︒.又AOC ∠+∠___________=180°,∴∠_________=∠_________.(2)若68MOC ∠=︒,求AON ∠的度数.(3)若MOC α∠=,则AON ∠=(用α表示).2、如图,已知平面上三个点A ,B ,C ,按要求完成下列作图(不写作法,只保留作图痕迹):(1)作直线AC ,射线BA ;(2)连接BC .并延长BC 至点D ,使CD =BC .3、如图,点C 为线段AB 的中点,点E 为线段AB 上的点,D 为AE 的中点,若AB =15,CE =4.5,求线段DE .4、如图,已知线段AB(1)请按下列要求作图:①延长线段AB 到C ,使BC AB =;②延长线段BA 到D ,使AD AC =;(2)在(1)条件下,请直接回答线段BD 与线段AC 之间的数量关系;(3)在(1)条件下,如果AB=2cm,请求出线段BD和CD的长度.5、已知∠AOB=90°,∠COD=80°,OE是∠AOC的角平分线.(1)如图1,若∠AOD=13∠AOB,则∠DOE=________;(2)如图2,若OF是∠AOD的角平分线,求∠AOE−∠DOF的值;(3)在(1)的条件下,若射线OP从OE出发绕O点以每秒12°的速度逆时针旋转,射线OQ从OD出发绕O点以每秒8°的速度顺时针旋转,若射线OP、OQ同时开始旋转t秒(0<t<674)后得到∠COP=54∠AOQ,求t的值.-参考答案-一、单选题1、C【解析】【分析】根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.【详解】解:∵∠BOC=90°,∠COD=45°,∴∠AOC=90°,∠BOD=45°,∠AOD=135°,∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,∴图中互为补角的角共有3对,故选:C.【点睛】本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.2、B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.∴能解释这一实际应用的数学知识是两点确定一条直线.故选:B.【点睛】本题考查了直线的性质,掌握“经过两点有且只有一条直线”是解题的关键.3、B【解析】【分析】根据直线的表示方法,平角,补角,线段的性质逐个判断即可.【详解】①直线AB和直线BA是同一条直线,正确②平角等于180°,正确③一个角是70°39',它的补角应为:1807039'10921'︒-︒=︒,所以错误④两点之间线段最短,正确故选B【点睛】本题考查直线的表示方法,平角,补角,线段的性质等知识点,熟练掌握以上知识点是解题的关键.4、B【解析】【分析】由图知,∠AOB =180°−5818︒'+2118'︒,从而可求得结果.【详解】∠AOB =180°−5818︒'+2118'︒=180°-37°=143°故选:B【点睛】本题考查了方位角及角的和差运算,掌握角的和差运算是关键.5、D【解析】【分析】先利用中点的含义及线段的和差关系证明,AE CD CE 再逐一分析即可得到答案.【详解】 解: C 为AD 的中点, 1,2AC CD AD0BE DE -=,则1,2BE DE BD 110,2AE CD AC CD DE CDAC DE CD DE CE AB 故A 不符合题意;2BE DE -=,则2,BE DE2220,CD DE DE9,CD DE CE同理:9,AE CD CE 故B 不符合题意;4BE DE -=,则4,BE DE2420,CD DE DE8,CD DE CE同理:8,AE CD CE 故C 不符合题意;6BE DE -=,则6,BE DE2620,CD DE DE7,CD DE CE同理:7,AE CD CE 故D 符合题意;故选D【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系即中点的含义证明AE CD CE ”是解本题的关键6、C【解析】【分析】利用线段的性质、角的定义等知识分别判断后即可确定正确的选项.【详解】解:①两点之间线段最短,正确,符合题意;②角的大小与角的两边的长短无关,正确,符合题意;③射线是直线的一部分,射线和直线都无法测量长度,故错误,不符合题意,正确的有2个,故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解线段的性质、角的定义等知识,难度不大.7、C【解析】【分析】A、由图形可得两角互余,不合题意;B、由图形得出两角的关系,即可做出判断;C、根据图形可得出两角都为45°的邻补角,可得出两角相等;D、由图形得出两角的关系,即可做出判断.【详解】解:A、由图形得:α+β=90°,不合题意;B、由图形得:β+γ=90°,α+γ=60°,可得β﹣α=30°,不合题意;C、由图形可得:α=β=180°﹣45°=135°,符合题意;D、由图形得:α+45°=90°,β+30°=90°,可得α=45°,β=60°,不合题意.故选:C.【点睛】本题考查了等角的余角相等,三角尺中角度的计算,掌握三角尺中各角的度数是解题的关键.8、C【解析】【分析】根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.【详解】解:由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=30,解得CD=5,AC=4CD=4×5=20cm,故选:C;【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.9、B【解析】【分析】根据补角定义解答.【详解】解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BO D,共2对,故选:B.【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.10、A【解析】【分析】根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.故选:A.【点睛】本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.二、填空题1、55【解析】根据余角的定义及等角的余角相等即可求解.【详解】解:∵∠1与∠2互余,∴∠1+∠2=90°,∵∠3与∠4互余,∴∠3+∠4=90°,又∠1=∠3,∴∠2=∠4=55°,故答案为:55.【点睛】本题考查了余角的定义及等角的余角相等等知识点,属于基础题,计算过程中细心即可.2、120°##120度【解析】【分析】根据垂直定义求出∠AOE,根据对顶角求出∠AOC,相加即可.【详解】解:∵OE⊥AB,∴∠AOE=90°,∵∠AOC=∠BOD=30°,∴∠COE=∠AOE+∠AOC=90°+30°=120°.故答案是:120°.本题考查了垂直,对顶角的应用,主要考查学生的计算能力.3、4或8##8或4【解析】【分析】先分别求出BD、BC的长度,再分点E在点C的左边和点E在点C的右边求解即可.【详解】解:∵AB=10,AD=7,∴BD=AB-AD=10-7=3,∵D为CB的中点,∴BC=2BD=6,当点E在点C的左边时,如图1,∵CE=2,∴BE=BC+CE=6+2=8;当点E在点C的右边时,如图2,则BE=BC-CE=6-2=4,综上,BE=4或8,故答案为:4或8.本题考查线段的和与差、线段的中点,熟练掌握线段的运算,利用分类讨论思想求解是解答的关键. 4、127°30′18″【解析】【分析】根据补角的定义,用180°减去A ∠的度数即可求解.【详解】A ∠的补角等于:1801805229421273018A ''''︒-∠=︒-︒'=︒'.故答案是:1273018''︒'.【点睛】考查了补角的定义,掌握两个角互为补角,就是两个角的和是180°是解答本题的关键.5、两点确定一条直线【解析】【分析】根据两点确定一条直线,即可求解.【详解】解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.故答案为:两点确定一条直线【点睛】本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.三、解答题1、 (1)BOC ; AOD ;BOC ;(3)90α︒-.【解析】【分析】(1)根据AOC ∠与AOD ∠互补,得出180AOC AOD ∠+∠=︒.根据AOC ∠+∠ BOC =180°,利用同角的补角性质得出∠AOD =∠BOC .(2)根据OM 是∠AOC 的平分线.得出∠AOC =2∠MOC =2×68°=136°,根据∠AOC 与∠AOD 互补,求出∠AOD =180°﹣136°=44°,再根据ON 是∠AOD 的平分线.可得∠AON =12∠AOD =22°.(3)根据OM 是∠AOC 的平分线.得出∠AOC =22MOC α∠=,根据∠AOC 与∠AOD 互补,可求∠AOD =180°﹣2α,根据ON 是∠AOD 的平分线.得出∠AON =12∠AOD =()11802902αα︒-=︒-. (1)解:∵AOC ∠与AOD ∠互补,∴180AOC AOD ∠+∠=︒.又AOC ∠+∠ BOC =180°,∴∠AOD =∠BOC .故答案为:BOC ; AOD ;BOC ;(2)解:∵OM 是∠AOC 的平分线.∴∠AOC =2∠MOC =2×68°=136°,∵∠AOC 与∠AOD 互补,∴∠AOD =180°﹣136°=44°,∵ON 是∠AOD 的平分线.∴∠AON=12∠AOD=22°.(3)解:∵OM是∠AOC的平分线.∴∠AOC=22MOCα∠=,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣2α,∵ON是∠AOD的平分线.∴∠AON=12∠AOD=()11802902αα︒-=︒-.【点睛】本题考查补角性质,同角的补角性质,角平分线定义,角的和差倍分计算,掌握补角性质,同角的补角性质,角平分线定义,角的和差倍分计算是解题关键.2、 (1)见解析(2)见解析【解析】【分析】(1)根据直线、射线的定义画图即可;(2)在BC的延长线上截取CD=BC即可.(1)解:如图,直线AC,射线BA即为所作;(2)解:如图,线段CD即为所作.【点睛】本题考查了直线、射线、线段的作图,熟练掌握作一条线段等于已知线段是解答本题的关键. 3、6【解析】【分析】利用线段中点的含义先求解,,AC BC 再利用线段的和差关系求解,AE 结合D 为AE 的中点,从而可得答案.【详解】 解: AB =15,点C 为线段AB 的中点, 17.5,2BC AC AB 4.5,CE 7.5 4.512,AE AC CED 为AE 的中点, 1 6.2DE AE 【点睛】本题考查的是线段的和差关系,线段的中点的含义,理解线段的和差关系逐步求解需要的线段的长度是解本题的关键.4、 (1)①画图见解析;②画图见解析(2)BD =1.5AC ;(3)6BD =cm ,8CD =cm【解析】【分析】(1)①先延长,AB 再作BC AB =即可;②先延长,BA 再作AD AC =即可;(2)先证明2,3,AC AB BD AB 从而可得答案;(3)由,2,BD AD AB CD AD 结合2,AD AB = 从而可得答案.(1)解:如图所示,BC 、AD 即为所求;(2)解:,AB BC =2,AC AB ∴=,AD AC2,AD AB3,BD AD AB AB 13 1.5.2BD AC AC(3)解:∵AB =2cm ,∴AC =2AB =4cm ,∴AD =4cm ,∴BD=4+2=6cm,∴CD=2AD=8cm.【点睛】本题考查的是作一条线段等于已知线段,线段的和差运算,熟练的利用作图得到的已知信息求解未知信息是解本题的关键.5、(1)25°(2)∠AOE-∠DOF=40°(3)t的值为18544秒或354秒【解析】【分析】(1)由题意得∠AOD=30°,再求出∠AOE=55°,即可得出答案;(2)先由角平分线定义得∠AOF=∠DOF=12∠AOD,∠AOE=12∠AOC,再证∠AOE-∠AOF=12∠COD,即可得出答案;(3)分三种情况:①当射线OP、OQ在∠AOC内部时,②当射线OP在∠AOC内部时,射线OQ在∠AOC 外部时,③当射线OP、OQ在∠AOC外部时,由角的关系,列方程即可求解.(1)解:(1)∵∠AOB=90°,∴∠AOD=13∠AOB=30°,∵∠COD=80°,∴∠AOC=∠AOD+∠COD=30°+80°=110°,∵OE平分∠AOC,∴∠AOE=∠COE=12∠AOC=55°,∴∠DOE=∠AOE-∠AOD=55°-30°=25°;(2)解:∵OF平分∠AOD,∴∠AOF=∠DOF=12∠AOD,∵OE平分∠AOC,∴∠AOE=12∠AOC,∴∠AOE-∠AOF=12∠AOC-12∠AOD=12(∠AOC-∠AOD)=12∠COD,又∵∠COD=80°,∴∠AOE-∠DOF=12×80°=40°;(3)解:分三种情况:①当射线OP、OQ在∠AOC内部时,即0<t≤154时,由题意得:∠POE=(12t)°,∠DOQ=(8t)°,∴∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠AOD-∠DOQ=(30-8t)°,∵∠COP=54∠AOQ,∴55-12t=54(30-8t),解得:t=354(舍去);②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,即154<t≤5512时,则∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,∴55-12t=54(8t-30),解得:t=185 44;③当射线OP、OQ在∠AOC外部时,即5512<t<674时,则∠COP=∠POE-∠COE=(12t-55)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,∴12t-55=54(8t-30),解得:t=354;综上所述,t的值为18544秒或354秒.【点睛】本题考查了角的计算、角的和差、角平分线的定义等知识,正确的识别图形是解题的关键.。
第九章变量之间的关系综合测评(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1. 小明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是( ) A.小明 B.电话费 C.时间 D.爷爷2. 北京时间2016年10月22日,广东省遭受台风“海马”袭击,大部分地区发生强降雨,某河受暴雨袭击,一天的水位记录如下表:观察表中数据,水位上升最快的时段是( ) A.8~12时B.12~16时C.16~20时D.20~24时3. 笔记本每本a 元,买3本笔记本共支出y 元,支出y 元随单价a 元的变化而变化.在这个问题中,下列判断正确的是( )A. a 是常量,y 是变量B. a 是变量,y 是常量C. a 是变量,3也是变量D. a ,y 都是变量4. 同学们,你们喜欢打篮球吗?你还记得投篮时篮球出手后在空中飞行的路线吗?那就请你选一下,能反映出篮球的离地高度与投出后的时间之间关系的图象是( )5. 一支铅笔是0.6元,小敏用5元买了x 支铅笔,则余款y 与x 之间的关系式为( ) A.y =0.6x B.y =0.6x +5 C.y =5x -0.6 D.y =5-0.6x6.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与行驶时间t (时)的关系用图象表示为 ()A B C D 7. 已知变量x ,y 满足下表的关系:时间/时 0 4 8 12 16 20 24 水位/米22.534568A B C Dx …-3 -2 -1 1 2 3 …y … 1 1.5 3 -3 -1.5 -1 …则x,y之间用关系式表示为( )A.y=x3B.y=-x3C.y=3xD.y=-3x8. 如图1,若输入x的值为-5,则输出的结果( )A.―4B.―6C.6D.49.图2是某人骑自行车出行的图象,从图象中得知( )A.从起点到终点共用了50分钟B.前20分钟速度为4千米/时C.40分钟与50分钟时速度是不相同的D.20~30分时速度为010. 甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的关系如图3所示,有下列结论:①出发1小时,甲、乙在途中相遇;②出发1.5小时,乙比甲多行驶了60千米;③出发3小时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是( )A.4B.3C.2D.1二、填空题(本大题共8小题,每小题4分,共32分)11. 从1949年到2016年,我国人口一直呈递增趋势,即随着时间的推移,人口数量在逐渐地增加.如果图1用m表示时间,n表示人口数量,_________是自变量,________是因变量.12. 表示两个变量之间的关系有三种方法,分别是__________、___________、___________.13. 如图4,某埃博拉疑似病人夜里开始发烧,_______时烧得最厉害,医院及时抢救后体温开始下降,到_______时体温基本正常,但是_______时他的体温又升高了,直到夜里他才感觉到身上不那么烫.14. 随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:年份2010 2011 2012 2013 …入学儿童人数2520 2330 2140 1950 …上表中__________是自变量,__________是因变量;你预计该地区从__________年起入学儿童的人数不超过1000人.15. 梯形上底长16,下底长x,高是10,梯形的面积S与下底长x间的关系式是___________.16. 同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的关系式是y=59x+32.如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.17. 如图5,圆柱的高是4厘米,当圆柱底面半径r(厘米)变化时,圆柱的体积V(立方厘米)也随之变化.(1)圆柱的体积V与底面半径r的关系式是__________;(2)当圆柱的底面半径由2变化到8时,圆柱的体积由________变化到________.(结果保留π)18. 某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图6的折线表示小强离开家的路程y(千米)和所用时间x(分)之间的关系.下列有四种说法:①小强从家到公共汽车站步行了2千米;②小强在公共汽车站等小明用了10图5分钟;③公共汽车的平均速度是30千米/时;④小强乘公共汽车用了20分钟.其中正确的是__________.三、解答题(本大题共5小题,共58分)19.(10分)1766年德国人提丢斯发现,太阳系中的行星到太阳的距离遵循一定的规律,如下表所示:颗次 1 2 3 4 5 6 …行星名称水星金星地球火星小行星木星…距离(天文单位)0.4 0.7 1 1.6 2.8 5.2 …0.4 0.4+0.3 0.4+0.6 0.4+1.2 0.4+2.4 ……那么第7颗行星到太阳的距离是多少天文单位?20.(10分)声音在空气中的传播速度v(米/秒)与温度t(o C)的关系可表示为v=331+0.6t.当t的值分别是-1,0,3,10,25时,计算相应的v的值,并用表格表示所得结果.21.(12分)一辆汽车行驶中速度随时间变化的图象如图7所示,请说明汽车的行驶状态.22.(12分)小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数.日期 1 2 3 4 5 6 7 8电表读数21 24 27 30 33 36 39 42 (1)表格中反映的变量是______,自变量是______,因变量是______.(2)估计小亮家4月份的用电量是多少度.若每度电电费是0.49元,估计他家4月份应交的电费是多少元.图723.(14分)如图8,三角形底边长为8 cm,当它的高由小到大变化时,三角形的面积也随之发生了变化.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果三角形的高为h cm,写出三角形的面积S与高h的关系式.(3)当高由1 cm变化到5 cm时,面积从_________cm2变化到_________cm2.附加题(15分,不计入总分)24.已知动点P以每秒2 cm的速度沿图9甲所示的边框按B→C→D→E→F→A的路径移动,相应的三角形ABP的面积S关于时间t的图象如图9乙所示,若AB=6cm,试回答下列问题:(1)如图甲,BC的长是多少?图形面积是多少?(2)如图乙,图中的a是多少?b是多少?图8参考答案一、1.B 2.D 3.D 4.C 5.D 6.D 7.B 8.C 9.D10.B 提示:(1)由图象可得A,B两地相距120千米,出发1小时,甲、乙在途中相遇(即甲、乙两人间距离为0),故①正确;(2)甲骑摩托车的速度为120÷3=40(千米/时),设乙开汽车的速度为a千米/时,则(40+a)×1=120,解得a=80,所以乙开汽车的速度为80千米/时,所以甲的速度是乙速度的一半,故④正确;(3)出发1.5小时,乙比甲多行驶了1.5×(80-40)=60(千米),故②正确;(4)乙到达终点所用的时间为120÷80=1.5(小时),甲到达终点所用的时间为3小时,故③错误.所以正确的有3个.二、11. m n12. 表格法关系式法图象法13.6 12 1814. 年份入学儿童人数2018 15. S=80+5x16. 77 17. (1)V=4πr2(2)16π256π18. ①②③提示:通过图象观察出来,当第一段图象结束时,纵轴上的数为2,显示小强这一段走了2千米,故①正确;第二段时间从20分钟变化到30分钟,y没有改变,所以这一段时间内小强都在等小明,等了10分钟,故②正确;第三段时间是从30分钟到60分钟,路程变化从2千米到17千米,所以公共汽车的速度是(17-2)÷[(60-30)÷60]=30(千米/时),故③正确;第三段时间是从30分钟到60分钟,可以看出小强乘公共汽车用了30分钟,而不是20分钟,故④错误.三、19.解:通过观察表格,行星的颗次依次增加,行星到太阳的距离也依次增加,由规律可得第6颗行星到太阳的距离是0.4+2.4×2=5.2(天文单位);第7颗行星到太阳的距离是0.4+4.8×2=10(天文单位).所以第7颗行星到太阳的距离是10天文单位.20. 解:相应的v值用表格表示为:21.解:汽车先加速行驶一段时间,然后匀速行驶一段时间后,开始减速行驶,到停止,又加速行驶.22.解:(1)日期和电表读数日期电表读数(2)每天的用电量是3度,4月份的用电量=30×3=90(度).因为每度电的电费是0.49元,所以4月份应交的电费是90×0.49=44.1(元).所以估计小亮家4月份的用电量是90度,应交的电费是44.1元.23.(1)自变量是三角形的高,因变量是三角形的面积;(2)S=4h;(3)4 2024.解:(1)如图甲,当点P在BC上时,以AB为底的三角形ABP的高在不断增大,到达点C时,开始不变,由图乙得点P在BC上移动了4秒,则BC=4×2=8(cm);在CD上移动了2秒,则CD=2×2=4(cm),在DE上移动了3秒,则DE=3×2=6(cm;而AB=6cm,那么EF=AB-CD=6-4=2(cm),需要移动2÷2=1(秒);AF=BC+DE=8+6=14(cm),需要移动14÷2=7(秒).所以S图形=AB×BC+DE×EF=6×8+6×2=60(cm2).所以BC长是8 cm,图形的面积是60 cm2.(2)由图乙得a是点P运行4秒时三角形ABP的面积,因为S三角形ABP=12×6×8=24,所以a的值为24.b为点P走完全程的时间,为t=9+1+7=17(秒).所以a的值是24,b的值是17.。
《探索规律》专题探究最近几年,全国多数地市的中考试题都有找规律的题目,人们开始逐渐重视这一类数学题目。
所谓规律探索题,指的是给出一组具有某种特定关系的数字、式子、图形,或者是给出与图形有关的操作、变化过程,要求通过观察,分析,推理探索其中所蕴含的规律,进而归纳或猜想出一般性的结论。
这类问题在素材的选择、文字的表述、题型的设计等方面都比较新颖灵活,由于这类题目没有固定的形式和方法,要求学生通过阅读、观察、分析、比较、猜想、概括等探索活动来解决问题,它体现了“特殊到一般”的数学思想方法。
研究发现数学规律题的解题思想,不但能够提高学生的考试成绩,而且更有助于创新型人才的培养。
但究竟怎样才能把这种题目做好,是一个值得探究的问题。
下面就解决这类问题作一个初步的探究。
一、常见题型 1.代数中的规律 2.平面图形中的规律 3.空间图形中的规律 二、一般步骤成立三、应用举例:(一)代数中的规律:找数字规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把项数和项放在一起加以比较,就比较容易发现其中的奥秘。
<一>数字中的规律:数字中的规律包括等差数列、等比数列、乘方的数列、循环数列等。
这些是我们在学习猜想规律 察 观察 特 例 表达规律 察验证规律 察 应用规律证重新探索中会经常遇到的。
我们先来看一下等差数列。
1.等差数列:这类数列的规律是每相邻两个数之间的差值是相等的,整个数字序列依次递增或递减。
等差数列中比较简单的是自然数数列,如:0,1,2,3,4,5,·······,n. 奇数数列,如:1,3,5,7,9,·······2 n -1. 偶数数列2,4,6,8,10·······2 n 。
“互余、互补、对顶角”知识应用技巧互为余角、互为补角以及对顶角的概念和性质,是我们需要掌握的重要的几何基础知识,它对我们今后继续学习与应用几何知识有着非常重要的作用.以下分别举例和同学们一起讨论它们的应用.一、基本应用1 . “互余、互补”知识的应用例1 如图1中,(1)哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC互余吗?为什么?(3)∠ADF与BDE有什么关系?为什么?分析:根据图形中的条件结合互余互补的性质来判断这些关系.解:(1)∠1与∠ADC互余,∠1与∠ADF互补,∠EDC与∠FDC互补,∠2与∠BDC互余,∠2与∠EDB互补,∠1与∠BDC互余,∠1与∠EDB互补,∠2与∠ADC互余,∠2与∠ADF互补.(2)∠ADC与∠BDC相等. 这是因为∠ADC是∠1的余角,∠BDC是∠2的余角,且∠1=∠2,根据等角的余角相等,可知∠ADC=∠BDC .(3)∠ADF与∠BDE相等. 这是因为∠ADF是∠1 的补角,∠BDE是∠2的补角,且∠1=∠2,根据等角的补角相等,可知∠ADF=∠BDE .2 . 对顶角知识的应用例2 如图2所示,AB与CD相交于点O,OE平分∠AOD,∠AOC=1200. 求:∠BOD和∠AOE的度数.分析:由∠BOD与∠AOC是对顶角,可得∠BOD的度数,由于∠AOD与∠AOC互补,可知∠AOD的度数,又OE平分∠AOD,可得∠AOE的度数.解:因为∠BOD与∠AOC是对顶角,根据对顶角相等,可知∠BOD=1200.由∠AOD是∠AOC的补角,可知∠AOD=600,又因为OE平分∠AOD,所以∠AOE=∠AOD=300.说明:当问题中给出了某一个角的度数时,可根据互余、互补以及图2 对顶角的性质求得其它角的度数.二、综合应用例3 如图3所示,直线AB、CD相交于点O,OE⊥OD,OF⊥AB,若∠AOC =400,求∠BOD、∠DOE、和∠COF的度数.分析:根据对顶角的性质,可求得∠BOD的度数;由垂直关系或互余求∠DOE的度数;和∠COF的度数.解:因为AOC和∠BOD是对顶角,所以∠BOD=∠AOC=400;因为OE⊥OD,所以∠COE和∠DOE互补,即∠COE=∠DOE=900;因为OF⊥AB,所以∠AOF=900,又∠AOC和∠COF互余,所以∠COF =900-∠AOC=900-400=500.说明:当已知图中某一个角的度数,可根据其它角与这个角的关系,运用互余、互补、对顶角的性质求相关角的度数.三、创新应用例4 如图4所示的是长方形台球桌面上一次击球路线,如果∠1=∠2,∠1=300,那么∠3=等于多少度?∠1与∠3 是什么关系?∠AOC是多少度?它与∠3 是什么关系?分析:因为球E沿EO方向撞击边框CD后,沿OA方向进袋,根据原理可知∠EOC=∠AOB,又OF⊥于BC,由此可得出要求的结论.解:因为∠2+∠3=900,所以∠3=900-∠2,因为∠1=∠2,所以∠3=900-∠1=900-300=600.所以∠1与∠3互余.因为∠AOC+∠3=1800,所以∠AOC=1800-600=1200.所以∠AOC与∠3互补.说明:在判断实际问题中角的关系或计算实际问题中角的度数时,要根据实际问题中所因含的垂直、相等等进行分析、判断或计算.。
七年级数学下册第八章平行线的有关证明专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知AD AB =,C E ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A .155°B .125°C .135°D .145°2、△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,下列命题中的假命题是( )A .如果∠C -∠B =∠A ,则△ABC 是直角三角形B .如果c 2=b 2-a 2,则△ABC 是直角三角形,且∠C =90°C .如果(c +a )(c -a )=b 2,则△ABC 是直角三角形D .如果∠A :∠B :∠C =5:2:3,则△ABC 是直角三角形3、两个直角三角板如图摆放,其中∠BAC =∠EDF =90°,∠F =45°,∠B =60°,AC 与DE 交于点M .若BC ∥EF ,则∠DMC 的大小为( )A .100°B .105°C .115°D .120°4、将一副三角板按不同位置摆放,下图中α∠与β∠互余的是( )A .B .C .D .5、如图,已知OE 是AOD ∠的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )A .AOB DOC ∠=∠B .AOE DOE ∠=∠C .EOC DOC ∠<∠D .EOC DOC ∠>∠6、下列命题错误的个数有( ) ①实数与数轴上的点一一对应;②无限小数就是无理数;③三角形的一个外角大于任何一个和它不相邻的内角;④两条直线被第三条直线所截,同旁内角互补.A .1个B .2个C .3个D .4个7、如图,ABC中,AB>AC,AD平分∠BAC,AE⊥BC于E,若∠B=α,∠C=β,则∠ADC的度数为()A.1()2aβ-B.1118022aβ︒--C.119022aβ︒+-D.119022aβ︒+-8、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为()A.15°B.10°C.20°D.25°9、下列命题中,是真命题的是().A.三角形的外心是三角形三个内角角平分线的交点B.满足222+=a b c的三个数a,b,c是勾股数C.对角线相等的四边形各边中点连线所得四边形是矩形D.五边形的内角和为540︒10、下列四个命题是真命题的是()A.两条直线被第三条直线所截,同位角相等.B.三角形的一个外角大于任何一个内角.C.同角的余角相等.D .若∠3=∠4,则∠3和∠4是对顶角.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知AB ∥CD ,120ABE ∠=︒,35DCE ∠=︒,则BEC ∠=____.2、如图,在△ABC 中,∠B =60°,AD 平分∠BAC ,点E 在AD 延长线上,且EC ⊥AC .若∠E =50°,则∠ADC 的度数是________.3、如图,把ABC 纸片沿DE 折叠,使点A 落在图中的A '处,若29A ∠=︒,90BDA ∠'=︒,则A EC ∠'的大小为______.4、如图,已知,12180,ADE B CD AB ∠=∠∠+∠=︒⊥,请填写理由,说明GF AB ⊥.解:因为ADE B ∠=∠(已知),所以∥DE BC ( )得13∠=∠( )又因为12180∠+∠=︒(已知),所以23180︒∠+∠=( )所以 ∥ ( )所以FGB CDB ∠=∠( )因为CD AB ⊥(已知),所以90CDB ︒∠=(垂直的意义)得90FGB ︒∠=,所以GF AB ⊥(垂直的意义)5、如果题设成立,那么结论一定成立,这样的命题叫做________.题设成立时,不能保证结论一定成立,这样的命题叫做________.三、解答题(5小题,每小题10分,共计50分)1、小聪准备了四根木棍AB 、CD 、EF 、MN (木棍均足够长),摆放位置如图1所示,AB ∥CD ,点E 、M 分别在AB 、CD 上,木棍EF 从EB 开始绕点E 顺时针旋转至EA 便立即往回旋转,木棍MN 从MC 开始绕点M 顺时针旋转至MD 便立即往回旋转,两根木棍不断来回旋转.若木棍EF 转动的速度是a °/秒,木棍MN 转动的速度是b °/秒,且a ,b 满足10a -=,EF 与MN 相交于点P .(1)当EF 转动30°,MN 转动135°时,EPM ∠=________°;(2)若木棍EF 先转动30秒,木棍MN 才开始转动,木棍EF 到达EA 之前(木棍EF 转动角度小于180°),木棍MN 转动几秒时,两根木棍互相平行?(3)如图2,120CME ∠=︒,两根木棍同时开始转动,在木棍MN 到达MD 之前(即木棍MN 转动角度小于180°),若两根木棍交于点P ,过P 作∠MPQ 交AB 于点Q ,且120MPQ ∠=︒,则在转动过程中,请探究∠EMP 与∠EPQ 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.2、如图,点G 在CD 上,已知180BAG AGD ∠+∠=︒,EA 平分BAG ∠,FG 平分AGC ∠请说明AE GF ∥的理由.解:因为180BAG AGD ∠+∠=︒(已知),180AGC AGD ∠+∠=︒(邻补角的性质),所以BAG AGC ∠=∠(________________)因为EA 平分BAG ∠, 所以112BAG ∠=∠(________________). 因为FG 平分AGC ∠, 所以122∠=______________, 得12∠=∠(等量代换),所以_________________(________________).3、有一张正方形纸片ABCD ,点E 是边AB 上一定点,在边AD 上取点F ,沿着EF 折叠,点A 落在点A ′处,在边BC 上取一点G ,沿EG 折叠,点B 落在点B ′处.(1)如图1,当点B 落在直线A ′E 上时,猜想两折痕的夹角∠FEG 的度数并说明理由.(2)当∠A ′EB ′=13∠B ′EB 时,设∠A ′EB ′=x .①试用含x 的代数式表示∠FEG 的度数.②探究EB ′是否可能平分∠FEG ,若可能,求出此时∠FEG 的度数;若不可能,请说明理由.4、(1)计算:()()()232341x x x x +---(2)如图,AD BC ⊥,48BAD ∠=︒,65C =︒∠,求BAC ∠的度数.5、如图所示,已切直线AB ∥直线CD ,直线EF 分别交直线AB 、CD 于点A ,C .且∠RAC =60°,现将射线AB 绕点A 以每秒2°的转速逆时计旋转得到射线AM .同时射线CE 绕点C 以每秒3°的转速顺时针旋转得到射线CN ,当射线CN 旋转至与射线CA 重合时,则射线CN 、射线AM 均停止转动,设旋转时间为t (秒).(1)在旋转过程中,若射线AM 与射线CN 相交,设交点为P .①当t =20(秒)时,则∠CPA = °;②若∠CPA =70°,求此时t 的值;(2)在旋转过程中,是否存在AM ∥CN ?若存在,求出此时t 的值;若不存在,请说明理由.-参考答案-一、单选题1、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.2、B【解析】【分析】利用三角形内角和可对A 、D 选项进行判断;根据勾股定理的逆定理可对B 、C 选项进行判断.【详解】解:A 、因为∠C -∠B =∠A ,即∠A +∠B =∠C ,∠A +∠B =180°-∠C ,所以∠C =90°,则△ABC 是直角三角形,所以A 选项为真命题;B 、因为c 2=b 2-a 2,即c 2+a 2=b 2,则△ABC 是直角三角形,且∠B =90°,所以B 选项为假命题;C 、因为(c +a )(c -a )=b 2,即c 2=a 2+b 2,则△ABC 是直角三角形,且∠C =90°,所以C 选项为真命题;D 、因为∠A :∠B :∠C =5:2:3,所以∠A =510×180°=90°,则△ABC 是直角三角形,所以D 选项为真命题.故选:B .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3、B【解析】【分析】首先根据直角三角形两锐角互余可算出∠C和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.【详解】解:在△ABC和△DEF中,∠BAC=∠EDF=90°,∠F=45°,∠B=60°,∴∠C=90°-∠B=30°,∠E=90°-∠F=45°,∵BC∥EF,∴∠MDC=∠E=45°,在△CMD中,∠CMD=180°-∠C-∠MDC=105°.故选:B.【点睛】本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.4、A【解析】【分析】根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.【详解】解:选项A:根据平角的定义得:∠α+90°+∠β=180°,∴∠α+∠β=90°,即∠α与∠β互余;故A符合题意;选项B:如图,3903, =, 故B 不符合题意;选项C :如图,9011,故C 不符合题意;选项D :18045135,故D 不符合题意;故选A【点睛】本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.5、B【解析】【分析】根据角平分线定义得到AOE DOE ∠=∠,由于反例要满足角相等且不是对顶角,所以AOE DOE ∠=∠可作为反例.【详解】 解:OE 是AOD ∠的平分线,∴AOE DOE ∠=∠∴AOE DOE∠=∠可作为说明命题“相等的角是对顶角”为假命题的反例故选:B.【点睛】本题考查命题与定理:判断一件事情的语句叫做命题,命题由题设和结论组成,题设是已知事项,结论是由已知事项推出的事实,一个命题可以写出“如果…那么…”的形式,任何一个命题非真即假,判断一个命题是假命题,只要举出反例即可.6、B【解析】【分析】根据实数与数轴的关系可判断①为真命题;根据无理数定义可判断②为假命题;根据三角形的一个外角性质可判断③为真命题;根据平行线性质可判断④为假命题即可.【详解】解:实数与数轴上的点一一对应,所以①为真命题;无限不循环小数是无理数,所以②为假命题;三角形的一个外角大于任何一个和它不相邻的内角,所以③为真命题;两条平行直线被第三条直线所截,同旁内角互补,所以④为假命题;∴命题不正确的有两个.故选:B.【点睛】本题考查实数与数轴的关系,无理数定义,三角形外角性质,平行线性质,掌握实数与数轴的关系,无理数定义,三角形外角性质,平行线性质是解题关键.7、D【解析】【分析】根据角平分线的性质可知12BAD CAD BAC ∠=∠=∠.由三角形内角和定理求出180BAC B C ∠=︒-∠-∠,从而可推出119022BAD B C ∠=︒-∠-∠.再由三角形外角性质可知ADC B BAD ∠=∠+∠,即可得出119022ADC B C ∠=︒+∠-∠,即得出答案. 【详解】∵AD 平分∠BAC , ∴12BAD CAD BAC ∠=∠=∠. ∵180BAC B C ∠=︒-∠-∠, ∴111(180)90222BAD B C B C ∠=︒-∠-∠=︒-∠-∠. ∵ADC B BAD ∠=∠+∠, ∴111190902222ADC B B C B C ∠=∠+︒-∠-∠=︒+∠-∠. ∵∠B =α,∠C =β, ∴119022ADC αβ∠=︒+∠-∠. 故选D .【点睛】本题考查角平分线的性质,三角形内角和定理,三角形外角的性质.利用数形结合的思想是解答本题的关键.8、A【解析】【分析】利用DE ∥AF ,得∠CDE =∠CFA =45°,结合∠CFA =∠B +∠BAF 计算即可.【详解】∵DE∥AF,∴∠CDE=∠CFA=45°,∵∠CFA=∠B+∠BAF,∠B=30°,∴∠BAF=15°,故选A.【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.9、D【解析】【分析】正确的命题是真命题,根据定义解答.【详解】解:A.三角形的外心是三角形三条边垂直平分线的交点,故该项不符合题意;B.满足222a b c的三个正整数a,b,c是勾股数,故该项不符合题意;+=C. 对角线相等的四边形各边中点连线所得四边形是菱形,故该项不符合题意;D.五边形的内角和为540︒,故该项符合题意;故选:D.【点睛】此题考查了真命题的定义,正确掌握三角形外心的定义,勾股数的定义,中点四边形的判定定理及多边形内角和的计算公式是解题的关键.10、C【解析】【详解】解:A、两条直线被第三条平行直线所截,同位角相等,故原命题错误,是假命题,不符合题意;B、三角形的一个外角大于任何一个不相邻的内角,故原命题错误,是假命题,不符合题意;C、同角的余角相等,正确,是真命题,符合题意;D、若∠3=∠4,则∠3和∠4不一定是对顶角,故原命题错误,是假命题,不符合题意.故选:C【点睛】考查了命题与定理的知识,解题的关键是了解平行线的性质、三角形的外角的性质、余角的定义及对顶角的性质,难度不大.二、填空题1、95°【解析】【分析】过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.【详解】解:如图,过点E作EF∥AB,∵EF//AB,∴∠BEF+∠ABE=180°,∵∠ABE=120°,∴∠BEF =180°-∠ABE =180°-120°=60°,∵EF //AB ,AB //CD ,∴EF //CD ,∴∠FEC =∠DCE ,∵∠DCE =35°,∴∠FEC =35°,∴∠BEC =∠BEF +∠FEC =60°+35°=95°.故答案为:95°【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.2、100︒##100度【解析】【分析】先根据直角三角形的性质可得40CAD ∠=︒,再根据角平分线的定义可得40BAD CAD ∠=∠=︒,然后根据三角形的外角性质即可得.【详解】解:,50EC AC E ⊥∠=︒,9400CAD E ∠=︒∠=-∴︒, AD 平分BAC ∠,40BAD CAD ∠∴∠==︒,60B ∠=︒,100BAD ADC B +∠∠=∴∠=︒,故答案为:100︒.【点睛】本题考查了直角三角形的两个锐角互余、角平分线、三角形的外角性质,熟练掌握直角三角形的两个锐角互余是解题关键.3、32︒##32度【解析】【分析】利用折叠性质得'45ADE A DE ∠=∠=︒,'AED A ED ∠=∠,再根据三角形外角性质得74CED ∠=︒,利用邻补角得到106AED ∠=︒,则'106A ED ∠=︒,然后利用''A EC A ED CED ∠=∠-∠进行计算即可.【详解】解:∵'90BDA ∠=︒,∴'90ADA ∠=︒,∵ABC 纸片沿DE 折叠,使点A 落在图中的A'处,∴'45ADE A DE ∠=∠=︒,'AED A ED ∠=∠,∵294574CED A ADE ∠=∠+∠=︒+︒=︒,∴106AED ∠=︒,∴'106A ED ∠=︒,∴''1067432A EC A ED CED ∠=∠-∠=︒-︒=︒.故答案为:32︒.【点睛】本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各个知识点是解题关键.4、同位角相等,两直线平行;两直线平行,内错角相等;等量代换;;CD FG ;同旁内角互补,两直线平行;两直线平行,同位角相等【分析】同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行;两线夹角为90°,两线垂直.【详解】解:ADE B ∠=∠(已知),//DE BC ∴(同位角相等,两直线平行),13∠∠∴=(两直线平行,内错角相等),12180∠+∠=︒(已知),23180∴∠+∠=︒(等量代换),//CD FG ∴(同旁内角互补,两直线平行),FGB CDB ∴∠=∠(两直线平行,同位角相等),CD AB ⊥(已知),90CDB ∴∠=︒(垂直的定义),90FGB =∴∠︒,GF AB ∴⊥(垂直的定义).故答案为:同位角相等,两直线平行;两直线平行,内错角相等;等量代换;;CD FG ;同旁内角互补,两直线平行;两直线平行,同位角相等.【点睛】本题考查了垂直定义和平行线的判定的应用,熟练掌握平行线的判定是解题关键.5、 真命题 假命题【解析】略1、 (1)75(2)30秒或110秒(3)不变,∠EMP=2∠EPQ【解析】【分析】(1)过点P作PQ∥AB,根据平行公理得到PQ∥CD,推出∠EPQ=∠BEF=30°,∠CMP+∠MPQ=180°,求出∠MPQ=45°,由EPM∠=∠EPQ+∠MPQ求出结果;(2)根据绝对值的非负性及算术平方根的非负性求出a=1,b=2.设MN转动t秒,分两种情况:①如图,当MN由CM向MD旋转时,延长EF交CD于G,由∠CMN=∠BEG,得到30+t=2t,求得t值即可;②如图,当MN由MD向CM旋转时,延长EF交CD于G,由∠CMN=∠BEG,得到30+t=360-2t,求得t值即可;(3)设MN转动a秒,则∠BEP=a,∠CMP=2a,得到∠EMP=2a-120°=2(a-60°),根据三角形内角和定理得到∠EMP+∠PQE=120°,再求出∠EPQ=180°-(240°-2a)-a=a-60°,即可得到∠EMP=2∠EPQ.(1)解:过点P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠EPQ=∠BEF=30°,∠CMP+∠MPQ=180°,∴∠MPQ=45°,∴EPM∠=∠EPQ+∠MPQ=75°,故答案为:75;(2)解:∵10a-,∴a-1=0,2-b=0,得a=1,b=2.∴木棍EF转动的速度是1°/秒,木棍MN转动的速度是2°/秒,∴木棍EF先转动30秒,得∠BEF=30°,设MN转动t秒,①如图,当MN由CM向MD旋转时,延长EF交CD于G,∴∠BEG=30+t,∠CMN=2t,∵MN∥EF,∴∠CMN=∠CGE,∵AB∥CD,∴∠BEG=∠CGE,∴∠CMN=∠BEG,∴30+t=2t,得t=30;②如图,当MN由MD向CM旋转时,延长EF交CD于G,∴∠BEG =30+t ,∠CMN =360-2t ,∵MN ∥EF ,∴∠CMN =∠CGE ,∵AB ∥CD ,∴∠BEG =∠CGE ,∴∠CMN =∠BEG ,∴30+t =360-2t ,得t =110;综上,木棍MN 转动30秒或110秒时,两根木棍互相平行;(3)解:不变,∠EMP =2∠EPQ .设MN 转动a 秒,则∠BEP=a ,∠CMP=2a ,∵120CME ∠=︒,∴∠EMP =2a -120°=2(a -60°),∵AB ∥CD ,∴∠MEB =120CME ∠=︒,∵∠EMP +∠MPQ +∠PQE +∠MEB =360°,120MPQ ∠=︒,∴∠EMP +∠PQE =120°,∴∠PQE =240°-2a ,∵∠BEP+∠EPQ+∠PQE=180°,∴∠EPQ =180°-(240°-2a )-a =a -60°,∴∠EMP =2∠EPQ ,∴∠EMP 与∠EPQ 的数量关系不变,∠EMP =2∠EPQ .【点睛】此题考查了平行公理,平行线的性质,绝对值的非负性,算术平方根的非负性,三角形内角和定理,一元一次方程的实际应用,熟练掌握各知识点并综合应用是解题的关键.2、同角的补角相等,角平分线的定义,∠AGC ,AE GF ∥,内错角相等两直线平行【解析】【分析】根据补角的性质,角平分线的定义,及平行线的判定定理依次分析解答.【详解】解:因为180BAG AGD ∠+∠=︒(已知),180AGC AGD ∠+∠=︒(邻补角的性质),所以BAG AGC ∠=∠(同角的补角相等)因为EA 平分BAG ∠, 所以112BAG ∠=∠(角平分线的定义).因为FG 平分AGC ∠,所以122∠=∠AGC , 得12∠=∠(等量代换),所以AE GF ∥(内错角相等两直线平行),故答案为:同角的补角相等,角平分线的定义,∠AGC ,AE GF ∥,内错角相等两直线平行.【点睛】此题考查了平行线的判定定理,熟记补角的性质,角平分线的定义及平行线的判定定理是解题的关键.3、 (1)90FEG ∠=︒,理由见解析(2)①当点B ′落在∠A ′EG 内部时,∠FEG =90°+2x ;当点B ′落在∠A ′EF 内部时,∠FEG =90°−2x ;②EB ′可能平分∠FEG ,当点B ′落在∠A ′EG 内部时,∠FEG =108°; 当点B ′落在∠A ′EF 内部时,∠FEG =(5407)°. 【解析】【分析】 (1)由折叠的性质结合平角的性质即可求解;(2)①分当点B ′落在∠A ′EG 内部和点B ′落在∠A ′EF 内部时两种情况讨论求解即可; ②分点B ′落在∠A ′EG 内部和点B ′落在∠A ′EF 内部时两种情况讨论求解即可.(1)解:∠FEG =90°.由折叠可知∠AEF =∠A ′EF ,∠BEG =∠B ′EG .又∵∠AEF +∠A ′EF +∠BEG +∠B ′EG =180°,∴∠A ′EF +∠B ′EG =90°,∠FEG =90°;(2)解:由折叠可知∠AEF =∠A ′EF ,∠BEG =∠B ′EG .①(i )如图,当点B ′落在∠A ′EG 内部时,∵∠A ′EB ′=x ,∠A ′EB ′=13∠B ′EB ,∴∠B ′EB =3x .∴∠AEA ′=180°−∠A ′EB =180°−(∠B ′EB +∠A ′EB ′)=180°−4x ,∴∠BEG =12∠BEB ′=32x ,∠AEF =12∠AEA ′=90°−2x , ∴∠FEG =180°−∠BEG −∠AEF =90°+2x.(ⅱ)如图2,当点B ′落在∠A ′EF 内部时,∵∠A ′EB ′=x ,∠A ′EB ′=13∠B ′EB ,∴∠B ′EB =3x ,∴∠AEA ′=180°−∠A ′EB =180°−(∠B ′EB −∠A ′EB ′)=180°−2x ,∴∠BEG =12∠BEB ′=32x ,∠AEF =12∠AEA ′=90°−x . ∴∠FEG =180°−∠BEG −∠AEF =90°−2x.综上所述,当点B ′落在∠A ′EG 内部时,∠FEG =90°+2x;当点B ′落在∠A ′EF 内部时,∠FEG =90°−2x.②EB ′可能平分∠FEG ,理由如下:(i )当点B ′落在∠A ′EG 内部时,∠FEG =90°+2x .∵EB ′平分∠FEG ,∴∠B ′EG =12∠FEG =45°+4x .又∵∠B ′EG =12∠BEB ′=32x , ∴45°+4x =32x ,解得x =36°. 此时∠FEG =90°+2x =108°.(ⅱ)当点B ′落在∠A ′EF 内部时,∠FEG =90°−2x.∵EB ′平分∠FEG ,∴∠B ′EG =12∠FEG =45°−4x .又∵∠B ′EG =12∠BEB ′=32x , ∴45°−4x =32x , 解得x =(1807)°. 此时∠FEG =90°−2x =(5407)°.综上所述,当点B ′落在∠A ′EG 内部时,∠FEG =108°;当点B ′落在∠A ′EF 内部时,∠FEG =(5407)°. 【点睛】本题考查了翻折变换的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.4、(1)49x -;(2)73°【解析】【分析】(1)原式第一项利用平方差公式计算,第二项利用单项式乘以多项式法则计算,最后去括号合并即可;(2)由直角三角形两锐角互余,得到25DAC ∠=︒,即可由BAC BAD DAC ∠=∠+∠得解.【详解】解:(1)原式=222249(44)4944x x x x x x ---=--+=49x -;(2)∵AD BC ⊥,∴90ADC ∠=︒,∴90C DAC ∠+∠=︒,∴25DAC ∠=︒,∴BAC BAD DAC ∠=∠+∠482573=︒+︒=︒【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键,也考查了直角三角形两个锐角互余.5、 (1)①40°;②26(2)12或48.【解析】【分析】①当t=20(秒)时,∠ECP=60°,∠BAP=40°,可得∠CAP=20°,即得∠CPA=∠ECP-∠CAP=40°;②根据∠BAM=2t°,∠ECN=3t°,且AB∥CD,∠BAC=60°,可得(60°-2t°)+(180°-3t°)+70°=180°,即可解得t=26;(2)分两种情况:分别画出图形,根据平行线的性质,找到相等的角列方程,即可解得答案.(1)①如图:当t=20(秒)时,∠ECP=20×3°=60°,∠BAP=20×2°=40°,∵∠BAC=60°,∴∠CAP=∠BAC-∠BAP=20°,∴∠CPA=∠ECP-∠CAP=40°,故答案为:40°;②如图:根据题意知:∠BAM=2t°,∠ECN=3t°,∵AB//CD,∠BAC=60°,∴∠CAP=60°-2t°,∠ACP=180°-3t°,∵∠CPA=70°,∴(60°-2t°)+(180°-3t°)+70°=180°,解得t=26,∴t的值是26;(2)存在AM//CN,分两种情况:(Ⅰ)如图:∵AM//CN,∴∠ECN=∠CAM,∴3t°=60°-2t°,解得t=12,(Ⅱ)如图:∵AM//CN,∴∠ACN=∠CAM,∴180°-3t°=2t°-60°,解得t=48,综上所述,t的值为12或48.【点睛】本题考查一次方程的应用,涉及平行线与相交线、三角形内角和等知识,解题的关键是分类画出图形,找到等量关系列方程.。
中考几何综合问题探究【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,这类题型在近几年全国各地中考试卷中占有相当的分量,注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验。
验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法:如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、以旋转形式出现的动态几何综合问题1【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=11,求∠APB的度数.【思路点拨】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;思路二、同思路一的方法即可得出结论;(2)同(1)的思路一的方法即可得出结论.【答案与解析】解:(1)思路一、如图1,将△BP C绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=3,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=√2BP=2√2,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=32=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°;思路二、同思路一的方法;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP=√11,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=√2BP=√2,∵AP=3,∴AP2+PP'2=9+2=11,∵AP'2=(√11)2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.【总结升华】此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.2问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】:小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】:如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足______关系时,仍有EF=BE+FD.【探究应用】:如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(3-1)米,现要在E、F之间修一条笔直道路,求这条道路EF 的长(结果取整数,参考数据:(2=1.41 ,3=1.73 )【思路点拨】【发现证明】证明:如图(1),∵△A DG≌△A B E,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG ,连接AF ,过A 作AH ⊥GD ,垂足为H . ∵∠BAD=150°,∠DAE=90°, ∴∠BAE=60°. 又∵∠B=60°,∴△ABE 是等边三角形, ∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°, 又∵∠ADF=120°,∴∠GDF=180°,即点G 在 CD 的延长线上. 易得,△ADG ≌△ABE ,∴AG=AE ,∠DAG=∠BAE ,DG=BE , 又∵AH=80×23=403,HF=HD+DF=40+40(3-1)=403 故∠HAF=45°,∴∠DAF=∠HAF-∠HAD=45°-30°=15° 从而∠EAF=∠EAD-∠DAF=90°-15°=75° 又∵∠BAD=150°=2×75°=2∠EAF∴根据上述推论有:EF=BE+DF=80+40(3-1)≈109(米),即这条道路EF 的长约为109米.【总结升华】:此题是四边形综合题,主要考查了全等的性质,旋转的性质,如何通过加辅助线构建全等是解本题的关键.同时本题还体现了数学来源于生活有应用于生活。
2021—2022学年度第一学期期中学业水平检测初一数学温馨提示:1.本试卷共6页,共120分;考试时间120分钟。
2.答题前,务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡规定的位置上.3.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带. 5.写在试卷上或答题卡指定区域外的答案无效. 一、卷面书写(满分3分)二、选择题(本题共12个小题,每小题3分满分36分)每小题都给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的.1.如图,一个水晶球摆件,它是由一个长方体和一个球体组成的几何体,从正面看到的这个几何体的形状图是( )A .B .C .D .2.下列各式中,结果是100的是( ) A .()100-+B .()100--C .100-+D .100--3.用一个平面分别截下列几何体,不能得到三角形截面的几何体是( )A .B .C .D .4.2021年5月11日上午,国新办举行第七次全国人口普查主要数据结果发布会,全国人口已达14.1178亿人,这里的近似数“14.1178亿”精确到( ) A .万位B .亿位C .千万位D .万分位5.下列计算正确的是( ) A .()()()53532-+-=--=-B .()()25523--=--=-C .()()()34347---=-+=-D .()()()32321-++=--=-6.如图,在数轴上有A 、B 、C 、D 四个点,分别表示不同的四个数,若从这四点中选一点做原点,使得其余三点表示的数中有两个负数和一个正数,则这个点是( )A .点AB .点BC .点CD .点D 7.在数轴上,点A 表示的数为2-,则到点A 的距离等于4个单位长度的点所表示的数为( )A .2B .6-C .2或6-D .4-或48.下列几何体是由4个相同的小正方体搭成的,其中从左面看到的几何体的形状图与其他三个不同的是( )A .B .C .D .9.绝对值大于2且小于5的所有整数有( )A .2个B .3个C .4个D .8个10.有理数a 、b 在数轴上对应的位置如图所示,则下列结论正确的是( )A .0a b +<B .0a b +>C .0a b -<D .0b a ->11.用图1所示的平面图形可以围成图2所示的正方体,则与点A 重合的点是( )A .点BB .点CC .点DD .点E12.若120a b -++=,则a b +的相反数是( ) A .3B .1C .3-D .1-三、填空题(本大题共6个小题,每小题3分,满分18分) 13.2021-的相反数是__________.14.如果家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么冷冻室的温度是__________.15.若用我们数学课本上采用的科学计算器进行计算,按键顺序如图所示,则输出结果应为__________.16.一只小虫在数轴上的点A 处开始爬行,它先向右爬行3个单位,再向左爬行7个单位,正好停在3-的位置,则小虫的起始位置点A 所表示的数是__________.17.已知图1的小正方形和图2中所有小正方形都完全一样,将图1的小正方形放在图2中的①、②、③、④的某一个位置,放置后所组成的图形不能围成一个正方体的位置是__________.18.如图,6个边长为1的正方体组成一个几何体,从正面、左面、上面看到的这个几何体的形状图的面积之和是__________.四、解答题(本大题共7个小题,满分63分) 19.(本题满分4分)如图,第一行的图形分别是第二行中的几何体展开的形状,请你把有对应关系的平面图形与立体图形用线连一连.20.(本题满分9分)请把下列各数填入相应的集合中: 2021, 1.7-,37,6,325-,0.5-,0,9-,1-,238整数集合:{ …}; 正分数集合:{ …}; 负数集台:{ …}. 21.(本题满分9分)画出数轴,用数轴上的点表示下列各数,并用“<”号将它们连接起来:122-,3,1-,5-,0.5. 22.(本题满分9分)如图,是由几个大小相同的小正方体所搭成的几何体.分别画出从正面、左面、上面看到的这个几何体的形状图。
六年级数学下册第九章变量之间的关系难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、圆周长公式C =2πR 中,下列说法正确的是( )A .π、R 是变量,2为常量B .C 、R 为变量,2、π为常量 C .R 为变量,2、π、C 为常量D .C 为变量,2、π、R 为常量2、下表反映的是某地区电的使用量x (千瓦时)与应交电费y (元)之间的关系,下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是x 的函数B .用电量每增加1千瓦时,电费增加0.55元C .若用电量为8千瓦时,则应交电费4.4元D .y 不是x 的函数3、在圆的面积公式2S R π=中,常量与变量分别是( )A .π是常量,,S R 是变量B .2是常量,,,S R π是变量C .2是常量,R 是变量D .2是常量,,S R 是变量4、从A 地向B 地打长途,不超过3分钟,收费2.4元,以后每超过一分钟加收一元,若通话时间t 分钟(3)t ≥,则付话费y 元与t 分钟函数关系式是( ).A . 2.43(3)y t t =+≥B .()2.433y t t =+≥C .0.6(3)y t t =-≥D .0.6(3)y t t =+≥5、在圆的周长公式C=2πr 中,下列说法正确的是( )A .C ,π,r 是变量,2是常量B .C ,π是变量,2,r 是常量 C .C ,r 是变量,2,π是常量D .以上都不对6、是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是( )A .B .C .D .7、甲以每小时30km 的速度行驶时,他所走的路程s (km )与时间t (h )之间的关系式可表示为s =30t ,则下列说法正确的是( )A .数30和s ,t 都是变量B .s 是常量,数30和t 是变量C .数30是常量,s 和t 是变量D .t 是常量,数30和s 是变量8、某地区用电量与应缴电费之间的关系如表:则下列叙述错误的是( )A .若所缴电费为2.75元,则用电量为6千瓦·时B .若用电量为8千瓦·时,则应缴电费4.4元C .用电量每增加1千瓦·时,电费增加0.55元D .所缴电费随用电量的增加而增加9、已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示:下列说法错误的是( )A .自变量是温度,因变量是传播速度B .温度越高,传播速度越快C .当温度为10℃时,声音5s 可以传播1655mD .温度每升高10℃,传播速度增加6m /s10、圆周长公式2C r π=,下列说法正确的是( ).A .C r 、、π是变量,2是常量B .C 是变量, r π、 是常量 C .r 是变量, C π、 是常量D .C r 、是变量 , 2π、是常量 第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、某山区的气象资料表明:从地面到高空11km 之间,气温随高度的升高而下降,每升高1km ,气温下降6℃.若测定某天当地地面气温是24℃,设该地区离地面hkm(0≤h≤11)处的气温为t℃,试写出t 与h 之间的关系式为_________________.2、某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶,在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如表:由表格中y与t的关系可知,当汽车行驶_____小时,油箱的余油量为0.3、某电影院第x排的座位数为y个,y与x的关系如表格所示,第10排的座位数为___.4、指出下列事件过程中的常量与变量.(1)某水果店橘子的单价为5元/千克,买a千克橘子的总价为m元,其中常量是_____,变量是_____;(2)周长C与圆的半径r之间的关系式是C=2πr,其中常量是_____,变量是_____;注意:π是一个确定的数,是常量5、李老师带领x名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y元,则y=________.6、如图,在长方形ABCD中,AB=CD=5厘米,AD=BC=4厘米.动点P从A出发,以1厘米/秒的速度沿A→B运动,到B点停止运动;同时点Q从C点出发,以2厘米/秒的速度沿C→B→A运动,到A点停止运动.设P点运动的时间为t秒(t > 0),当t=____________时,S△ADP=S△BQD.7、一名老师带领x 名学生到青青世界参观,已知成人票每张60元,学生票每张40元设门票的总费用为y 元,则y 与x 的关系式为______.8、如果用总长为60m 的篱笆围成一个长方形场地,设长方形的面积为()2m S ,一边长为()m a ,那么在60,S ,a 中,变量有________________个.三、解答题(3小题,每小题10分,共计30分)1、科学家认为二氧化碳2()CO 的释放量越来越多是全球变暖的原因之一.下表1950~1990年全世界所释放的二氧化碳量:(1)上表反映的是哪两个变量之间的关系?(2)说一说这两个变量之间的关系.2、小欣外出办事,先以12km/h•速度骑自行车前进半小时,•再乘公共汽车以40km/h 速度行驶20min,接着以6km/h 速度步行30min,休息10min 后,又以5km/h 速度步行20min,到达目的地,在这个过程中,哪个是自变量哪个是因变量,•画出表示自变量与因变量关系的图像.3、下表是佳佳往朋友家打长途电话的几次收费记载:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)你能帮佳佳预测一下,如果她打电话用时间是10分钟,则需付多少电话费?-参考答案-一、单选题【解析】【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.2、D【解析】【分析】结合表格中数据变化规律进而得出y是x的函数且用电量每增加1千瓦时,电费增加0.55元.【详解】A、x与y都是变量,且x是自变量,y是x的函数,正确,不合题意;B、用电量每增加1千瓦时,电费增加0.55元,正确,不合题意;C、若用电量为8千瓦时,则应交电费4.4元,正确,不合题意;D、y不是x的函数,错误,符合题意.故选:D.【点睛】此题主要考查了函数的概念以及常量与变量,正确获取信息是解题关键.【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【详解】解:∵在圆的面积公式2S R π=中,S 与R 是改变的,π是不变的;∴π是常量,,S R 是变量.故选A .【点睛】本题考查了常量与变量的知识,属于基础题,正确理解定义是解题关键.4、C【解析】【分析】根据从A 地向B 地打长途,不超过3分钟,收费2.4元,以后每超过一分钟加收一元列出关系式即可.【详解】解:设通话时间t 分钟(t ≥3),由题意得:y =2.4+(t -3)=t -0.6(t ≥3),故选C .【点睛】本题主要考查了根据实际问题列出关系式,解题的关键在于能够准确找到相应的关系.5、C【解析】常量就是在变化过程中不变的量,变量是指在变化过程中变化的量.【详解】解:C,r是变量,2、π是常量.故选:C.【点睛】本题主要考查了常量,变量的定义,是需要识记的内容.6、C【解析】【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降.【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加故答案选:C【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.7、C【解析】【分析】根据变量的定义即可求解【详解】解:在s=30t中,数30是常量,s和t是变量,【点睛】本题考查变量与常量的定义,熟练掌握定义即可求解.8、A【解析】【分析】电量从1千瓦·时到2千瓦·时,电费增加了1.1-0.55=0.55元,从2千瓦·时到3千瓦·时,电费增加了1.65-1.1=0.55元,从3千瓦·时到4千瓦·时,电费增加了2.20-1.65=0.55元,故用电量每增加1千瓦·时,电费增加0.55元,据此可回答问题.【详解】A. 若所缴电费为2.75元时,电费为2.75÷0.55=5千瓦·时,故本选项错误;B. 若用电量为8千瓦·时,电费为8×0.55=4.4元,故本选项正确;C. 用电量每增加1千瓦·时,电费增加0.55元,故本选项正确;D. 随着用电量增加,电费在逐渐增长,故本选项正确.所以选A.【点睛】本题考查用表格表示变量之间的关系,解决本类题的关键是要观察表格,因变量是如何随着自变量改变的.9、C【解析】【分析】根据自变量和因变量的概念判断A,根据表格中声音的传播速度与温度的变化情况判断B,根据路程=速度×时间计算C,根据速度的变化情况判断D.【详解】解:A 选项,自变量是温度,因变量是传播速度,故该选项正确,不符合题意;B 选项,温度越高,传播速度越快,故该选项正确,不符合题意;C 选项,当温度为10℃时,声音的传播速度为337m /s ,所以5秒可以传播337×5=1685m ,故该选项错误,符合题意;D 选项,温度每升高10℃,传播速度增加6m /s ,故该选项正确,不符合题意;故选C .【点睛】此题主要考查了常量与变量和通过表格获取信息,关键是掌握在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.10、D【解析】【分析】根据事物发生变化的过程中发生变化的量是变量,事物变化的过程中不变的量是常量,可得答案【详解】由2C r π=,得C 、r 是变量,2π是常量,故D 正确故选:D【点睛】此题考查常量与变量,难度不大二、填空题1、t =24-6h(0≤h≤11)【解析】【详解】【分析】根据气温=地面气温-下降的气温,列出函数解析式:t=24-6h(0≤h≤11).【详解】依题意得,每升高1km,气温下降6℃.所以,升高hkm,气温下降6m℃.所以,t与h之间的关系式为t=24-6h(0≤h≤11).故答案为t=24-6h(0≤h≤11)【点睛】本题考核知识点:根据实际问题列一次函数关系式. 解题关键点:分析出实际问题中,相关的数量关系.2、15【解析】【分析】由表格可知油箱中有油120升,每行驶1小时,耗油8升,则可求解.【详解】解:由表格可知,每行驶1小时,耗油8升,∵t=0时,y=120,∴油箱中有油120升,∴120÷8=15小时,∴当行驶15小时时,油箱的余油量为0,故答案为:15.【点睛】本题考查了变量与常量,注意贮满120L油的汽车,最多行驶的时间就是油箱中剩余油量为0的时的t的值.3、41【解析】【分析】根据表格可以发现,当x每增加1时,y增加2,由此求解即可得到答案.【详解】解:第1排,有23个座位第2排,有25个座位第3排,有27个座位第4排,有29个座位由此可以发现,当x每增加1时,y增加2∴y=2(x-1)+23把x=10代入上式中得y=2×(10-1)+23=41故答案为:41.【点睛】本题主要考查了用表格表示两个量的关系,解题的关键在于能够根据表格发现两个量的关系规律,由此求解.4、 5 a,m; 2,π C,r【解析】略5、10x+20【解析】【详解】根据总费用=成人票用钱数+学生票用钱数,可得y=10x+20.故答案为10x+20.6、107s或4s【解析】【分析】分两种情况:(1)当点Q在CB上时,如图1所示,(2)当点Q运动至BA上时,如图2所示,分别根据三角形的面积公式即可列出关于t的方程,解方程即可.【详解】解:分两种情况:(1)当点Q在CB上时,如图1所示:S△ADP=12AD×AP=2t,S△BQD=12BQ×DC=52(4﹣2t),则2t=52(4﹣2t),解得:t=107;(2)当点Q运动至BA上时,如图2所示:S △ADP =12AD ×AP =2t ,S △BQD =12BQ ×DA =2(2t ﹣4),则2t =2(2t ﹣4),解得:t =4;综上可得:当t =107s 或4s 时,S △ADP =S △BQD . 故答案为:107s 或4s . 【点睛】 本题主要考查了三角形的面积、变量之间的关系和简单的一元一次方程的解法,正确分类、善于动中取静、灵活应用运动变化的观点是解题的关键.7、6040y x =+【解析】【分析】根据学生人数乘以学生票价,可得学生的总票价,根据师生的总票价,可得函数关系式.【详解】依等量关系式“总费用=老师费用+学生费用”可得:6040y x =+.故答案是:6040y x =+.【点睛】本题考查了函数关系式.解题的关键是明确学生的票价加老师的票价等于总票价.8、2【解析】【分析】根据变量与常量的定义:变量是在某一变化过程中,发生变化的量,常量是某一变化过程中,不发生变化的量,进行求解即可【详解】解:∵篱笆的总长为60米,∴S =(30-a )a =30a -a 2,∴面积S 随一边长a 变化而变化,∴S 与a 是变量,60是常量故答案为:2.【点睛】本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.三、解答题1、(1)2CO 释放量与年份;(2)2CO 释放量的随着年份的增加而增大【解析】【分析】(1)分别根据变量、因变量的定义分别得出即可;(2)根据图表分析得出答案.【详解】解:(1)上标反映的是2CO 释放量与年份之间的关系;(2)2CO 释放量的随着年份的增加而增大.【点睛】本题考查了常量与变量的定义以及利用图表得出正确方案等知识,利用图表获取正确数据是解题关键.2、时间是自变量,速度是因变量.【解析】【详解】试题分析:仔细分析题意,结合自变量和因变量的概念即可得到结果. 时间是自变量,速度是因变量.考点:本题考查的是实际问题中的函数关系点评:解答本题的关键是读懂题意,正确理解自变量和因变量的概念.3、 (1)反映了时间与电话费之间的关系.时间,电话费;(2)6元.【解析】【分析】(1)根据函数的定义可知,通话时间是自变量,电话费是因变量;(2)观察图表中的数据,1分钟0.6,两分钟1.2,相差0.6,可知成等差数列,从而求解.【详解】(1)通话时间与电话费;其中通话时间是自变量,电话费是因变量;(2)设时间为x,电话费为y,则有y=0.6x,∴当x=10时,y=6元.。
六年级数学下册第九章变量之间的关系章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x (单位:千瓦时)时,收取电费为y (单位:元).在这个问题中,下列说法中正确的是( )A .x 是自变量,0.6元/千瓦时是因变量B .y 是自变量,x 是因变量C .0.6元/千瓦时是自变量,y 是因变量D .x 是自变量,y 是因变量,0.6元/千瓦时是常量.2、在圆的面积计算公式2S r π=,其中r 为圆的半径,则变量是( )A .SB .rC .π,rD .S ,r3、一列火车从A 站行驶3公里到B 处以后,以每小时90公里的速度前进.则离开B 处t 小时后,火车离A 站的路程s 与时间t 的关系是( )A .s =3+90tB .s =90tC .s =3tD .s =90+3t4、是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是( )A.B.C.D.5、某地区用电量与应缴电费之间的关系如表:则下列叙述错误的是()A.若所缴电费为2.75元,则用电量为6千瓦·时B.若用电量为8千瓦·时,则应缴电费4.4元C.用电量每增加1千瓦·时,电费增加0.55元D.所缴电费随用电量的增加而增加6、在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.速度v是变量B.时间t是变量C.速度v和时间t都是变量D.速度v、时间t、路程s都是常量7、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉. 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……. 用s1 、s2分别表示乌龟和兔子所行的路程, t 为时间,则下列图像中与故事情节相吻合的是()A.B.C.D.8、圆的周长公式C=2πR中,下列说法正确的是()A.π、R是自变量,2是常量B.C是因变量,R是自变量,2π为常量C.R为自变量,2π、C为常量D.C是自变量,R为因变量,2π为常量9、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:下列说法一定错误的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5 cmD.所挂物体质量为7kg时,弹簧长度为13.5cm10、弹簧挂上物体后会伸长(在允许挂物重量范围内),测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是( )A.弹簧不挂重物时的长度为10cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14cm第Ⅱ卷(非选择题 70分)二、填空题(8小题,每小题5分,共计40分)1、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;2、李老师带领x名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y元,则y=________.3、将长为23cm、宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm,设x 张白纸粘合后的总长度为ycm,y与x的函数关系式为___________.4、如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8点从同一地点出发,请你根据图中给出的信息,算出乌龟在___点追上兔子.5、一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm.如果挂上的物体的总质量为x千克时,弹簧的长度为为ycm,那么y与x的关系可表示为y=______.6、图书馆现有1500本图书供学生借阅,如果每个学生一次借3本,则剩下的数y(本)和借书学生人数x(人)之间的函数关系式是_____________.7、在烧开水时,水温达到100℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间t(分)和温度T(℃)的数据:t<),温度T与时间t的关系式为__________.在水烧开之前(即108、汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t (小时)的关系是_____,其中的常量是_____,变量是_____.三、解答题(3小题,每小题10分,共计30分)1、在等腰梯形ABCD中,AD∥BC,AB=CD,梯形的周长为28,底角为30°,高AH=x,上下底的和为y,写出y与x之间的函数关系式.2、将长为40cm、宽为15cm的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5cm.(1)根据图,将表格补充完整:y,则y与x之间的关系式是什么?(2)设x张白纸黏合后的总长度为cm(3)你认为白纸黏合起来总长度可能为2020cm吗?为什么?3、姐姐帮小明荡秋千(如图①),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图②所示,结合图象:(1)变量h,t中,自变量是,因变量是,h最大值和最小值相差 m.(2)当t=5.4s时,h的值是 m,除此之外,还有次与之高度相同;(3)秋千摆动第一个来回 s.-参考答案-一、单选题1、D【解析】【分析】根据自变量、因变量和常量的定义逐项判断即得答案.【详解】解:A、x是自变量,0.6元/千瓦时是常量,故本选项说法错误,不符合题意;B、y是因变量,x是自变量,故本选项说法错误,不符合题意;C、0.6元/千瓦时是常量,y是因变量,故本选项说法错误,不符合题意;D、x是自变量,y是因变量,0.6元/千瓦时是常量,故本选项说法正确,符合题意.故选:D.【点睛】本题考查了自变量、因变量和常量的定义,属于基础知识题型,熟知概念是关键.2、D【解析】【分析】在圆的面积计算公式2S r π=中,π是圆周率,是常数,变量为S ,R .【详解】在圆的面积计算公式2S r π=中,π是圆周率,是常数,变量为S ,R .故选D.【点睛】本题主要考查常量与变量,解题关键是熟练掌握圆的面积S 随半径的变化而变化.3、A【解析】【分析】根据路程、速度、时间之间的关系可得关系式.【详解】解:火车离A 站的距离等于先行的3公里,加上后来t 小时行驶的距离可得:s =3+90t ,故选:A .【点睛】本题考查了函数关系式,解题的关键是理解路程、速度、时间之间的关系.4、C【解析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降.【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加故答案选:C【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.5、A【解析】【分析】电量从1千瓦·时到2千瓦·时,电费增加了1.1-0.55=0.55元,从2千瓦·时到3千瓦·时,电费增加了1.65-1.1=0.55元,从3千瓦·时到4千瓦·时,电费增加了2.20-1.65=0.55元,故用电量每增加1千瓦·时,电费增加0.55元,据此可回答问题.【详解】A. 若所缴电费为2.75元时,电费为2.75÷0.55=5千瓦·时,故本选项错误;B. 若用电量为8千瓦·时,电费为8×0.55=4.4元,故本选项正确;C. 用电量每增加1千瓦·时,电费增加0.55元,故本选项正确;D. 随着用电量增加,电费在逐渐增长,故本选项正确.所以选A.【点睛】本题考查用表格表示变量之间的关系,解决本类题的关键是要观察表格,因变量是如何随着自变量改变的.6、C【分析】根据变量和常量的定义即可判断.【详解】解: 在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则速度v和时间t都是变量,路程s是常量故选:C.【点睛】本题考查变量和常量的定义,熟练掌握基本概念是解决问题的关键.7、A【解析】【分析】根据题意,兔子的路程随时间的变化分为3个阶段,由此即可求出答案.【详解】解:根据题意:s1一直增加;s2有三个阶段,第一阶段:s2增加;第二阶段,由于睡了一觉,所以s2不变;第三阶段,当它醒来时,发现乌龟快到终点了,于是急忙追赶,s2增加;∵乌龟先到达终点,即s1在s2的上方.故选:A.【点睛】本题考查变量之间的关系.能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.8、B【解析】【详解】试题分析:常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.解:圆的周长公式C=2πR中,C是因变量,R是自变量,2π为常量,故选B.点评:本题主要考查了常量,变量的定义,是需要识记的内容.9、B【解析】【分析】根据变量与常量,函数的表示方法,结合表格中数据的变化规律逐项进行判断即可.【详解】解:A.x与y都是变量,且x是自变量,y是因变量,是正确的,因此选项A不符合题意;B.弹簧不挂重物时的长度,即当x=0时y的值,此时y=10cm,因此选项B是错误的,符合题意;C.物体质量x每增加1kg,弹簧长度y增加0.5cm,是正确的,因此选项C不符合题意;D.根据物体质量x每增加1kg,弹簧长度y增加0.5cm,可得出所挂物体质量为7kg时,弹簧长度为13.5cm,是正确的,因此选项D不符合题意;故选:B.【点睛】本题考查常量与变量,函数的表示方法,理解和发现表格中数据的变化规律是解决问题的关键.10、D【解析】【分析】根据0x =时,y 的值可判断选项A ,根据函数的定义可判断选项B ,根据x 与y 之间对应关系的变化可判断选项C 、D .【详解】0x =时,10y =∴弹簧不挂重物时的长度为10cm ,则选项A 正确y 是随x 的变化而变化的∴x 与y 都是变量,且x 是自变量,y 是因变量,则选项B 正确当物体质量每增加1kg ,弹簧长度y 增加的长度为1110.50.5()21cm -=-,则选项C 正确 设当所挂物体质量为7kg 时,弹簧长度为acm 则100.570a -=- 解得13.5()a cm =,则选项D 不正确故选:D .【点睛】本题考查了函数的概念,掌握理解函数的相关概念是解题关键.二、填空题1、V =100h【解析】【分析】根据体积公式:体积=底面积×高进行填空即可.【详解】解:V 与h 的关系为V =100h ;故答案为:V =100h .【点睛】本题主要考查了列函数关系式,题目比较简单.2、10x+20【解析】【详解】根据总费用=成人票用钱数+学生票用钱数,可得y=10x+20.故答案为10x+20.3、y=21x+2【解析】【分析】等量关系为:纸条总长度=23×纸条的张数-(纸条张数-1)×2,把相关数值代入即可求解.【详解】每张纸条的长度是23cm,x张应是23xcm,由图中可以看出4张纸条之间有3个粘合部分,那么x张纸条之间有(x-1)个粘合,应从总长度中减去.∴y与x的函数关系式为:y=23x-(x-1)×2=21x+2.故答案为:y=21x+2.【点睛】此题考查函数关系式,找到纸条总长度和纸条张数的等量关系是解题的关键.4、18【解析】【详解】两个函数图形的交点的横坐标是10,说明10小时后,乌龟追上兔子,此时的时间为:8+10=18时.故答案为18.5、10+1.5x【解析】【分析】根据所挂物体与弹簧长度之间的关系得出函数解析式即可,根据函数的定义判断自变量及因变量.弹簧的总长度y(cm)可以表示为y=10+1.5x【详解】y=10+1.5x,所挂物体总质量x,弹簧的总长度y【点睛】此题考查二元一次函数的应用,难度不大6、y=1500-3x【解析】【分析】由题知借走了3x本,则剩下1500-3x本,写出函数关系式即可.【详解】由题知借走了3x本,则剩下1500-3x本,则剩下的数y(本)和借书学生人数x(人)之间的函数关系式是y=1500-3x.【点睛】此题主要考查了函数关系式,正确理解题意是解题关键.7、T=7t+30【解析】【分析】由表知开始时温度为30℃,再每增加2分钟,温度增加14℃,即每增加1分钟,温度增加7℃,可得温度T 与时间t 的关系式.【详解】解:∵开始时温度为30℃,每增加1分钟,温度增加7℃,∴温度T 与时间t 的关系式为:T=30+7t .故答案为T=7t+30.【点睛】本题考查了求函数的关系式,关键是得出开始时温度为30℃,每增加1分钟,温度增加7℃.8、 Q =40-5t 40,5 Q ,t【解析】略三、解答题1、428y x =-+【解析】【分析】首先解直角三角形求得腰长,然后根据等腰梯形的周长即可求得y 与x 之间的函数关系式.【详解】解:如图∵底角为30°,高AH=x ,∴在RT △ABH 中,AB=2x ,∵梯形为等腰梯形,梯形的周长为28,上下底的和为y ,∴12(28-y )=2x ,∴y=-4x+28.【点睛】此题考查了等腰梯形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.2、(1)75 ,180 ;(2)355y x =+;(3)不可能,理由见解析【解析】【分析】(1)理解题意分别求得白纸张数为2和5时的长度即可;(2)根据题意,找到等量关系,列出式子即可;(3)将2020y =代入,求解x ,判断是否为正整数,即可求解.【详解】解:(1)由题意可得,白纸张数为2时,长度为4040575cm +-=当白纸张数为5时,长度为40545180cm ⨯-⨯=故答案为:75,180;(2)当白纸张数为x 张时,长度()4051355y x x x =--=+故答案为355y x =+ ()3不可能.理由:将2020y =代入355y x =+,得2020355x =+,解得57.6x ≈.因为x 为整数,所以总长度不可能为2020cm .【点睛】本题主要考查了函数关系式的知识,解答本题的关键在于熟读题意发现题目中纸张长度的变化规律,并求出正确的函数关系式.3、(1)t,h,1;(2)1,7;(3)2.8.【解析】【分析】(1)由图象的横轴和纵轴表示的量以及图象的最高的和最低点解答即可;(2)根据图象中t=5.4对应的高度以及这个高度与图象的交点个数即可解答;(3)根据图象中秋千摆动第一个来回的时间解答即可.【详解】解:(1)由图象可知,变量h,t中,自变量是t,因变量是h,h最大值和最小值相差1.5﹣0.5=1m,故答案为:t,h,1;(2)由图象知,当t=5.4s时,h=1m,除此之外,还有7次与之高度相同,故答案为:1,7;(3)由于秋千从最高点开始摆动一个来回要经过两次最低点,根据图象可知,秋千摆动第一个来回需要2.8s,故答案为:2.8.【点睛】本题考查用图象表示变量间关系,理解题意,能从图象中获取有效信息是解答的关键.。