葡聚糖凝胶层析_蛋白质脱盐实验的技术改进
- 格式:pdf
- 大小:239.87 KB
- 文档页数:4
凝胶层析法脱盐和分离蛋白质(附凝胶过滤法原理及基本操作)-1(一)原理凡盐析所获得的粗制蛋白质(盐析得到的IgG)中均含有硫酸铵等盐类,这类将影响以后的纯化,所以纯化前均应除去,此过程称为“脱盐”(desalthing)。
脱盐常用透析法和凝胶过滤法,这两种方法各有利弊。
前者的优点是透析后析品终体积较小,但所需时间较长,且盐不易除尽;凝胶过滤法则能将盐除尽,所需时间也短,但其凝胶过滤后样品体积较大。
所以,要根据具体情况选择使用。
前实验中样品体积较小,凝胶达滤后样品体积不会太增加,所以选用凝胶过滤法。
(二)试剂与器材(1)Sephadex G-25。
(2)0.0175mol/L,pH6.7磷酸盐缓冲液。
(3)奈氏(Nessler)试剂:于500ml锥形瓶内加入碘化钾150g,碘110g,汞150g及蒸馏水100ml。
用力振荡7~15min,至碘的棕色开始转变时,混合液温度升高,将此瓶浸于冷水内继续振荡,直到棕色的碘转变为带绿色的碘化钾汞液为止。
将上清液倾入2000ml量筒内,加蒸馏水至2000ml,混匀备用。
(4)20%(W/V)磺基水杨酸溶液。
(5)1.5cm×20cm层析柱。
(6)黑、白比色磁盘。
(三)操作(1)取层析柱1支(1.5cm×20cm),垂直固定在支架上,关闭下端出口。
将已经溶胀好的Sephadex G-25中的水倾倒出去,加入2倍体积的0. 0175mol/L,pH6.7磷酸盐缓冲液,并搅拌成悬浮液,然后灌注入柱,打开柱的下端出口,继续加入搅匀的Sephadex G-25,使凝胶自然沉降高度到17cm左右,关闭出口。
待凝胶柱形成后,在洗脱瓶中加入0.0175mol/L,pH6.7磷酸盐缓冲液以3倍柱体积的磷酸盐缓冲流过凝胶柱,以平衡凝胶。
(2)凝胶平衡后,用皮头滴管除去凝胶柱面的溶液,将盐析所得全部IgG样品加到凝胶柱表面,打开柱下口,控制流速让IgG样品溶液慢慢浸入凝胶内。
实验三Sephadex G-25凝胶层析法脱盐和离子交换柱层析分离菠萝蛋白酶一、Sephadex G-25凝胶层析法脱盐(一)目的和要求掌握凝胶层析法的原理及操作技术。
(二)原理凡盐析所获得的粗制蛋白质(盐析得到的IgG)中均含有硫酸铵等盐类,这类将影响以后的纯化,所以纯化前均应除去,此过程称为“脱盐”(desalthing)。
脱盐常用透析法和凝胶过滤法,这两种方法各有利弊。
前者的优点是透析后析品终体积较小,但所需时间较长,且盐不易除尽;凝胶过滤法则能将盐除尽,所需时间也短,但其凝胶过滤后样品体积较大。
凝胶过滤(gel filtration),又称为凝胶层析(gel chromatography)、分子筛过滤(molecular sieve filtration)、凝胶渗透层析(gel osmotic chromatography)等。
它是20世纪60年代发展起来的一种层析技术。
其基本原理是利用被分离物质分子大小不同及固定相(凝胶)具有分子筛的特点,将被分离物质各成分按分子大小分开,达到分离的方法。
凝胶是由胶体粒子构成的立体网状结构。
网眼里吸满水后凝胶膨胀呈柔软而富于弹性的半固体状态。
人工合成的凝胶网眼较均匀地分布在凝胶颗粒上有如筛眼,小于筛眼的物质分子均可通过,大于筛眼的物质分子则不能,故称为“分子筛”。
凝胶之所以能将不同分子的物质分开是因为当被分离物质的各成分通过凝胶时,小于筛眼的分子将完全渗入凝胶网眼,并随着流动相的移动沿凝胶网眼孔道移动,从一个颗粒的网眼流出,又进入另一颗粒的网眼,如此连续下去,直到流过整个凝胶柱为止,因而流程长、阻力大、流速慢;大于筛眼的分子则完全被筛眼排阻而不能进入凝胶网眼,只能随流动相沿凝胶颗粒的间隙流动,其流程短、阻力小、流速快,比小分子先流出层析柱;小分子最后流出。
分子大小介于完全排阻不能进入或完全渗入凝胶筛眼之间的物质分子,则居中流出。
这样被分离物质即被按分子的大小分开。
一、实验目的1. 掌握凝胶层析法的原理和操作步骤。
2. 学习利用凝胶层析法对蛋白质进行脱盐处理。
二、实验原理凝胶层析法是一种利用凝胶对分子进行分离的技术。
凝胶是一种具有多孔结构的物质,分子在凝胶中的移动速度取决于其分子大小和凝胶孔径。
通过选择合适的凝胶和层析条件,可以将不同分子大小的物质分离。
在凝胶层析脱盐实验中,蛋白质分子与盐分子在凝胶层析柱中的移动速度不同,从而使蛋白质与盐分离。
蛋白质分子较大,无法进入凝胶的微孔,移动速度较快;而盐分子较小,可以进入凝胶的微孔,移动速度较慢。
三、实验材料与试剂1. 材料:蛋白质样品、盐溶液、葡聚糖凝胶G-252. 试剂:蒸馏水、缓冲液、洗脱液、洗脱液储备液、盐检测试剂、蛋白质检测试剂四、实验步骤1. 装柱:称取葡聚糖凝胶G-25 5g,加入80ml洗脱液(蒸馏水或适宜的缓冲液),在沸水浴中溶胀30min,用倾泻法去除悬浮的小颗粒。
然后装进内径1.2cm,高30cm的玻璃柱内,注意装填均匀,无气泡和裂纹存在,并保持液面在凝胶表面以上。
2. 加样:打开柱的出口,让柱内的液体慢慢流出,直至液面与凝胶床表面相平,然后加入2ml含盐蛋白质溶液,至样品液面刚好到达凝胶床表面时,加入30ml洗脱液(与溶胀和装柱时所用液体完全相同),以0.5ml/min的流速洗脱,每5ml收集一管。
3. 收集样品:将收集的样品液进行盐和蛋白质检测。
4. 盐检测:根据具体盐的种类选择合适的检测方法,如火焰原子吸收光谱法、离子色谱法等。
5. 蛋白质检测:将分步收集的样品液于280nm处的紫外光吸收法检测,也可用福林酚测定。
五、实验结果与分析1. 盐检测:通过盐检测方法,可以确定脱盐效果。
实验结果显示,脱盐效果良好,盐浓度明显降低。
2. 蛋白质检测:通过紫外光吸收法或福林酚法,可以确定蛋白质的纯度和浓度。
实验结果显示,蛋白质的纯度较高,浓度符合预期。
六、实验讨论1. 凝胶层析法是一种简单、有效的蛋白质脱盐方法。
葡聚糖凝胶层析法分离蛋白质实验简介:凝胶层析法是用一般的柱层析法使分子量不同的溶质通过具有分子筛效应的介质(如葡聚糖凝胶),从而达到分离提纯的目的。
凝胶层析设备简单,操作简便,条件温和,已成为分离分析蛋白质等生物大分子不可缺少的实验手段。
一、实验目的1、掌握葡聚糖凝胶柱层析法的工作原理及基本操作技术。
2、掌握蛋白质分离纯化的一般操作技术。
二、实验原理凝胶层析是按溶质分子大小不同而进行分离的一种层析技术,当溶质分子大小不同的样品溶液通过凝胶柱时,由于凝胶颗粒内部的网络结构具有分子筛作用,分子大小不同的溶质就会受到不同的阻滞作用。
本实验采用葡聚糖凝胶G-50作为固相载体,它适用于相对分子质量范围在1500~30000之间的多肽与蛋白质的分离。
当蓝色葡聚糖-2000(相对分子质量在200万以上,蓝色),细胞色素C(相对分子质量12800,红色)和重铬酸钾(相对分子质量294,黄色)的混合物流经层析柱时,三种物质的分级分离明显可见。
蓝色葡聚糖因完全被排阻在凝胶颗粒之外而首先流出,细胞色素C渗入凝胶颗粒内部而其次流出,重铬酸钾则完全渗入凝胶内部最后流出。
通过作洗脱曲线便可清楚地表示出葡聚糖凝胶G-50对这三种物质的分离效果。
样品中的各组分的流出顺序,可用有效分配系数K av表示:K av =(V e-V o)/(V t -V o)上式中,K av指的是分子量不同的溶质在凝胶内部和外部的分配系数,只与被分离物质分子的大小和凝胶颗粒孔径的大小分布有关,而与柱的长短粗细无关。
外水体积V o(outer volume)指基质颗粒之间体积的总和;内水体积V i(inner volume)指基质颗粒内部体积的总和;基质体积(V g)指基质自身所具有的体积。
V。
、V i和V g都是随着床体积和基质性质变化而变化的;洗脱体积V e(elution volume)指从加样到柱出现最大浓度(峰)时所流过的洗脱液的体积(如图1)。