第23章《二次函数与反比例函数》中考题集(10)
- 格式:doc
- 大小:135.50 KB
- 文档页数:5
第23章《二次函数与反比例函数》中考题集(03):23.3.二次函数Y=AX2+BX+C的图象和性质第23章《二次函数与反比例函数》中考题集(03):23.3. 二次函数y=ax2+bx+c的图象和性质选择题31.(2006•黄石)已知二次函数y=ax2+bx有最大值,且图象顶点在y轴的右侧,则函数y=ax+b与y=ax2+bx的图.CD.32.(2006•鄂州)已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()33.(2005•南通)已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()34.(2005•连云港)抛物线y=a(x+1)2+2的一部分如图所示,该抛物线在y轴右侧部分与x轴交点的坐标是()35.(2005•杭州)用列表法画二次函数y=x2+bx+c的图象时先列一个表,当表中对自变量x的值以相等间隔的值增加时,函数y所对应的值依次为:20,56,110,182,274,380,506,650,其中有一个值不正确,这个不正确的222240.(2010•河北)如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()41.(2010•杭州)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x>时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.42.(2009•湛江)下列说法中:①4的算术平方根是±2;②与﹣是同类二次根式;③点P(2,﹣3)关于原点对称的点的坐标是(﹣2,﹣3);22245.(2009•南昌)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()247.(2009•丽水)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a>0;②该函数的图象关于直线x=1对称;③当x=﹣1或x=3时,函数y的值都等于0.其中正确结论的个数是()222252.(2008•大兴安岭)对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()254.(2007•资阳)已知二次函数y=ax2+bx+c(a≠0)的图象开口向上,并经过点(﹣1,2),(1,0).下列结论正确2257.(2007•日照)已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值y<0,那么下列结论中59.(2007•绵阳)已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:①过定60.(2007•荆州)抛物线y=﹣(x﹣3)2﹣5的对称轴是直线()第23章《二次函数与反比例函数》中考题集(03):23.3. 二次函数y=ax2+bx+c的图象和性质参考答案与试题解析选择题31.(2006•黄石)已知二次函数y=ax2+bx有最大值,且图象顶点在y轴的右侧,则函数y=ax+b与y=ax2+bx的图.C D.>32.(2006•鄂州)已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()33.(2005•南通)已知抛物线y=x+bx+c的部分图象如图所示,若y<0,则x的取值范围是()34.(2005•连云港)抛物线y=a(x+1)2+2的一部分如图所示,该抛物线在y轴右侧部分与x轴交点的坐标是()35.(2005•杭州)用列表法画二次函数y=x2+bx+c的图象时先列一个表,当表中对自变量x的值以相等间隔的值增加时,函数y所对应的值依次为:20,56,110,182,274,380,506,650,其中有一个值不正确,这个不正确的()2,故函数图象开口向下,对称轴222)的顶点坐标为(﹣,,∴﹣==840.(2010•河北)如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()41.(2010•杭州)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x>时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.﹣,=,,)(﹣,)+>,正确;x=>,的顶点坐标为(,.42.(2009•湛江)下列说法中:①4的算术平方根是±2;②与﹣是同类二次根式;③点P(2,﹣3)关于原点对称的点的坐标是(﹣2,﹣3);④抛物线y=﹣(x﹣3)2+1的顶点坐标是(3,1);②2245.(2009•南昌)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()247.(2009•丽水)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a>0;②该函数的图象关于直线x=1对称;③当x=﹣1或x=3时,函数y的值都等于0.其中正确结论的个数是()222252.(2008•大兴安岭)对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()﹣254.(2007•资阳)已知二次函数y=ax2+bx+c(a≠0)的图象开口向上,并经过点(﹣1,2),(1,0).下列结论正确>2=2=257.(2007•日照)已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值y<0,那么下列结论中=的对称轴是直线59.(2007•绵阳)已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:①过定,对称轴为﹣=﹣60.(2007•荆州)抛物线y=﹣(x﹣3)2﹣5的对称轴是直线()﹣参与本试卷答题和审题的老师有:zhangCF;蓝月梦;Liuzhx;zhjh;lf2-9;张长洪;zcx;137-hui;王岑;733599;haoyujun;开心(排名不分先后)菁优网2014年10月24日。
中考专题训练——二次函数与角度问题1.已知二次函数232y ax bx =+-(0a ≠)的图象经过A (1,0)、B (−3,0)两点,顶点为点C .(1)求二次函数的解析式; (2)如二次函数232y ax bx =+-的图象与y 轴交于点G ,抛物线上是否存在点Q ,使得∠QAB=∠ABG ,若存在求出Q 点坐标,若不存在请说明理由;(3)经过点B 并且与直线AC 平行的直线BD 与二次函数232y ax bx =+-图象的另一交点为D ,DE ∠AC ,垂足为E ,DF y 轴交直线AC 于点F ,点M 是线段BC 之间一动点,FN ∠FM 交直线BD 于点N ,延长MF 与线段DE 的延长线交于点H ,点P 为△NFH 的外心,求点M 从点B 运动到点C 的过程中,P 点经过的路线长. 2.在平面直角坐标系中,抛物线l :()2220y x mx m m =--->与x 轴分别相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,设抛物线l 的对称轴与x 轴相交于点N ,且3OC ON = (1)求m 的值;(2)设点G 是抛物线在第三象限内的动点,若GBC ACO ∠=∠,求点G 的坐标;(3)将抛物线222y x mx m =---向上平移3个单位,得到抛物线l ',设点P 、Q 是抛物线l '上在第一象限内不同的两点,射线PO 、QO 分别交直线=2y -于点P '、Q ',设P '、Q '的横坐标分别为P x '、Q x ',且4P Q x x ''⋅=,求证:直线PQ 经过定点.3.已知二次函数y =x 2十(k ﹣2)x ﹣2k .(1)当此二次函数的图像与x 轴只有一个交点时,求该二次函数的解析式;(2)当k >0时,直线y =kx +2交抛物线于A ,B 两点(点A 在点B 的左侧),点P 在线段AB 上,过点P 做PM 垂直x 轴于点M ,交抛物线于点N . ∠求PN 的最大值(用含k 的代数式表示);∠若抛物线与x 轴交于E ,F 两点,点E 在点F 的左侧.在直线y =kx +2上是否存在唯一一点Q ,使得∠EQO =90°?若存在,请求出此时k 的值;若不存在,请说明理由.4.如图,直线l :33y x =-+与x 轴、y 轴分别相交于A 、B 两点,抛物线223(0)y ax ax a a =--<经过点B .(1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值;(3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M ',将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l '与直线AM '重合时停止旋转,在旋转过程中,直线'l 与线段BM '交于点C ,设点B 、M '到直线l '的距离分别为1d 、2d ,当12d d +最大时,求直线l '旋转的角度(即BAC ∠的度数). 5.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =−12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点, ∠连接BC 、CD ,设直线BD 交线段AC 于点E ,求DEEB的最大值; ∠过点D 作DF ∠AC ,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的∠DCF =2∠BAC ,若存在,求出点D 的坐标;若不存在,请说明理由.6.已知抛物线265y x x =++与x 轴交于点A ,B (点A 在点B 左侧),顶点为D ,且过C (-4,m ). (1)求点A ,B ,C ,D 的坐标;(2)点P 在该抛物线上(与点B ,C 不重合),设点P 的横坐标为t .∠当点P 在直线BC 的下方运动时,求∠PBC 的面积的最大值, ∠连接BD ,当∠PCB =∠CBD 时,求点P 的坐标.7.如图所示,抛物线y =−x 2+bx +3经过点B (3,0),与x 轴交于另一点A ,与y 轴交于点C .(1)求抛物线所对应的函数表达式;(2)如图,设点D 是x 轴正半轴上一个动点,过点D 作直线l ∠x 轴,交直线BC 于点E ,交抛物线于点F ,连接AC 、FC .∠若点F 在第一象限内,当∠BCF =∠BCA 时,求点F 的坐标; ∠若∠ACO +∠FCB =45°,则点F 的横坐标为______.8.已知抛物线2y ax c =+过点()2,0A -和()1,3D -两点,交x 轴于另一点B .(1)求抛物线解析式;(2)如图1,点P 是BD 上方抛物线上一点,连接AD ,BD ,PD ,当BD 平分ADP 时,求P 点坐标; (3)将抛物线图象绕原点O 顺时针旋转90°形成如图2的“心形”图案,其中点M ,N 分别是旋转前后抛物线的顶点,点E 、F 是旋转前后抛物线的交点. ∠直线EF 的解析式是______;∠点G 、H 是“心形”图案上两点且关于EF 对称,则线段GH 的最大值是______.9.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()3,4A 和点()1,0B -,连接AB ,过点A 作AD x ⊥轴于点D ,点P 在直线AB 上方的抛物线上,过点P 作PE AD ∥交x 轴于点E ,交线段AB 于点G ,连接PD 交线段AB 于点Q .(1)求抛物线的表达式;(2)当GQ AQ =时,设点P 的横坐标为m ,求m 的值;(3)在(2)的条件下,线段BE 上有一点F ,直线AD 上有一点K ,连接KF 、GF ,当2FKD FGB ∠=∠,且8KF =时,直接写出....点K 的纵坐标.... 10.如图,已知抛物线2y x bx c =++与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,OA =OC =3.(1)求抛物线的函数表达式;(2)若点P 为直线AC 下方抛物线上一点,连接BP 并交AC 于点Q ,若AC 分ABP 的面积为1:2两部分,请求出点P 的坐标;(3)在y 轴上是否存在一点N ,使得45BCO BNO ∠+∠=︒,若存在,请求出点N 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2+2x −3与x 轴交于A 、B 两点,且B (1,0).(1)求抛物线的解析式和点A 的坐标;(2)如图1,点P 是直线y =x 上在x 轴上方的动点,当直线y =x 平分∠APB 时,求点P 的坐标;(3)如图2,已知直线y =23x −49分别与x 轴、y 轴交于C 、F 两点,点Q 是直线CF 下方的抛物线上的一个动点,过点Q 作y 轴的平行线,交直线CF 于点D ,点E 在线段CD 的延长线上,连接QE .问:以QD 为腰的等腰△QDE 的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由. 12.如图,顶点坐标为(3,4)的抛物线2y ax bx c =++交x 轴于A ,B 两点,交y 轴于点()0,5C -.(1)求a ,b 的值;(2)已知点M 在射线CB 上,直线AM 与抛物线2y ax bx c =++的另一公共点是点P .∠抛物线上是否存在点P ,满足:2:1=AM MP ,如果存在,求出点P 的横坐标;如果不存在,请说明理由; ∠连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.13.如图,抛物线2y x bx c =++与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,若()1,0A -且3OC OA =.(1)求该抛物线的函数表达式;(2)如图1,点D 是该抛物线的顶点,点(),P m n 是第二象限内抛物线上的一个点,分别连接BD 、BC 、BP ,当2PBA CBD ∠=∠时,求m 的值;(3)如图2,BAC ∠的角平分线交y 轴于点M ,过M 点的直线l 与射线AB ,AC 分别交于E ,F ,已知当直线l 绕点M 旋转时,11AE AF+为定值,请直接写出该定值. 14.如图,在平面直角坐标系xOy 中,抛物线1L :2y x bx c =++与x 轴交于(4,0)A -,B 两点,且经过点(1,3)-,点C 是抛物线1L 的顶点,将抛物线1L 向右平移得到抛物线2L ,且点B 在抛物线2L 上.(1)求抛物线1L 的表达式;(2)在抛物线2L 上是否存在一点P ,使得90PAC ∠=︒,若存在,请求出点P 的坐标,若不存在,请说明理由.15.如图,抛物线22y ax bx =++与x 轴相交于A 、B 两点,与y 轴相交于点C ,已知B 点的坐标为()4,0,抛物线的对称轴为直线32x =,点D 是BC 上方抛物线上的一个动点.(1)求抛物线的函数表达式;(2)当BCD △的面积为74时,求点D 的坐标;(3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE 中的某个角等于ABC ∠的2倍?若存在,请直接写出点D 的横坐标...;若不存在,请说明理由. 16.抛物线2y ax bx c =++的顶点坐标为(1,4),与x 轴交于点,(3,0)A B 两点,与y 轴交于点C ,点M 是抛物线上的动点.(1)求这条抛物线的函数表达式;(2)如图1,若点M 在直线BC 上方抛物线上,连接AM 交BC 于点E ,求MEAE的最大值及此时点M 的坐标;(3)如图2,已知点(0,1)Q ,是否存在点M ,使得1tan 2MBQ ∠=?若存在,求出点M 的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与y 轴交于点C ,与x 轴交于A 、B 两点,直线4y x =+恰好经过B 、C 两点.(1)求二次函数的表达式;(2)点D 为第三象限抛物线上一点,连接BD ,过点O 作OE BD ⊥,垂足为E ,若2OE BE =,求点D 的坐标;(3)设F 是抛物线上的一个动点,连结AC 、AF ,若2BAF ACB ∠=∠,求点F 的坐标.18.抛物线y 1=x 2+(3-m )x +c 与直线l :y 2=kx +b 分别交于点A (-2,0)和点B (m ,n ),当-2≤x ≤4时,y 1≤y 2.(1)求c 和n 的值(用含m 的式子表示);(2)过点P (1,0)作x 轴的垂线,分别交抛物线和直线l 于M ,N 两点,则∠BMN 的面积是否存在最大值或者最小值,若存在,请求出这个值;若不存在,请说明理由;(3)直线x =m +1交抛物线于点C ,过点C 作x 轴的平行线交直线l 于点D ,交抛物线另一点于E ,连接BE ,求∠DBE 的度数.19.如图,抛物线2323y x x -=-+与x 轴交于点A 和点B ,直线:l y kx b =+与抛物线2323y x x -=-+交于点D和点12F n ⎛⎫⎪⎝⎭,,且与y 轴交与点()02E ,.(1)求直线l 的函数表达式;(2)若P 为抛物线上一点,当POE OED =∠∠时,求点P 的坐标. 20.如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A 、B 两点,且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一点,2ABD BAC ∠=∠,直接写出点D 的坐标.参考答案1.(1)21322y x x =+- (2)542⎛⎫- ⎪⎝⎭,或322⎛⎫-- ⎪⎝⎭,(3)1【分析】(1)将A (1,0)、B (-3,0)代入232y ax bx =+-,即可求解; (2)先求出BG 的解析式为13y x 22=--,然后再进行分类讨论,分别求得点Q 的坐标即可;(3)可知△DNH 与△FNH 是直角三角形,外心P 在斜边NH 的中点,分别求出直线AC 及直线BD 的函数关系式,再分为当M 运动到C 点时及当点M 运动到B 点时两种情况进行讨论,求解即可.【解析】(1)∠二次函数232y ax bx =+-的图像经过A (1,0)、B (-3,0), ∠30239302a b a b ⎧+-=⎪⎪⎨⎪--=⎪⎩,解得121a b ⎧=⎪⎨⎪=⎩, ∠二次函数的解析式为213y x x 22=+-; (2)由题可知G 点坐标30,2⎛⎫- ⎪⎝⎭,设直线BG 的解析式为y px q =+,得: 30302k b k b -+=⎧⎪⎨+=-⎪⎩,解得:1232k b ⎧=-⎪⎪⎨⎪=-⎪⎩, ∠BG 的解析式为13y x 22=--,∠AQ ∥BG ,直线AQ 的解析式11y x 22=-+,联立直线AQ 与二次函数解析式2112213x 22y x y x ⎧=-+⎪⎪⎨⎪=+-⎪⎩,解得1110x y =⎧⎨=⎩或22452x y =-⎧⎪⎨=⎪⎩此时Q 的坐标为542⎛⎫- ⎪⎝⎭,,∠直线11y x 22=-+与y 轴的交点为K 102⎛⎫⎪⎝⎭,,其关于x 轴的对称点为11K 02⎛⎫- ⎪⎝⎭, 直线1AK 的解析式为:11y x 22=- 与二次函数解析式联立得 2112213x 22y x y x ⎧=-⎪⎪⎨⎪=+-⎪⎩, 解得1110x y =⎧⎨=⎩或22232x y =-⎧⎪⎨=-⎪⎩,此时Q 的坐标为322⎛⎫-- ⎪⎝⎭,, 综上,抛物线上存在点Q 使得∠QAB =∠BAG ,Q 点坐标为542⎛⎫- ⎪⎝⎭,或322⎛⎫-- ⎪⎝⎭,(3)如图,易知△DNH 与△FNH 是直角三角形,外心P 在斜边NH 的中点,∠PD =PF =12NH ,所以点P 是线段DF 的垂直平分线上的动点, ∠直线AC 的解析式为y =x -1,BD ∥AC , ∠直线BD 的解析式为y =x +3, ∠D (3,6),∠当M 运动到C 点时1H 与点E 重合,1FN AC ⊥,则1FN BD ⊥,又因为∠DEF =90°,DE =EF , ∠四边形1DN FE 为正方形, ∠1P 是线段DF 的中点(3,4);∠当点M 运动到B 点时,22FN FH ⊥,∠四边形DN 1FE 是正方形∠122190N FN BFC N N F BCF ∠=∠∠=∠=︒,,∠21N N F BCF ∽, ∠121CF BC N F N N =, ∠四边形DN 1FE 是正方形,∠11,4N (),∠2112BC CF N N N F ==,∠12N N =∠22,5N (), 同理26,3H (), 所以22N H 的中点2P (4,4),∠134P (,), ∠121PP =【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,会用待定系数法求函数的解析式,会求函数的交点坐标,根据点M 的运动情况确定P 点的轨迹是线段是解题的关键.2.(1)1m =(2)点G 的坐标为17,24⎛⎫-- ⎪⎝⎭(3)见解析【分析】(1)由顶点式求得对称轴,由x =0处函数值求得C 点坐标,根据3OC ON =列方程求解即可;(2)连接AC 、BC ,过点C 作CT CB ⊥,设BG 交CT 于点T ,作TH y ⊥轴于点H ,由抛物线解析式求得A 、B 、C 坐标,可得∠OBC 、∠CHT 是等腰直角三角形,由BC 和tan tan GBC ACO ∠=∠可得TC ,进而可得T 点坐标,再由B 点坐标可得直线BC 解析式,然后与二次函数解析式联合求得交点坐标即可解答;(3)设点()2111,2P x x x -,()2222,2Q x x x -,由原点可得直线PO 、QO 的解析式,再由y =-2可得点Q '、P '横坐标,由4P Q x x ''⋅=可得()1212230x x x x -++=;设直线PQ 的解析式为y mx n =+,与l '联立可得()220x m x n -+-=,利用根与系数的关系可得122x x m +=+,12x x n =-,代入()1212230x x x x -++=求得21n m =--,于是直线PQ 为()21y m x =--经过定点2,1;(1)解:依题意得:()222y x m m m =----,∠抛物线的对称轴为直线x m =, ∠ON m m ==,在222y x mx m =---中,令0x =,则2y m =--,∠()0,2C m --, ∠22OC m m =--=+,∠3OC ON =,∠23m m +=,解得1m =;(2)解:如图,连接AC 、BC ,过点C 作CT CB ⊥,设BG 交CT 于点T ,作TH y ⊥轴于点H ,由(1)得1m =,∠抛物线的解析式为2=23y x x --,()0,3C -,3OC =,令0y =,则2230x x --=,解得11x =-,23x =,∠点A 在点B 的左侧,∠()1,0A -,()3,0B ,3OB =,在Rt AOC 中,1tan 3OA ACO OC ∠==, 3OB OC ==,则OBC △是等腰直角三角形,BC =∠OCB =45°,∠TCB =90°,则∠TCH =45°,∠CHT △是等腰直角三角形,∠GBC ACO ∠=∠,∠1tan tan 3GBC ACO ∠=∠=, ∠13CT BC =,1133CT BC ==⨯=∠sin451TH CH ==︒=,∠()1,2T --,由点()1,2T --与点()3,0B ,可求得1322TB y x =-, 联立得2132223y x y x x ⎧=-⎪⎨⎪=--⎩, 解得:1130x y =⎧⎨=⎩,221274x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∠点G 的坐标为17,24⎛⎫-- ⎪⎝⎭;(3)解:如图,将抛物线l 向上平移3个单位后得到抛物线l ':22y x x =-,∠点P 、Q 是抛物线l '上在第一象限内不同的两点,∠设点()2111,2P x x x -,()2222,2Q x x x -,由()2111,2P x x x -,()2222,2Q x x x -分别可求得:()12OP y x x =-,()22OQ y x x =- ∠点P '、Q '在直线=2y -上,∠点12,22P x ⎛⎫--' ⎪-⎝⎭,22,22Q x ⎛⎫--' ⎪-⎝⎭, ∠4P Q x x ''⋅= ∠1222422x x --⋅=--,即()()12221x x --=,整理得()1212230x x x x -++=, 设直线PQ 的解析式为y mx n =+,与l '联立得:22,y x x y mx n⎧=-⎨=+⎩,22x x mx n -=+, 整理得()220x m x n -+-=,由根与系数的关系可得:122x x m +=+,12x x n =-,∠()1212230x x x x -++=,∠()2230n m --++=,∠21n m =--,∠直线PQ 的解析式为21y mx m =--,()21y m x =--,∠当2x =时,1y =-,∠直线PQ 经过定点2,1;【点评】本题考查了一次函数与二次函数的综合,解直角三角形,等腰直角三角形的性质,一元二次方程根与系数的关系;此题综合性较强,正确作出辅助线并掌握函数图象交点坐标的意义是解题关键. 3.(1)244y x x =-+(2)∠32k +,∠存在实数43k =或k =2y kx =+上存在唯一一点Q ,使得90EQO ∠=︒【分析】(1)根据函数图像与x 轴只有一个交点,结合Δ0=求出k 值即可;(2)∠根据题意,求出()2(,2),,(2)2P m mk N m m k m k ++--,利用两点之间距离公式求出PQ ,得出11m ≤∠二次函数综合中的直角三角形分两种情况:当直线2y kx =+与以O 、E 为直径的圆相切时;当圆与直线相交且一个交点为A 时;分情况求解即可.(1)解:二次函数的图像与x 轴只有一个交点,∠22(2)8(2)0k k k ∆=-+=+=,解得2k =-,∠所求抛物线的解析式为244y x x =-+;(2)解:如图所示:∠∠点P 在线段AB 上,且直线AB 解析式为2y kx =+,∠设点M 的横坐标为m ,则()2(,2),,(2)2P m mk N m m k m k ++--,∠22(2)2PN mk m k m k ⎡⎤=+-+--⎣⎦2222m m k =-+++2(1)32m k =--++,把2y kx =+代入2(2)2y x k x k =+--得:2(2)22x k x k kx +--=+,∠222220,(1)2(1)x x k x k ---=-=+,∠0k >,∠2(1)0k +>,∠1x =∠x 的值可以取到1,即11m ≤≤∠m 的值可以取到1,∠当1m =时PN 的最大值为32k +;∠设直线2y kx =+与x 轴、y 轴分别交于点G 、H ,则()22,0,0,2,,2G H OG OH k k ⎛⎫-== ⎪⎝⎭.在Rt GOH 中,由勾股定理得:GH = 令2(2)20y x k x k =+--=,即()(2)0x k x +-=,解得:x k =-或2x =.∠(),0E k -,OE k =.(∠)当直线2y kx =+与以O 、E 为直径的圆相切时,如图∠所示:设直线2y kx =+与以O 、E 为直径的圆相切的切点为Q ,此时90,90GQM EQO ∠∠=︒=︒.设OE 中点为点M ,连接MQ ,如图∠所示,则,0.5MQ GH MQ ME OM k ⊥===.∠22k GM OG OM k =-=-, ∠,90∠=∠∠=∠=︒MGQ HGO MQG HOG , ∠∽MOG HOG , ∠=MQ GM OH GH ,即22222k k k -=, ∠2221618k k k +=-+ ∠2169k =,解得:43k =±, ∠0k >, ∠43k =. (∠)当圆与直线相交且一个交点为A 时,如图∠所示,设另一个交点为Q ,∠OE 是圆的直径,∠90EQO ∠=︒,此时可得:OG OE =, ∠2k k=,解得:k = ∠0k >,∠k =∠存在实数43k =或k =2y kx =+上存在唯一一点Q ,使得90EQO ∠=︒. 【点评】本题考查二次函数综合,涉及到利用判别式求二次函数解析式、二次函数综合中的线段最值问题、二次函数综合中的直角三角形问题,熟练掌握二次函数的图像与性质,并掌握解决相关二次函数综合问题题型的方法技巧是解决问题的关键.4.(1)223y x x =-++ (2)21525()228S m =--+,最大值为258(3)45°【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出a 的值;(2)设M 的坐标为(m ,-m 2+2m +3),然后根据面积关系将∠ABM 的面积进行转化;(3)由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值;可将求d 1+d 2最大值转化为求AC 的最小值.(1)解:令x =0代入y =-3x +3,∠y =3,∠B (0,3),把B (0,3)代入223y ax ax a =--,∠3=-3a ,∠a =-1,∠二次函数解析式为:y =-x 2+2x +3;(2)令y =0代入y =-x 2+2x +3,∠0=-x 2+2x +3,∠x =-1或3,∠抛物线与x 轴的交点横坐标为-1和3,∠M 在抛物线上,且在第一象限内,∠0<m <3,令y =0代入y =-3x +3,∠x =1,∠A的坐标为(1,0),由题意知:M的坐标为(m,-m2+2m+3),S=S四边形OAMB-S△AOB=S△OBM+S△OAM-S△AOB=1 2×m×3+12×1×(-m2+2m+3)-12×1×3=-12(m-52)2+258∠当m=52时,S取得最大值258.(3)由(2)可知:M′的坐标为(52,74);过点M′作直线l1∠l′,过点B作BF∠l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∠∠BFM′=90°,∠点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∠点C在线段BM′上,∠F在优弧BM H'上,∠当F与M′重合时,BF可取得最大值,此时BM′∠l1,∠A(1,0),B(0,3),M′(52,74),∠由勾股定理可求得:AB M B M A''===过点M′作M′G∠AB于点G,设BG =x ,∠由勾股定理可得:M ′B 2-BG 2=M ′A 2-AG 2,∠2285125)1616x x -=-,∠,x =cos BG M BG M B ''∠==, ∠l 1∠l ′,∠∠BCA =90°,∠BAC =45°.【点评】本题考查二次函数的综合问题,涉及待定系数求二次函数解析式,求三角形面积,圆的相关性质等知识,内容较为综合,学生需要认真分析题目,化动为静去解决问题.5.(1)213222y x x =--+ (2)∠45;∠存在,D (-2,3)【分析】(1)根据题意得到A (-4,0),C (0,2)代入y =-12x 2+bx +c ,于是得到结论; (2)∠如图1,令y =0,解方程得到x 1=-4,x 2=1,求得B (1,0),过D 作DM ∠x 轴于M ,过B 作BN ∠x 轴交于AC 于N ,根据相似三角形的性质即可得到结论;∠根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,求得P (-32,0),得到P A =PC =PB =52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,解直角三角形即可得到结论.(1)解:对于函数:y =12x +2, 令x =0,则y =2,令y =0,则x =-4,∠A (-4,0),C (0,2),∠抛物线y =-12x 2+bx +c 经过A .C 两点, ∠1016422b c c ⎧=-⨯-+⎪⎨⎪=⎩,∠b =-32,c =2, ∠y =-12x 2-32x +2; (2)解:∠如图,令y =0, ∠213x x 2022--+=, ∠14x =-,21x =,∠B (1,0),过D 作DM ∠x 轴交AC 于点M ,过B 作BN ∠x 轴交于AC 于N ,∠DM BN ∥,∠DME BNE ∽△△, ∠DE DM BE BN=, 设()213,222D a a a --+, ∠1,22M a a ⎛⎫+ ⎪⎝⎭, ∠B (1,0), ∠51,2N ⎛⎫ ⎪⎝⎭, ∠()221214225552a a DE DM a BE BN --===-++, ∠-15<0, ∠当a =-2时,DE BE 的最大值是45; ∠∠A (-4,0),B (1,0),C (0,2),∠AC =BC =AB =5,∠222AC BC AB +=,∠∠ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P , ∠3,02P ⎛⎫- ⎪⎝⎭,∠52PA PC PB ===, ∠∠CPO =2∠BAC ,∠()4tan tan 23CPO BAC ∠=∠=, 过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G ,如图,∠∠DCF =2∠BAC =∠DGC +∠CDG ,∠∠CDG =∠BAC , ∠1tan tan 2CDG BAC ∠=∠=,即12RC DR =, 令213,222D a a a ⎛⎫--+ ⎪⎝⎭, ∠DR =-a ,21322RC a a =--, ∠2131222a a a --=-,∠10a =(舍去),22a =-,∠2D x =-,3D y =.∠D (-2,3).【点评】本题考查了二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形,直角三角形的性质等知识点,正确的作出辅助线是解题的关键.6.(1)A (-5,0),B (-1,0);C (-4,-3);D (-3,-4) (2)∠278;∠(0,5)或(32-,74-)【分析】(1)把抛物线解析式化为顶点式即可求出点D 的坐标,令y =0,求出x 的值即可得到A 、B 的坐标,把x =-4代入抛物线解析式求出y 即可求出点C 的坐标;(2)∠先求出直线BC 的解析式为1y x =+,过点P 作PE ∠x 轴于E 交BC 于F ,则点P 的坐标为(t ,265t t ++),点F 的坐标为(t ,t +1),254PF t t =---,再根据=PBC PFC PFB S S S +△△△23527228t ⎛⎫=-++ ⎪⎝⎭,进行求解即可;∠分如图1所示,当点P 在直线BC 上方时,如图2所示,当点P 在直线BC 下方时,两种情况讨论求解即可.(1)解:∠抛物线解析式为()226534y x x x =++=+-,∠抛物线顶点D 的坐标为(-3,-4);令y =0,则2650x x ++=,解得=1x -或5x =-,∠抛物线265y x x =++与x 轴交于点A ,B (点A 在点B 左侧),∠点A 的坐标为(-5,0),点B 的坐标为(-1,0);令4x =-,则()()246453y =-+⨯-+=-,∠点C 的坐标为(-4,-3);(2)解:∠设直线BC 的解析式为y kx b =+, ∠043k b k b -+=⎧⎨-+=-⎩, ∠11k b =⎧⎨=⎩, ∠直线BC 的解析式为1y x =+,过点P 作PE ∠x 轴于E 交BC 于F ,∠点P 的横坐标为t ,∠点P 的坐标为(t ,265t t ++),点F 的坐标为(t ,t +1),∠2216554PF t t t t t =+---=---,∠=PBC PFC PFB S S S +△△△()()11=22P C B P PF x x PF x x ⋅-+⋅- ()12B C PF x x =⋅- ()23542t t =-++ 23527228t ⎛⎫=-++ ⎪⎝⎭, ∠当52t =-时,∠PBC 的面积最大,最大为278;∠如图1所示,当点P 在直线BC 上方时,∠∠PCB =∠CBD ,∠PC BD ∥,设直线BD 的解析式为11y k x b =+,∠1111034k b k b -+=⎧⎨-+=-⎩, ∠1122k b =⎧⎨=⎩, ∠直线BD 的解析式为22y x =+,∠可设直线PC 的解析式为22y x b =+,∠()2243b ⨯-+=-,∠25b =,∠直线PC 的解析式为25y x =+,联立22565y x y x x =+⎧⎨=++⎩得240x x +=, 解得0x =或4x =-(舍去),∠5y =,∠点P 的坐标为(0,5);如图2所示,当点P 在直线BC 下方时,设BD 与PC 交于点M ,∠点C 坐标为(-4,-3),点B 坐标为(-1,0),点D 坐标为(-3,-4),∠()()22241318BC =---+-=⎡⎤⎣⎦,()()22231420BD =---+-=⎡⎤⎣⎦,()()22243342CD =---+---=⎡⎤⎡⎤⎣⎦⎣⎦, ∠222BC CD BD +=,∠∠BCD =90°,∠∠BCM +∠DCM =90°,∠CBD +∠CDB =90°,∠∠CBD =∠PCB ,∠MC =MB ,∠MCD =∠MDC ,∠MC =MD ,∠MD =MB ,∠M 为BD 的中点,∠点M 的坐标为(-2,-2),设直线CP 的解析式为23y k x b =+,∠23234322k b k b -+=-⎧⎨-+=-⎩, ∠23121k b ⎧=⎪⎨⎪=-⎩,∠直线CP 的解析式为112y x =-, 联立211265y x y x x ⎧=-⎪⎨⎪=++⎩得2211120x x ++=, 解得32x =-或4x =-(舍去), ∠74y =-, ∠点P 的坐标为(32-,74-); 综上所述,当∠PCB =∠CBD 时,点P 的坐标为(0,5)或(32-,74-);【点评】本题主要考查了二次函数综合,一次函数与几何综合,二次函数的性质,待定系数法求函数解析式,勾股定理的逆定理,等腰三角形的性质与判定等等,正确作出辅助线,利用分类讨论的思想求解是解题的关键.7.(1)y =−x 2+2x +3(2)∠532,39⎛⎫⎪⎝⎭;∠73或5【分析】(1)利用待定系数法即可求解;(2)∠作点A关于直线BC的对称点G,连接CG交抛物线于点F,此时,∠BCF=∠BCA,求得G(3,4),利用待定系数法求得直线CF的解析式为:y=13x+3,联立方程组,即可求解;∠分两种情况讨论,由相似三角形的性质和等腰三角形的性质,可求CF的解析式,联立方程可求解.(1)解:∠B(3,0)在抛物线y=−x2+bx+3上,∠y=−32+3b+3,解得b=2,∠所求函数关系式为y=−x2+2x+3;(2)解:∠作点A关于直线BC的对称点G,AG交BC于点H,过点H作HI∠x轴于点I,连接CG交抛物线于点F,此时,∠BCF=∠BCA,如图:令x=0,y=3;令y=0,−x2+2x+3=0,解得:x=3或x=-1,∠A(-1,0),B(3,0),C(0,3),∠OB=OC,AB=4,∠△OCB是等腰直角三角形,则∠OCB=∠OBC=45°,∠∠HAB=∠OBC=∠AHI=∠BHI=45°,∠HI= AI=BI=12AB=2,∠H(1,2),∠G(3,4),设直线CG的解析式为:y=kx+3,把G(3,4)代入得:4=3k+3,解得:k=13,∠直线CF的解析式为:y=13x+3,∠223133y x xy x⎧=-++⎪⎨=+⎪⎩,解得:53329xy⎧=⎪⎪⎨⎪=⎪⎩,所以F点的坐标为(53,329);∠当点F在x轴上方时,如图,延长CF交x轴于N,∠点B(3,0),点C(0,3),∠OB=OC=3,∠∠CBO=∠BCO=45°,∠点A(-1,0),∠OA=1,∠∠FCE+∠ACO=45°,∠CBO=∠FCE+∠CNO=45°,∠∠ACO=∠CNO,又∠∠COA=∠CON=90°,∠∠CAO∠∠NCO,∠CO NO AO CO=,∠313NO =,∠ON=9,∠点N(9,0),同理可得直线CF解析式为:y=-13x+3,∠-13x+3=-x2+2x+3,∠x1=0(舍去),x2=73,∠点F的横坐标为73;当点F在x轴下方时,如图,设CF与x轴交于点M,∠∠FCE+∠ACO=45°,∠OCM+∠FCE=45°,∠∠ACO=∠OCM,又∠OC=OC,∠AOC=∠COM,∠∠COM∠∠COA(ASA),∠OA=OM=1,∠点M(1,0),同理直线CF解析式为:y=-3x+3,∠-3x+3=-x2+2x+3,∠x1=0(舍去),x2=5,∠点F的横坐标为5,综上所述:点F的横坐标为5或73.【点评】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,相似三角形的判定和性质,全等三角形的判定和性质,两点距离公式,勾股定理等知识,灵活运用这些性质解决问题是本题的关键.8.(1)24y x=-+(2)232,39 P⎛⎫ ⎪⎝⎭(3)∠y x =;∠4【分析】(1)待定系数法求解析式;(2)过点B 作BE x ⊥轴交DP 延长线与点E ,过D 作DF x ⊥轴交x 轴于点F .证明DAB DEB ≌△△,求得点E 的坐标,进而求得直线DE 的解析式为11033y x =+,联立抛物线解析式即可求解; (3)∠根据顺时针旋转90°后点的坐标特征可知对称轴为y x =;∠连接GH ,交EF 于点M ,则2GH GM =,过点G 作x 轴的垂线,交EF 于点N ,当GM 最大时,∠GFE面积最大,设()2,4G m m -+,则(),N m m ,根据()12GFE E F S GN x x =⋅-△以及二次函数的性质求得当12m =-时,∠GFE 面积最大,115,24G ⎛⎫- ⎪⎝⎭,根据∠的方法求得H 的坐标,根据中点公式求得M 的坐标,根据勾股定理求得GH ,由2GH GM =即可求解.(1)∠2y ax c =+过()2,0A -,()1,3D -∠403a c a c +=⎧⎨+=⎩ 解之得14a c =-⎧⎨=⎩∠抛物线解析式为24y x =-+(2)过点B 作BE x ⊥轴交DP 延长线与点E ,过D 作DF x ⊥轴交x 轴于点F .由24y x =-+,令0y =,得122,2x x =-=,则()2,0BD B D y x x =-,即DF BF =,∠45DBF ∠=︒,∠45DBE ∠=︒又∠DB DB =,BD 平分ADP ,∠DAB DEB ≌△△,∠BA BE =,()2,0B∠()2,4E设直线DE 的解析式为y kx b =+,324k b k b -+=⎧⎨+=⎩解得13103k b ⎧=⎪⎪⎨⎪=⎪⎩∠直线DE 的解析式为11033y x =+ 联立2411033y x y x ⎧=-+⎪⎨=+⎪⎩解得213,3329x x y y ⎧=⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩则232,39P ⎛⎫ ⎪⎝⎭(3)∠直线EF 解析式为y x =.抛物线关于y 轴对称,所以旋转后图形关于x 轴对称, ∠对于抛物线上任意一点(),P a b 关于原点旋转90°后对应点为()1,P b a -在旋转后图形上,()1,P b a -关于x 轴对称的点()2,P b a 在旋转后图形上,∠(),P a b 与()2,P b a 关于y x =对称, ∠图形2关于y x =对称,∠直线EF 解析式为y x =故答案为:y x =∠GH如图,连接GH ,交EF 于点M ,则2GH GM =,过点G 作x 轴的垂线,交EF 于点N ,∠当GM 最大时,∠GFE 面积最大,又∠()12GFE E F S GN x x =⋅-△ 设()2,4G m m -+,则(),N m m ∠22117424G N GN y y m m m ⎛⎫=-=-+-=-++ ⎪⎝⎭ ∠当12m =-时,∠GFE 面积最大,115,24G ⎛⎫- ⎪⎝⎭由∠可知115,24G ⎛⎫- ⎪⎝⎭关于y x =的对称点H 15142⎛⎫ ⎪⎝⎭,- ∴1313,88M ⎛⎫ ⎪⎝⎭8GM ∴=∠GH 的最大值为:2GH GM ==【点评】本题考查了二次函数的性质,旋转的性质,全等三角形的性质与判定,一次函数与二次函数交点问题,掌握以上知识是解题的关键.9.(1)234y x x =-++(2)1m = (3)227或227【分析】(1)直接利用待定系数法求解即可;(2)先求出直线AB 的解析式为1y x =+,然后证明∠PGQ ∠∠DAQ 得到PG =AD =4,再由点P 的坐标为()234m m m ++,-,点G 的坐标为(m ,m +1),得到23414PG m m m =-++--=,由此求解即可;(3)如图所示,过点F 作FH ∠AB 于H ,过点K 作KQ 平分∠FKD 交x 轴于Q ,过点Q 作QM ∠KF 于M ,连接FG ,设2BF t QD s KD k ===,,,则42DF t =-,先证明∠HBF =∠HFB =45°,得到HB HF ==,再由(2)得1m =,求得BG =HG =,tan =2HF t FGH HG t=-∠;根据角平分线的定义和性质得到QM QD s ==,∠FGH =∠QKD ,再由111==222FKD FQK DQK S S S DF DK KF QM DQ DK +⋅=⋅+⋅△△△,推出()428k t s k -=+,则tan tan 2s t QKQ FGH k t ===-∠∠,可以推出()222282168t t t t k t t---+==, 在Rt ∠FKD 中,22264DF DK KF +==,得到()22221684264t t t t ⎛⎫-+-+= ⎪⎝⎭,由此即可求出t 的值即可得到答案.(1) 解:∠抛物线()240y ax bx a =++≠经过点()3,4A 和点()1,0B -,∠934440a b a b ++=⎧⎨-+=⎩, ∠13a b =-⎧⎨=⎩, ∠抛物线解析式为234y x x =-++;(2)解:设直线AB 的解析式为1y kx b =+,∠11034k b k b -+=⎧⎨+=⎩, ∠11k b =⎧⎨=⎩, ∠直线AB 的解析式为1y x =+,∠PE AD ∥,∠∠PGQ =∠DAQ ,∠GPQ =∠ADQ ,又∠AQ =GQ ,∠∠PGQ ∠∠DAQ (AAS ),∠PG =AD =4,∠点P 的横坐标为m ,∠点P 的坐标为()234m m m ++,-,点G 的坐标为(m ,m +1),∠23414PG m m m =-++--=,∠2210m m -+=,解得1m =;(3)解:如图所示,过点F 作FH ∠AB 于H ,过点K 作KQ 平分∠FKD 交x 轴于Q ,过点Q 作QM ∠KF 于M ,连接FG ,设2BF t QD s KD k ===,,,则42DF t =-,∠点B 的坐标为(-1,0),点A 的坐标为(3,4),∠BD =AD =4,∠∠ABD =45°,∠FH ∠AB ,∠∠HBF =∠HFB =45°, ∠HB HF ==,由(2)得1m =,∠点G 的坐标为(1,2),∠BE =GE =2,∠BG = ∠HG BG HB =-=, ∠tan =2HF t FGH HG t=-∠; ∠KQ 平分∠FKD ,QM ∠FK ,QD ∠DK ,∠FKD =2∠FGB ,∠QM QD s ==,∠FGH =∠QKD , ∠111==222FKD FQK DQK S S S DF DK KF QM DQ DK +⋅=⋅+⋅△△△, ∠()111428222k t s sk -=⨯+, ∠()428k t s k-=+, ∠tan tan 2s t QKQ FGH k t ===-∠∠, ∠4282t t k t-=+-, ∠()222282168t t t t k t t---+==, 在Rt ∠FKD 中,22264DF DK KF +==,∠()22221684264t t t t ⎛⎫-+-+= ⎪⎝⎭, ∠43222464288256641616464t t t t t t t -+-+-++=, ∠2344322161644642882566464t t t t t t t t -++-+-+=,∠432880240256640t t t t -+-+=,∠43210243280t t t t -+-+=,∠()()2221016143280t t t t t -++-+=,∠()()()()22827220t t t t t --+--=,∠()()32814420t t t t -+--=,∠()()()28122220t t t t t ⎡⎤-++--=⎣⎦,∠()()()()262220t t t t t --+--=⎡⎤⎣⎦,∠()()226220t t t -+-=, ∠点F 在BE 上,∠22BF t BE =≤=,∠1t ≤,∠2620t t -+=,解得3t =-3t =,∠()22262442168442t t t t t t k t t t -+-+-+-=====,∠2DK =,∠点K 的纵坐标为227或227.【点评】本题主要考查了二次函数综合,一次函数与几何综合,勾股定理,解直角三角形,角平分线的性质,等腰直角三角形的性质与判定,全等三角形的性质与判定等等,熟练掌握二次函数的相关知识是解题的关键.10.(1)223y x x =+-(2)(-2,-3)或(-1,-4)(3)(0,2)或(0,-2)【分析】(1)先求出A 、C 的坐标,然后用待定系数法求解即可;(2)先求出直线AC 的解析为3y x =--,根据AC 把△ABP 的面积分成1:2两部分,得到=12APQ ABQ S S △△::,如图所示,过点P 作PD ∠x 轴于D ,过点Q 作DE ∠x 轴于E , 先求出23EQ PD =,设点P 的坐标为(m ,223m m +-),则点D 的纵坐标为224233m m +-,点D 的坐标为(224133m m ---,224233m m +-),然后求出点B 的坐标,从而求出∠22242411123333BD m BE m m m m ⎛⎫=-=----=++ ⎪⎝⎭,,证明∠BEQ ∠∠BDP ,得到224223313m m m ++=-,据此求解即可; (3)分两种情况当点N 在x 轴上方时,过点N 作NH ∠直线BC 于H ,过点H 作HE ∠y 轴于E ,HF ∠x 轴于F ,求出直线BC 的解析式为33y x =-,证明HN =HF ,四边形EOFH 是矩形,得到∠EHF =90°,OE =HF ,证明∠NEH ∠∠BFH 得到NE =BF ,设H 坐标为(m ,3m -3),则NE =BF =m -1,OE =3m -3ON =EN +OE =4m -4,CE =3m -3+3=3m ,点N 的坐标为(0,4m -4),NC =4m -1在Rt ∠NCH 中,由222NH CH CN +=,得到()()222221941m m m m m +-++=-,由此求解即可;当点N 在x 轴下方时,利用等腰三角形的性质求解即可.(1)解:∠OA =OC =3,∠点A 的坐标为(-3,0),点C 的坐标为(0,-3), ∠9303b c c -+=⎧⎨=-⎩, ∠23b c =⎧⎨=-⎩, ∠抛物线解析式为223y x x =+-;(2)解:设直线AC 的解析式为1y kx b =+,∠11303k b b -+=⎧⎨=-⎩, ∠113k b =-⎧⎨=-⎩, ∠直线AC 的解析为3y x =--,∠AC 把∠ABP 的面积分成1:2两部分,∠=12APQ ABQ S S △△::或=2APQ ABQ S S △△::1(此种情况不符合题意,舍去),如图所示,过点P 作PD ∠x 轴于D ,过点Q 作QE ∠x 轴于E ,∠=32APB ABQ S S △△::,∠132122AB PD AB EQ ⋅=⋅, ∠23EQ PD =, 设点P 的坐标为(m ,223m m +-),则点Q 的纵坐标为224233m m +-, ∠点Q 的坐标为(224133m m ---,224233m m +-), 令y =0,则2230x x +-=,解得1x =或3x =-,∠点B 的坐标为(1,0), ∠22242411123333BD m BE m m m m ⎛⎫=-=----=++ ⎪⎝⎭,, ∠PD ∠x 轴,QE ∠x 轴,∠DP QE ∥,∠∠BEQ ∠∠BDP , ∠23BE QE BD PD ==, ∠224223313m m m ++=-, 解得2m =-或1m =-,∠点P 的坐标为(-2,-3)或(-1,-4);(3)解:如图1所示,当N 在x 轴上方时,过点N 作NH ∠直线BC 于H ,过点H 作HE ∠y 轴于E ,HF ∠x 轴于F , 设直线BC 的解析式为12y k x b =+,∠12203k b b +=⎧⎨=-⎩, ∠1233k b =⎧⎨=-⎩, ∠直线BC 的解析式为33y x =-,∠∠BNO +∠BCO =45°,∠∠NBH =45°,∠∠HNB =45°=∠HBN ,∠HN =HF ,∠EH ∠OE ,FH ∠OF ,OE ∠OF ,∠四边形EOFH 是矩形,∠∠EHF =90°,OE =HF ,∠∠NHE +∠BHE =90°=∠BHF +∠BHE ,∠∠NHE =∠BHF ,又∠∠HEN =∠HFB =90°,∠∠NEH ∠∠BFH (AAS ),∠NE =BF ,设H 坐标为(m ,3m -3),∠NE =BF =m -1,OE =3m -3∠ON =EN +OE =4m -4,CE =3m -3+3=3m ,∠点N 的坐标为(0,4m -4),NC =4m -1在Rt ∠NCH 中,222NH CH CN +=,∠()()222221941m m m m m +-++=-,∠222222191681m m m m m m m +-+++=-+,∠2460m m -=, 解得32m =或0m =(舍去), ∠点N 的坐标为(0,2);如图2所示,当点N 在x 轴下方的1N 点时,由等腰三角形的性质可知当1N B BN =(N 点为图1中的N )时,1BN O BNO =∠∠,∠1OB NN ⊥,∠12ON ON ==,∠点1N 的坐标为(0,-2),综上所述,在y 轴上是否存在一点N (0,2)或(0,-2),使得45BCO BNO ∠+∠=︒.【点评】本题主要考查了二次函数综合,一次函数与几何综合,等腰三角形的性质与判定,全等三角形的性质与判定,三角形外角的性质,相似三角形的性质与判定,勾股定理等等,正确作出辅助线是解题的关键.11.(1)抛物线解析式为y =x 2+2x -3,A 点坐标为(-3,0);(2)P 点坐标为(32,32);(3)以QD 为腰的等腰三角形的面积最大值为5413. 【分析】(1)把B 点坐标代入抛物线解析式可求得a 的值,可求得抛物线解析式,再令y =0,可解得相应方程的根,可求得A 点坐标;(2)当点P 在x 轴上方时,连接AP 交y 轴于点B ′,可证△OBP ∠∠OB ′P ,可求得B ′坐标,利用待定系数法可求得直线AP 的解析式,联立直线y =x ,可求得P 点坐标;(3)过Q 作QH ∠DE 于点H ,由直线CF 的解析式可求得点C 、F 的坐标,结合条件可求得tan∠QDH ,可分别用DQ 表示出QH 和DH 的长,分DQ =DE 和DQ =QE 两种情况,分别用DQ 的长表示出∠QDE 的面积,再设出点Q 的坐标,利用二次函数的性质可求得∠QDE 的面积的最大值.(1)解:把B (1,0)代入y =ax 2+2x -3,可得a +2-3=0,解得a =1,∠抛物线解析式为y =x 2+2x -3,令y =0,可得x 2+2x -3=0,解得x =1或x =-3,∠A 点坐标为(-3,0);(2)解:若y =x 平分∠APB ,则∠APO =∠BPO ,如图1,若P 点在x 轴上方,P A 与y 轴交于点B ′,由于点P 在直线y =x 上,可知∠POB =∠POB ′=45°,在∠BPO 和∠B ′PO 中POB POB OP OP BPO B PO ∠=∠⎧⎪=⎨⎪∠'=∠⎩', ∠∠BPO ∠∠B ′PO (ASA ),∠BO =B ′O =1,设直线AP 解析式为y =kx +b ,把A 、B ′两点坐标代入可得301k b b -+=⎧⎨=⎩,解得131k b ⎧=⎪⎨⎪=⎩, ∠直线AP 解析式为y =13x +1, 联立113y x y x =⎧⎪⎨=+⎪⎩,解得3232x y ⎧=⎪⎪⎨⎪=⎪⎩, ∠P 点坐标为(32,32); (3)解:如图2,作QH ∠CF ,交CF 于点H ,设抛物线交y 轴于点M .∠CF 为y =23x −49, ∠可求得C (23,0),F (0,-49), ∠tan∠OFC =OC OF =32, ∠DQ ∠y 轴,∠∠QDH =∠MFD =∠OFC ,∠tan∠HDQ =32, 不妨设DQ =t ,DH,HQ, ∠∠QDE 是以DQ 为腰的等腰三角形,∠若DQ =DE ,则S △DEQ =12DE •HQ =12×t2,。
2016中考题23.(本题满分6分)2015中考题23.(本题满分6分)23、(本题满分6分)解:(1)根据题意得 C(3,0)……………………………………………………1分9-3b+c=01-b+c=0 …………………………………………………………1分解得b=4c=3 ………………………………………………………1分 所以二次函数的解析式为y=x 2-4x+3 …………………………………1分(2) 设BC 解析式为y=kx+b (k ≠0)根据题意:⎩⎨⎧=+=033b k b 解得:⎩⎨⎧-==13k b ∴3+-=x y ………1分当x=2时,y=1∴ P (2,1) …………………………………1分2014中考题23.(本题满分6分)23、(本题满分6分)解:(1)D (-2,3)……………………………………………………………1分(2)设二次函数的解析式为y=ax 2+bx+c(a ≠0,a 、b 、c 常数),根据题意得 ………………………………………………………………1分9a-3b+c=0a+b+c=0 …………………………………………………………1分c=3解得 a=-1b=-2 …………………………………………………………1分c=3所以二次函数的解析式为y=-x2-2x+3 …………………………………1分(3) x<-2或x>1 ………………………………………………………1分2013中考题如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.2012中考题23.(本题满分6分)如图,抛物线y=﹣x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=8,求点B的坐标.解:(1)把(0,0),(2,0)代入y=﹣x2+bx+c,得,解得b=2,c=0,所以解析式为y=﹣x2+2x;(2)∵a=﹣1,b=2,c=0, ∴﹣=﹣=1,==1,∴顶点为(1,1),对称轴为直线x=1;(3)设点B 的坐标为(a ,b ),则×2|b|=8,∴b=8或b=﹣8,∵顶点纵坐标为1,8>1(或﹣x 2+2x=8中,x 无解),∴b=﹣8,∴﹣x 2+2x=﹣8,解得x 1=4,x 2=﹣2,所以点B 的坐标为(﹣2,﹣8)或(4,﹣8 ).2011中考题23、(本题满分6分)解:(1)y=x+3中,当y=0时, x=3∴点A 的坐标为(-3,0).......................................... 当x=0时,y=3∴点C 坐标为(0,3)∵抛物线的对称轴为直线x=-2∴点A 与点B 关于直线x=-2对称∴点B 的坐标是(-1,0)..........................................1分(2)设二次函数的解析式为y=ax 2+bx+c∵二次函数的图象经过点C (0,3)和点A(-3,0),且对称轴是直线x=-2∴可列得方程组: C=39a -3b+c=0-a b 2=-2...........................................1分解得: a=1b=4c=3∴二次函数的解析式为y=x 2+4x+3..........................................1分(或将点A 、点B 、点C 的坐标依次代入解析式中求出a 、b 、c 的值也可)(3)由图象观察可知,当-3<x <0时,二次函数值小于一次函数值。
第23章 二次函数和反比例函数测试题一.选择题(10×4)2(1)2y x =-+的最小值是〔 〕A .2-B .2C .1-D .12.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P 〔3,0〕,那么c b a +-的值是 A. 0 B. -1 C. 1 D. 222(1)3y x =-+的图象的顶点坐标是〔 〕A .(13),B .(13)-,C .(13)-,D .(13)--,2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 〔 〕5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大A. 7B. 6C. 5D. 4 6.以下命题:①假设0a b c ++=,那么240b ac -≥;②假设b a c >+,那么一元二次方程20ax bx c ++=有两个不相等的实数根; ③假设23b a c =+,那么一元二次方程20ax bx c ++=有两个不相等的实数根; ④假设240b ac ->,那么二次函数的图像与坐标轴的公一共点的个数是2或者3. 其中正确的选项是〔 〕.y–1 33 OxP1①②③ B.只有①③④ C.只有①④ D. 只有②③④.2122y x =-+的图象在x 轴上方的一局部,对于这段图象与x轴所围成的阴影局部的面积,你认为与其最.接近的值是〔 〕 A .4B .163C .2πD .8,假如抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2+ 2 B .y =2(x + 2)2-2 C .y =2(x -2)2-2D .y =2(x + 2)2+ 29.如图,正方形ABOC 的边长为2,反比例函数ky x=过点A ,那么k 的值是〔 〕A .2B .2-C .4D .4-10.一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0. 其中正确的结论是〔 〕 A .①② B .①③C .②③D .①②③二.填空题(5×5)11.如图,一名男生推铅球,铅球行进高度y 〔单位:m 〕与程度间隔 x 〔单位:m 〕之间的Oxyxy C OAB〔第10关系是21251233y x x =-++.那么他将铅球推出的间隔 是 m . 12.初三数学课本上,用“描点法〞画二次函数2y ax bx c =++的图象时,列了如下表格:次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影局部的面积从左到右依次为123S S S ,,,那么123S S S ++= . 15.如图,在平面直角坐标系中,函数ky x=〔0x >,常数0k >〕的图象经过点(12)A ,,()B m n ,,〔1m >〕,过点B 作y 轴的垂线,垂足为C .假设ABC △的面积为2,那么点B 的坐标为 .16.(8分)一次函数y =ax +b 的图像与反比例函数4y x=的图像交于A 〔2,2〕,B (-1,m ),求一次函数的解析式. 17.(8分)二次函数y=x 2-2x-1。
第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。
2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。
初中数学二次函数中考题集锦第1题(2006梅州课改)将抛物2(1)y x =--向左平移1个单位后,得到的抛物线的解析式是. 第2题(2006 泰安非课改)下列图形:其中,阴影部分的面积相等的是( ) A.①②B.②③C.③④D.④①第3题(2006 泰安非课改)抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:容易看出,()20-,是它与x 轴的一个交点,则它与x 轴的另一个交点的坐标为_________.第5题(2006芜湖课改)如图,在平面直角坐标系中,二次函数2(0)y ax c a =+≠的图象过正方形ABOC 的三个顶点A B C ,,,则ac 的值是.第6题(2006滨州非课改)已知抛物线2(1)(2)y x m x m =+-+-与x 轴相交于A B ,两点,且线段2AB =,则m 的值为.第7题.(2006滨州非课改)已知二次函数不经过第一象限,且与x 轴相交于不同的两点,请写出一个满足上述条件的二次函数解析式.第8题.(2006河南课改)已知二次函数222y x x c =-++的对称轴和x 轴相交于点()0m ,,则m 的值为________.第9题(2006临沂非课改)若()123135143A y B y C y⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,,,,为二次函数245y x x =--+的图象上的三点,则123y y y ,,的大小关系是( ) A.123y y y <<B.321y y y << C.312y y y <<D.213y y y <<2 ① ③1-④第12题(2006广东课改)求二次函数221y x x =--的顶点坐标及它与x 轴的交点坐标。
第13题(2006河北非课改)在同一平面直角坐标系中,一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )第14题(2006江西非课改)一条抛物线214y x mx n =++经过点302⎛⎫ ⎪⎝⎭,与342⎛⎫ ⎪⎝⎭,. (1)求这条抛物线的解析式,并写出它的顶点坐标;(2)现有一半径为1,圆心P 在抛物线上运动的动圆,当P 与坐标轴相切时,求圆心P 的坐标.友情提示:抛物线()20y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 第17题(2006上海非课改)二次函数()213y x =--+图象的顶点坐标是( )A.()13-,B.()13,C.()13--,D.()13-, 第18题(2006烟台非课改)已知抛物线2y ax bx c =++过点312A ⎛⎫⎪⎝⎭,,其顶点E 的横坐标为2,此抛物线与x 轴分别交于()10B x ,,()20C x ,两点()12x x <,且221216x x +=. (1)求此抛物线的解析式及顶点E 的坐标;(2)若D 是y 轴上一点,且CDE △为等腰三角形,求点D 的坐标.第19题(2006广州课改)抛物线21y x =-的顶点坐标是()A .(01),B .(01)-,C .(10),D .(10)-,第22题. (2006 白银课改)二次函数2y ax bx c =++图象上部分点的对应值如下表:x3-2- 1- 0 1 2 3 4 y60 4-6- 6- 4-6则使0y <的x第23题. (2006 海南课改)一位篮球运动员站在罚球线后投篮,球入篮得分.下列图象中,可以大致反映篮球出手后到入篮框这一时间段内,篮球的高度()h 米与时间()t 秒之间变化关系的是( )y OxyOxy OxyOxA.B. C. D.第24题(2006梧桐非课改)二次函数2y ax bx =+和反比例函数by x=在同一坐标系中的图象大致是( )第25题(2006天津非课改)已知抛物线24113y x x =--.(I )求它的对称轴;(II )求它与x 轴、y 轴的交点坐标.第26(2006广东非课改)抛物线226y x x c =++与x 轴的一个交点为(10),,则这个抛物线的顶点坐标是.第27题(2006菏泽非课改)若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是()A.1a >B.1a <C.1a ≥D.1a ≤第28题(2006菏泽课改)二次函数2y ax bx c =++的图象如图所示,则直线y bx c =+的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限第29题、(2006衡阳课改)抛物线2(1)3y x =-+的顶点坐标为.第30题、(2006无锡课改)已知抛物线2(0)y ax bx c a =++>的顶点是(01)C ,,直线:3l y ax =-+与这条抛物线交于P Q ,两点,与x 轴,y 轴分别交于点M 和N . (1)设点P 到x 轴的距离为2,试求直线l 的函数关系式;A.B.C.D.(2)若线段MP 与PN 的长度之比为3:1,试求抛物线的函数关系式.1答案:2y x =- 2答案:C 3答案:()30, 5答案:2-6答案:15, 7答案:2y x x =--答案不唯一 8答案:19答案:C12答案:解:221y x x =--2212x x =-+- 2(1)2x =--.∴二次函数的顶点坐标是(12)-,.设0y =,则2210x x --=,2(1)20x --=2(1)21x x -=-=,,1211x x ==二次函数与x轴的交点坐标为(1+。
中考专题训练——二次函数与不等式1.已知抛物线2y x bx c =++经过点(1,0)和点(0,3). (1)求此抛物线的解析式;(2)当自变量x 满足13x -≤≤时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x ≤≤时,y 的最小值为5,求m 的值. 2.已知二次函数y =x 2﹣2x ﹣3.(1)用配方法将y =x 2﹣2x ﹣3化成y =a (x ﹣h )2+k 的形式.并写出对称轴和顶点坐标; (2)在平面直角坐标系中,画出这个二次函数的简图; (3)当y 随x 的增大而减小时,求x 的范围.3.如图,直线28y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线2y x bx c =++经过点A 和点B .(1)求抛物线的解析式;(2)结合图象直接写出不等式228x bx c x ++>-+的解集;(3)若点1(1,)C y ,2(,)D m y 都在抛物线上,当21y y >时,求m 的取值范围.4.如图,在平面直角坐标系中,直线y =x +2与坐标轴交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,C 点的坐标为(1,0),抛物线y =ax 2+bx +c 经过点A ,B ,C .(1)求抛物线的解析式;(2)根据图象写出不等式ax 2+(b -1)x +c >2的解集;(3)点P 是抛物线上直线AB 上方的一动点,过点P 作直线AB 的垂线段,垂足为Q 点.当PQ P 点的坐标.5.在平面直角坐标系中,二次函数y =x 2+bx +c 的图象过(﹣2,0),(4,0). (1)求二次函数解析式;(2)求当﹣1≤x ≤5时函数值的取值范围;(3)一次函数y =(3+m )x +6+2m 的图象与y =x 2+bx +c 的交点的横坐标分别是x 1,x 2,且x 1<5<x 2,求m 的取值范围.6.在平面直角坐标系xOy 中,抛物线212y ax x c =-+与x 轴交于A ,()3,0B 两点,与直线AM :2y kx b=+交于点A 、()4,5M 两点.(1)求抛物线解析式及顶点C 的坐标.(2)求点A的坐标,并结合图象写出不等式22ax x c kx b-+>+的解集.(3)将直线AM向下平移,在平移过程中与抛物线BC部分图象有交点时(包含B,C端点),请直接写出b的取值范围.7.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=﹣x2+(2a﹣2)x﹣a2+2a上,其中x1<x2.(1)求抛物线的对称轴(用含a的式子表示);(2)①当x=a时,求y的值;①若y1=y2=0,求x1的值(用含a的式子表示).(3)若对于x1+x2<﹣4,都有y1<y2,求a的取值范围.8.如图二次函数2y x bx c=-++的图象与x轴交于点A(-3,0),B(1,0)两点,与y轴交于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象经过B,D(1)求二次函数的解析式;(2)写出使一次函数值大于二次函数值的x的取值范围;(3)若直线BD与y轴的交点为E点,连结AD,AE,求ADE∆的面积9.如图,已知抛物线y1=ax2+c过点(﹣4,5),(1,54),直线y2=kx+2与y轴交于C点,与抛物线交于A,B两点,点B在点A的右侧.(1)求抛物线的解析式;(2)点P为第一象限抛物线上一个动点,以点P为圆心,PC为半径画圆,求证:x轴是①P的切线;(3)我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①k=2时,求使M>y2的x的取值范围;①当k=﹣1时,求使M=5的x的值.10.已知二次函数y=x2+mx+n的图象经过点A(1,0)和D(4,3),与x轴的另一个交点为B,与y轴交于点C.(1)求二次函数的表达式及顶点坐标;(2)将二次函数y=x2+mx+n的图象在点B、C之间的部分(包含点B、C)记为图象G.已知直线l:y=kx﹣2k+2总位于图象G的上方,请直接写出k的取值范围;(3)如果点P(x1,c)和点Q(x2,c)在函数y=x2+mx+n的图象上,且x1<x2,PQ=2a,求x12﹣ax2+6a+4的值.11.已知抛物线22=++-.y mx mx m234(1)该抛物线的对称轴为______;(2)若该抛物线的顶点在x 轴上,求抛物线的函数表达式;(3)设点()1,M n y 、()22,N y 在该抛物线上,若12y y >,求n 的取值范围.12.如图,抛物线2y x bx c =-++与y 轴交于点A (0,3),与x 轴交于B (-1,0),C 两点.(1)求抛物线的解析式;(2) 连接AB ,点P 为抛物线上一点,且ABP ∠45=︒,求点P 的坐标; (3)()11,M x y ,()22,N x y 是抛物线上两点,当11122m x m -≤≤+,22x ≥ 时,总有12y y ≥,请直接写出m 的取值范围.13.在初中阶段的函数学习中,我们经历了列表、描点、连线、画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数22y x x c =-+的过程.(1已知函数过点()1,4,则这个函数的解析式为:______.(2)在(1)的条件下,在平面直角坐标系中,若函数22y x x c =-+的图象与x 轴有两个交点,请画出该函数的图象,并写出函数图象的性质:_______(写出一条即可).(3)结合(2)中你所画的函数图象,求不等式221x x c x -+≥+的解集.14.在平面直角坐标系xOy 中,已知抛物线22y ax ax c =-+与直线=3y -有且只有一个公共点.(1)直接写出抛物线的顶点D 的坐标,并求出c 与a 的关系式;(2)若点(),P x y 为抛物线上一点,当1t x t ≤≤+时,y 均满足233y at -≤≤-,求t 的取值范围;(3)过抛物线上动点(),M x y (其中3x ≥)作x 轴的垂线l ,设l 与直线23y ax a =-+-交于点N ,若M 、N 两点间的距离恒大于等于1,求a 的取值范围.15.在平面直角坐标系中,已知抛物线C :y =ax 2+2x ﹣1(a ≠0)和直线l :y =kx +b ,点A (﹣3,﹣3),B (1,﹣1)均在直线l 上. (1)求出直线l 的解析式;(2)当a =﹣1,二次函数y =ax 2+2x ﹣1的自变量x 满足m ≤x ≤m +2时,函数y 的最大值为﹣4,求m 的值; (3)若抛物线C 与线段AB 有两个不同的交点,求a 的取值范围.16.根据我们学习函数的过程与方法,对函数y =x 2+bx +2﹣c |x ﹣1|的图像和性质进行探究,已知该函数图像经过(﹣1,﹣2)与(2,1)两点, (1)该函数的解析式为 ,补全下表:(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象,写出这个函数的一条性质: . (3)结合你所画的图象与函数y =x 的图象,直接写出x 2+bx +2﹣c |x ﹣1|≤x 的解集 .17.已知抛物线243y x x =-+.(1)该抛物线的对称轴是______ ,顶点坐标______ ;(2)选取适当的数据填入如表,并在如图的直角坐标系内描点画出该抛物线的图象;(3)根据图象,直接写出当0y >时,x 的取值范围.18.在平面直角坐标系xOy 中,二次函数2224y x mx m =-++-与图象与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)若点B 的坐标为(3,0), ①求此时二次函数的解析式;①当2x n ≤≤时,函数值y 的取值范围是13n y --≤≤,求n 的值;(2)将该二次函数图象在x 轴上方的部分沿x 轴翻折,其他部分保持不变,得到一个新的函数图象,若当21x -≤≤-时,这个新函数的函数值y 随x 的增大而增大,结合函数图象,求m 的取值范围.19.已知函数()()2110b y a x a =-++≠,某兴趣小组对其图像与性质进行了探究,请补充完整探究过程.(1)请根据给定条件直接写出,,a b m 的值;(2)如图已经画出了该函数的部分图像,请你根据上表中的数据在平面直角坐标系中描点、连线,补充该函数图像,并写出该函数的一条性质;(3)若()214ba x x x-+≥-,结合图像,直接写出x 的取值范围. 20.已知函数261y x =+,请根据已学知识探究该函数的图像和性质. (1)列表,写出表中a 、b 、c 的值:=a ______,b =______,c =______.(2)描点、连线,在下面的平面直角坐标系中画出该函数的图像,并写出该函数的一条性质:______. (3)已知函数2y x =+的图像如图所示,结合你所画的函数图像,直接写出不等式2621x x ≥++的解集:______.参考答案1.(1)243y x x =-+; (2)18y -≤≤;(3)m 的值为【分析】(1)利用待定系数法求解;(2)先求出x =-1及x =3时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为y = (x -2-m ) 2- l ,利用二次函数的性质,当2+m >5, 此时x =5时,y =5,即(5-2-m ) 2- 1=5,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为y = (x - 2+m ) 2- 1,利用二次函数的性质得到2 - m <l ,此时x =1时,y =5,即(1-2-m ) 2- 1=5,然后分别解关于m 的方程即可. (1)解:①抛物线2y x bx c =++经过点(1,0)和点(0,3), ①103b c c ++=⎧⎨=⎩,解得43b c =-=⎧⎨⎩,①此抛物线的解析式为243y x x =-+; (2)当x =-1时,y =1+4+3=8, 当x =3时,y =9-12+3=0, ①()224321y x x x =-+=--, ①函数图象的顶点坐标为(2,-1),①当13x -≤≤时, y 的取值范围是18y -≤≤; (3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为y = (x -2-m ) 2- 1, ①当自变量x 满足 1≤x ≤5时,y 的最小值为 5, ①2+m >5,即m >3,此时x =5时,y =5,即(5-2-m ) 2-1=5,解得m 1,m 2=3 (舍去); 设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为y = (x - 2+m ) 2- 1, ①当自变量x 满足1≤x ≤5时,y 的最小值为5, ①2-m <1,即m >1,此时x =1时,y =5, 即(1-2-m ) 2-1=5,解得m 1=-,m 2=-1 (舍去),综上所述,m 的值为.【点评】题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质. 2.(1)2(1)4y x =--,对称轴为直线x =1,顶点坐标为(1,﹣4); (2)见解析; (3)1x <【分析】(1)配方成顶点式可得;(2)先确定抛物线与x 和y 轴的交点坐标,再确定抛物线的顶点坐标,然后描点得到二次函数的图象; (3)利用函数图象可得; (1)223y x x =--()22113x x +=---()214x =--①对称轴为直线x =1,顶点坐标为(1,﹣4); (2)抛物线的顶点坐标为(1,﹣4),当x =0时,2233y x x =-=--,则抛物线与y 轴的交点坐标为(0,﹣3); 当y =0时,2230x x =--,解得x 1=﹣1,x 2=3, 则抛物线与x 轴的交点坐标为(﹣1,0),(3,0); 如图所示:(3)由题(2)图象知,当x <1时,y 随x 的增大而减小.【点评】本题考查二次函数的三种形式及二次函数的性质,熟练掌握二次函数的顶点式及函数性质是解题的关键.3.(1)268y x x =-+(2)0x <或>4x(3)1m <或5m >【分析】(1)先通过直线解析式得到A 、B 的坐标,再代入二次函数解析式进行求解即可;(2)根据图象解答即可;(3)先将1(1,)C y 代入抛物线解析式,得出1y 的值,再解出当13y =时,方程的解,结合图象,求解即可.(1)令0x =,则8y =(0,8)B ∴令0y =,则4x =(4,0)A ∴将A 、B 分别代入2y x bx c =++得80164c b c =⎧⎨=++⎩ 解得 68b c =-⎧⎨=⎩ ∴抛物线的解析式为268y x x =-+;(2)直线28y x =-+与抛物线268y x x =-+交于A 、B 两点0x ∴<或>4x 时,228x bx c x ++>-+;(3)将1(1,)C y 代入抛物线解析式,得 11683y =-+=21y y >23y ∴>将13y =代入抛物线解析式,得 2368x x =-+解得 121,8x x ==根据图象,当21y y >时,1m <或5m >.【点评】本题考查了一次函数与二次函数的综合问题,涉及一次函数图象与坐标轴的交点、待定系数法求二次函数解析式、图像法解一元一次不等式、图像法解一元二次不等式、解一元二次方程,熟练掌握知识点是解题的关键.4.(1)y =-x 2-x +2(2)-2<x <0(3)(-1,2)【分析】(1)先求出A 、B 两点坐标,再代入抛物线中即可求出解析式;(2)将不等式2(1)2ax b x c +-+>变形为22ax bx c x ++>+,进而得到二次函数图象在一次函数图象上方即可求解;(3)先证明①PDQ 为等腰直角三角形,利用勾股定理进而求出21PDPQ ,表示PD 的长度列方程求解即可.(1)解:当x =0,y =0+2=2,当y =0时,x +2=0,解得x =-2,①A (-2,0),B (0,2),把A (-2,0),C (1,0),B (0,2)代入抛物线解析式, 得42002a b c a b c c ++=⎧⎪++=⎨⎪=⎩,解得112a b c =-⎧⎪=-⎨⎪=⎩,①该抛物线的解析式为:y =-x 2-x +2;(2)解:由不等式()212ax b x c +-+>,得22ax bx c x ++>+,由图象可知,二次函数图象在一次函数图象上方,结合图象可得:不等式()212ax b x c +-+>的解集为20x -<<;(3)解:作PE ①x 轴于点E ,交AB 于点D ,作PQ ①AB 于Q ,在Rt①OAB中,①OA=OB=2,①①OAB=45°,①①PDQ=①ADE=45°,在Rt①PDQ中,①DPQ=①PDQ=45°,①PQ=DQ=,2①PD1=,设点P(x,-x2-x+2),则点D(x,x+2),①PD=-x2-x+2-(x+2)=-x2-2x,即-x2-2x=1,解得x=-1,①此时P点的坐标为(-1,2),【点评】本题考查了待定系数法求二次函数的解析式,图象法解不等式、点坐标表示线段以及等腰直角三角形的性质等,求出解析式是解题的关键.5.(1)y=x2﹣2x﹣8;(2)﹣9≤y≤7(3)m>﹣2【分析】(1)根据待定系数法即可求得;(2)求得抛物线的对称轴,根据图象即可得出当x=1,函数有最小值﹣9;当x=5时函数有最大值7,进而求得当﹣1≤x≤5时函数值的取值范围;(3)由题意得x2﹣2x﹣8=(3+m)x+6+2m,整理得x2﹣(m+5)x﹣2(m+7)=0,解方程求得x1=﹣2,x2=m+7,根据题意得到m+7>5,解得m>﹣2.(1)解:∵二次函数y=x2+bx+c的图象过(﹣2,0),(4,0).∴4201640b c b c -+=⎧⎨++=⎩, 解得:28b c =-⎧⎨=-⎩, ∴二次函数解析式为y =x 2﹣2x ﹣8;(2)∵y =x 2﹣2x ﹣8=(x ﹣1)2﹣9,∴抛物线开口向上,当x =1时,函数有最小值﹣9,把x =5代入y =x 2﹣2x ﹣8得,y =25﹣10﹣8=7,∴当﹣1≤x ≤5时函数值的取值范围为﹣9≤y ≤7;(3)∵一次函数y =(3+m )x +6+2m 的图象与y =x 2﹣2x ﹣8的交点的横坐标分别是x 1,x 2,∴x 2﹣2x ﹣8=(3+m )x +6+2m ,整理得x 2﹣(m +5)x ﹣2(m +7)=0,解得:x 1=﹣2,x 2=m +7,∵x 1<5<x 2,∴m +7>5,解得m >﹣2,即m 的取值范围是m >﹣2.【点评】本题考查了待定系数法求二次函数解析式,二次函数化为顶点式,根据自变量的取值范围求得函数值的范围,一次函数与二次函数交点问题,解一元二次方程,掌握二次函数图象与性质是解题的关键. 6.(1)2223(1)4y x x x =--=--,C 的坐标为()1,4-;(2)点()1,0A -,1x <-或>4x ; (3)2134b -≤≤-【分析】(1)根据待定系数法求得二次函数的解析式,把一般式化成顶点式,即可求得顶点C 的坐标;(2)利用抛物线的解析式求得A 的坐标,然后根据图象即可求得;(3)先利用待定系数法求得直线AM 的解析式,即可得到平移后的解析式为y x b =+,分别代入B 、C 点的坐标,求得b 的值,求得平移后的直线与抛物线有一个交点时的b 的值,结合图象即可求得.(1) 点30B (,)、M (4,5)是抛物线图象上的点,9601685a c a c -+=⎧∴⎨-+=⎩解得13a c =⎧⎨=-⎩∴抛物线解析式为222314y x x x =--=--(),∴抛物线顶点C 的坐标为14-(,); (2)对于抛物线2=23y x x --,当0y =时,即2230x x --=,解得1213x x =-=,,∴点A (-1,0)观察函数图象可知,不等式22ax x c kx b -+>+的解集为1x <-或>4x ;(3)点A (-1,0)和点M (4,5)在直线AM :2y kx b =+的图象上,045k b k b -+=⎧∴⎨+=⎩解得11k b =⎧⎨=⎩, ∴直线AM 的解析式为21y x =+.当直线AM 向下平移经过点30B (,)时,直线AM 的解析式为'y x b =+,则3十'0b =,解得'3b =-,当直线AM 平移经过点C (1,-4)时,则1''4b +=- 解得''5b =-,当直线AM 平移后与抛物线2=23y x x --有一个交点时,联立223y x b y x x =+⎧⎨=--⎩化简得2330x x b ---=则94(3)0m ∆=---= 解得214b =-, b ∴的取值范围是2134b -≤≤-. 【点评】本题考查了待定系数法求二次函数的解析式,求一次函数的解析式,二次函数图象与几何变换,函数与不等式的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征,数形结合是解题的关键.7.(1)对称轴为直线x =a ﹣1(2)①y =0;①x 1=a ﹣2(3)a ≥﹣1【分析】(1)根据抛物线的对称轴x =﹣2b a求解即可; (2)①将x =a 代入y =﹣x 2+(2a ﹣2)x ﹣a 2+2a 求解即可;①若y 1=y 2=0,则﹣x 2+(2a ﹣2)x ﹣a 2+2a =0,解方程并根据x 1<x 2,求出x 1的值.(3)由题意得出x 1<﹣2,则只需讨论x 1<a ﹣1的情况,分两种情况:①当a ≥﹣1时,又有两种情况:x 1<x 2<a ﹣1,x 1<a ﹣1<x 2,分别结合二次函数的性质及x 1+x 2<﹣4计算即可;①当a <﹣1时,令x 1=a ﹣1,x 2=﹣2,此时x 1+x 2<﹣4,但y 1>y 2,不符合题意.【解析】(1)解:抛物线的对称轴为直线x =﹣2(1)2a --=a ﹣1; (2)解:①当x =a 时,y =﹣a 2+(2a ﹣2)a ﹣a 2+2a=﹣a 2+2a 2﹣2a ﹣a 2+2a=0;①当y 1=y 2=0时,﹣x 2+(2a ﹣2)x ﹣a 2+2a =0,①x 2﹣(2a ﹣2)x +a 2﹣2a =0,①(x ﹣a +2)(x ﹣a )=0,①x 1<x 2,①x 1=a ﹣2;(3)解:①当a ≥﹣1时,①x 1<x 2,x 1+x 2<﹣4,①x 1<﹣2,只需讨论x 1<a ﹣1的情况.若x 1<x 2<a ﹣1,①x <a ﹣1时,y 随着x 的增大而增大,①y 1<y 2,符合题意;若x 1<a ﹣1<x 2,①a ﹣1≥﹣2,①2(a ﹣1)≥﹣4,①x 1+x 2<﹣4,①x 1+x 2<2(a ﹣1).①x 1<2(a ﹣1)﹣x 2.①x =2(a ﹣1)﹣x 2时,y 1=y 2,x <a ﹣1时,y 随着x 的增大而增大,①y 1<y 2,符合题意.①当a <﹣1时,令x 1=a ﹣1,x 2=﹣2,此时x 1+x 2<﹣4,但y 1>y 2,不符合题意;综上所述,a 的取值范围是a ≥﹣1.【点评】本题属于二次函数的综合题,涉及二次函数的性质、求函数值、运用二次函数求不等式等知识点,灵活运用二次函数的性质成为解答本题的关键.8.(1)223y x x =--+(2)<2x -或1x >(3)4【分析】(1)根据题意可以设出二次函数解析式,根据函数过点A 、B 、C ,即可解答本题;(2)根据题意可以求得点D 的坐标,再根据函数图象即可解答本题;(3)根据题意作出辅助线,即可求得①ADE 的面积.【解析】(1)①二次函数 2y x bx c =-++过(1,0)B ,(0,3)C①103b c c -++=⎧⎨=⎩解得23b c =-⎧⎨=⎩所以解析式为:223y x x =--+(2)223y x x =--+①该函数的对称轴是直线x =-1,①点C (0,3),点C 、D 是二次函数图象上的一对对称点,①点D (-2,3),①一次函数值大于二次函数值的x 的取值范围是x <-2或x >1(3)连结AE ,设直线BD :y =mx +n ,代入B (1,0),D (−2,3)得023m n m n +=⎧⎨-+=⎩, 解得:11m n =-⎧⎨=⎩, 故直线BD 的解析式为:y =−x +1把x =0代入y =−x +1得,y =1,所以E (0,1),①OE =1,又①AB =4114341422ADB S ∆=⨯⨯-⨯⨯=∴ 【点评】本题考查待定系数法求二次函数解析式、抛物线与x 轴的交点,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.9.(1)y 214x =+1 (2)见解析(3)①x <4﹣x >4+①﹣3或4【分析】(1)利用待定系数法将已知点的坐标代入解析式求得a ,c 的值即可得出结论;(2)过点P 作PE ①x 中于点E ,PD ①y 轴于点D ,利用到圆心的距离等于半径的直线是圆的切线,证明PE =PC即可;设P (t ,14t 2+1),利用勾股定理求出线段PC 的长即可; (3)①当k =2时,将两个解析式联立求出交点坐标,利用函数图象判定出使M >y 2的值即为y 1>y 2的取值范围;①将两个解析式联立求出交点坐标,利用函数图象利用分类讨论的方法得到M 与x 的关系式,将M =5代入解析式即可求得结论.(1)解:①抛物线y 1=ax 2+c 过点(﹣4,5),(1,54), ①16554a c a c +=⎧⎪⎨+=⎪⎩,解得:141a c ⎧=⎪⎨⎪=⎩. ①抛物线的解析式为:y 214x =+1. (2)解:过点P 作PE ①x 中于点E ,PD ①y 轴于点D ,如图,①直线y 2=kx +2与y 轴交于C 点,令x =0,则y =2,①C (0,2).①OC =2.①点P 为第一象限抛物线上一个动点,①P (t ,14t 2+1), ①PE =OD 2114t =+,PD =t , ①CD =OD ﹣OC 2114t =-. ①PC 214t ====+1. ①PE =PC .①PE ①x 轴,①x 轴是①P 的切线.(3)解:①当k =2时,直线y 2=2x +2.①222114y x y x =+⎧⎪⎨=+⎪⎩.解得:11410x y ⎧=+⎪⎨=+⎪⎩22410x y ⎧=-⎪⎨=-⎪⎩ ①y 214x =+1与y =2x +2的交点为(4+10+4﹣10﹣. 由图象可知:当x <4﹣x >4+y 1>y 2.①M >y 2,①y 1>y 2.①使M >y 2的x 的取值范围为x <4﹣x >4+①当k =﹣1时,y =﹣x +2.①21142y x y x ⎧=+⎪⎨⎪=-+⎩.解得:1124x y ⎧=-+⎪⎨=-⎪⎩2224x y ⎧=--⎪⎨=+⎪⎩ 结合图象可知:当﹣2+x ≤﹣2﹣M =﹣x +2;当x >﹣2+x <﹣2﹣M 2114x =+. ①M =5,①﹣x +2=5,①x =﹣3.①21154x +=, ①x =±4(﹣4不合题意,舍去).综上,使M =5的x 的值为﹣3或4.【点评】本题主要考查了二次函数的图象的性质,待定系数法求函数的关系式,二次函数与一次函数图象上点的坐标的特征,利用数形结合法判定函数值的大小,利用交点坐标结合图象判定函数值的大小是解题的关键.10.(1)y =x 2﹣4x +3,(2,﹣1);(2)﹣2<k <﹣12;(3)8.【分析】(1)代入点A (1,0)和D (4,3),可求得m 、n 的值,从而可得二次函数的表达式,将表达式化为顶点式,即可求得顶点坐标.(2)由l ;y =kx −2k +2=k (x −2)+2可得,过定点(2,2),再分别代入点B 、C 的坐标,可求得k 的值,要使直线l ;y =kx −2k +2总位于图象G 的上方,则k 的取值范围,即为分别代入点B 、C 的坐标所求得的k 的值之间的部分.(3)由二次函数243y x x =-+的对称轴是直线x=2,点P (x 1,c)和点Q (x 2,c)在函数2y x mx n =++的图象上,且x 1<x 2,可得x 1=2−a ,x 2=2+a ,代入21264a a x x +++即可求解.【解析】解:(1)根据题意得:1413m n m n +=-⎧⎨+=-⎩,解得43m n =-⎧⎨=⎩. 故二次函数的表达式为y =x 2﹣4x +3,则函数的对称轴为x =﹣2b a=2, 当x =2时,y =x 2﹣4x +3=﹣1,故顶点坐标为:(2,﹣1);(2)在y =x 2﹣4x +3中,令x =0,解得y =3,令y =x 2﹣4x +3=0,解得x =1或3,则C 的坐标是(0,3),点B (3,0),①y =kx ﹣2k +2=k (x ﹣2)+2,即直线故点(2,2),设该点为M ,当直线过点C 、M 或过B 、M 时,都符合要求,将点C 的坐标代入y =kx ﹣2k +2,即3=﹣2k +2,解得k =﹣12;将点B 的坐标代入3=kx ﹣2k +2,即0=3k ﹣2k +2,解得k =﹣2;故﹣2<k <﹣12,故答案为:﹣2<k <﹣12;(3)①P (x 1,c )和点Q (x 2,c )在函数y =x 2﹣4x +3的图象上, ①PQ //x 轴,①二次函数y =x 2﹣4x +3的对称轴是直线x =2, 又①x 1<x 2,PQ =2a , ①x 1=2﹣a ,x 2=2+a ,①x 12﹣2x 2+6a +4=(2﹣a )2﹣a (2+a )+6a +4=8.【点评】本题考查二次函数的图像和性质,解题的关键是熟练掌握二次函数的性质. 11.(1)直线=1x -;(2)221y x x =---或2484333y x x =++;(3)当0a >时,4n <-或2n >;当a<0时,42n -<<.【分析】(1)利用二次函数的对称轴公式即可求得.(2)根据题意可知顶点坐标,再利用待定系数法即可求出二次函数解析式. (3)分类讨论当m >0时和m <0时二次函数的性质,即可求出n 的取值范围. 【解析】解:(1)利用二次函数的对称轴公式可知对称轴212mx m=-=-. 故答案为:=1x -.(2)①抛物线顶点在x 轴上,对称轴为=1x -, ①顶点坐标为(-1,0).将顶点坐标代入二次函数解析式得:()()22012134m m m =-+⨯-+-, 整理得:(1)(34)0m m +-=, 解得:1m =-或43m =.①抛物线解析式为221y x x =---或2484333y x x =++; (3)①对称轴为直线=1x -,①点()22,N y 关于直线=1x -的对称点为()24,N y '-, 根据二次函数的性质分类讨论.(①)当m >0时,抛物线开口向上,若y 1>y 2,即点M 在点N 或N '的上方,两点NN′外侧,则4n <-或2n >; (①)当m <0时,抛物线开口向下,若y 1>y 2,即点M 在点N 或N '的上方,两点内部,则42n -<<. 【点评】本题为二次函数综合题,二次函数对称轴,待定系数法求二次函数解析式,比较函数值大小,掌握二次函数的性质是解答本题的关键.12.(1)y =-x 2+2x +3;(2)点P 坐标为(52,74);(3)m 的取值范围为1322m ≤≤.【分析】(1)将点A (0,3)、B (-1,0)代入抛物线y =-x 2+bx +c 中即可求得b 、c 的值,进而得到解析式;(2)过点A 作AM ①BP 于点M ,过点M 作MN ①y 轴于点N ,构造等腰直角三角形,利用“一线三垂直模型”证明①ABO ①①MAN .继而得到点M 坐标,求出直线BM 解析式,联立BM 解析式与抛物线解析式即可得交点P 的坐标;(3)结合抛物线图象,可直观看到当x 2≥2时,y 2≤3.要使y 1≥y 2恒成立,则y 1≥3,得0≤x 1≤2,从而0≤m −12≤x 1≤m +12≤2,解不等式组即可.【解析】解:(1)将点A (0,3)、B (-1,0)代入抛物线y =-x 2+bx +c 中,得:310c b c =⎧⎨--+=⎩,解得:23b c =⎧⎨=⎩, ①该抛物线解析式为:y =-x 2+2x +3;(2)过点A 作AM ①AB 交BP 于点M ,过点M 作MN ①y 轴于点N .又①ABP =45°,则①ABM 为等腰直角三角形,AM =AB ,①①BAO +①P AO =①BAM =90°,①MAO +①AMN =90°, ①①BAO =①AMN , 在①ABO 和①MAN 中, 90BAO AMN AOB MNA AB AM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ①①ABO ①①MAN (AAS ),①AN =BO =1,ON =OA -AN =3-1=2,MN =AO =3, ①点M 坐标为(3,2). 设直线BM 解析式为y =kx +n , 代入点B (-1,0)、M (3,2)得: 032k n k n -+=⎧⎨+=⎩,解得:1212k n ⎧=⎪⎪⎨⎪=⎪⎩. 故直线BM 解析式为y =12x +12.解方程12x +12=-x 2+2x +3得:12512x x =-=,,当52x =时,y =1522⨯+12=74, 故点P 坐标为(52,74);(3)由图可知,当x =2时,y =-x 2+2x +3=-4+4+3=3,当x 2≥2时,y 2≤3.要使y 1≥y 2恒成立,则y 1≥3,即-x 2+2x +3≥3, 解得:0≤x ≤2,即0≤x 1≤2, ①0≤m −12≤x 1≤m +12≤2,解不等式0≤m −12得:12m ≥,解不等式m +12≤2得:32m ≤,①m 的取值范围为1322m ≤≤. 【点评】本题是二次函数综合题,考查了待定系数法求解析式、全等三角形判定与性质、解不等式组等知识,根据题意作出合理辅助线以及数形结合思考问题是解题的关键.13.(1)225y x x =-+或223y x x =--;(2)图见解析,性质:(写出一条即可)①关于1x =对称;①=1x -或3x =时有最小值为0;①1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大;(3)4x ≥或2x ≤【分析】(1)由函数过点()1,4,代入124c -+=,求出5c =或3c =-,可得函数;(2)用描点法画图,列表、描点、连线,性质:①关于1x =对称;①=1x -或3x =时有最小值为0;①1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大,(3)利用图像解法不等式221x x c x -+≥+在图像上表现为225y x x =-+永远在1y x =+图像上方,或223y x x =--图像在1y x =+图像上方;由交点(2,3)的左侧和交点(4,5)的右侧即可得出答案【解析】解:(1)①函数过点()1,4,124c -+= ①14c -=,①14c -=±, ①5c =或3c =-,①225y x x =-+或223y x x =--;故答案为:225y x x =-+或223y x x =--;(2)列表描点连线性质:(写出一条即可) ①关于1x =对称;①=1x -或3x =时有最小值为0;①1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大,故答案为①关于1x =对称;①=1x -或3x =时有最小值为0;①1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大;(3)2251x x x -+=+,()2251x x x -+=±+,22340,60x x x x -+=-+=,都无解,或2231x x x --=+,()2231x x x --=±+,2340x x --=或220x x --=,解得x=-1,x=2,x=4,不等式221x x c x -+≥+在图像上表现为225y x x =-+永远在1y x =+图像上方,或223y x x =--图像在1y x =+图像上方;由交点(2,3)的左侧和交点(4,5)的右侧,即不等式2251x x x -+≥+或2251x x x -+≥+的解集为4x ≥或2x ≤..【点评】本题考查待定系数法求函数解析式,用描点法画函数解析式,观察函数图像写函数性质,利用函数图像求不等式的解集,掌握待定系数法求函数解析式,用描点法画函数解析式,观察函数图像写函数性质,利用函数图像求不等式的解集是解题关键. 14.(1)()1,3-,3c a =-;(2)12t ≥;(3)15a ≤-或15a ≥ 【分析】(1)由题意可得D 在直线y =-3上且D 在二次数对称轴上,由此可以得到D 点坐标并求出c 与a 的关系式;(2)分a >0与a <0两种情况,根据二次函数的增减性进行求解;(3)把MN 用a 表示出来可以得到关于a 的不等式,解不等式即可得到a 的取值范围. 【解析】解:(1)由题意得D 在直线y =-3上且D 在二次数对称轴x 222b aa a-=-=-=1上, ①D (1-3),将其代入22y ax ax c =-+得-3=a -2a +c ,化简得c =a -3; (2)当a >0时,二次函数图象开口向上, 如图,抛物线的开口向上,当11t +≤,即0t ≤,此时:当1x t =+时,满足3y -≤,当x t =时,函数值最大,则22233,at at a at -+-≤- 解得:12t ≥,不合题意,舍去 当0<t <12时,则1<1t +<32,如图,此时:当1x t =+时,满足3y -≤,当x t =时,函数值最大,则22233,at at a at -+-≤- 解得:12t ≥,不合题意,舍去 当12t ≥时,则321t ≤+,如图,此时:当x t =时,满足3y -≤, 当+1x t =时,函数值最大,则()()22112133t y a t a t a at +=+-++-=- ∴ ()()2212133a t a t a at +-++-≤-恒成立, 1.2t ∴≥当a <0时,二次函数图象开口向下,此时函数有最大值3-,不满足233y at -≤≤-,此情况不存在; 综上12t ≥; (3)|MN |≥1即()223231ax ax a ax a -+---+-≥,即21ax ax a --≥①21ax ax a --≥(x ≥3恒成立要求a >0,其对称轴为x 1222b a a a -=-=-=, 只需要求x =3时21ax ax a --≥即9a -3a -a ≥1,解得15a ≥;①21ax ax a --≤-(x ≥3恒成立要求a ﹤0), 只需要求x =3时21ax ax a --≤-即9a -3a -a ≤-1, 解得15a ≤-.【点评】本题考查二次函数的综合应用,熟练掌握二次函数的图象与性质及二次函数、一次函数与不等式的关系是解题关键. 15.(1)1322y x =-;(2)m =-3或m =3;(3)49≤a <98或a ≤-2; 【分析】(1)用待定系数法直接将点A 和B 代入直线l 中然后得到关于k 和b 的二元一次方程没然后解方程即可得到k 和b 的值,然后得到l 的解析式;(2)根据题意可得,y =-x 2+2x -1,当y =-4时,有-x 2+2x -1=-4,x =-1或x =3; ①在x =1左侧,y 随x 的增大而增大,x =m +2=-1时,y 有最大值-4,m =-3; ①在对称轴x =1右侧,y 随x 增大而减小,x =m =3时,y 有最大值-4; (3)①a <0时,x =1时,y ≤-1,即a ≤-2;①a >0时,x =-3时,y ≥-3,即a ≥49,直线AB 的解析式为y =12x -32,抛物线与直线联立:ax 2+2x -1=x -32,①=94-2a >0,则a <98,即可求a 的范围; 【解析】解:(1)点A (-3,-3),B (1,-1)代入y =kx +b 可得:3=31k b k b --+⎧⎨-=+⎩解得:1232k b ⎧=⎪⎪⎨⎪=-⎪⎩①l 的解析式为:1322y x =-; (2)根据题意可得,y =-x 2+2x -1, ①a <0,①抛物线开口向下,对称轴为直线x =1, ①m ≤x ≤m +2时,y 有最大值-4, ①当y =-4时,有-x 2+2x -1=-4, ①x =-1或x =3,①在对称轴直线x =1左侧,y 随x 的增大而增大, ①x =m +2=-1时,y 有最大值-4, ①m =-3;①在对称轴直线x =1右侧,y 随x 增大而减小, ①x =m =3时,y 有最大值-4; 综上所述:m =-3或m =3; (3)①a <0时,x =1时,y ≤-1, 即a ≤-2;①a >0时,x =-3时,y ≥-3, 即a ≥49,直线AB 的解析式为y=12x -32,抛物线与直线联立:ax 2+2x -1=12x -32,①ax 2+32x +12=0,①=94-2a >0,①a <98,①a 的取值范围为49≤a <98或a ≤-2.【点评】本题考查二次函数的图象及性质,一次函数的图象及性质;熟练掌握待定系数法求解析式,数形结合,分类讨论函数在给定范围内的最大值是解题的关键.16.(1) y =x 2﹣x +2﹣3|x ﹣1|,补全表格见解析,(2) 函数图像见解析,当x =-1时,函数有最小值,最小值为-2;(3)x x 【分析】(1)将点(﹣1,﹣2)与(2,1)代入解析式即可; (2)画出函数图象,观察图象得到一条性质即可(3)根据图象,求出两个函数图象的交点坐标,通过观察可确定解解集. 【解析】解:(1)∵该函数图象经过(﹣1,﹣2)与(2,1)两点,∴12224221b c b c -+-=-⎧⎨++-=⎩,∴13b c =-⎧⎨=⎩, ∴y =x 2﹣x +2﹣3|x ﹣1|, 故答案为:y =x 2﹣x +2﹣3|x ﹣1|; 当x =-4时,y =7;当x =0时,y =-1; 补全表格如图,(2)函数图像如图所示,当x =-1时,函数有最小值,最小值为-2; (3)当x ≥1时,x 2﹣x +2﹣3x +3=x ,解得,1x =2x x 当x <1时,x 2﹣x +2+3x ﹣3=x ,解得,3x ,4x =x∴不等式x 2+bx +2﹣c |x ﹣1|≤x x x【点评】本题考查二次函数与不等式的关系;掌握描点法画函数图象,利用数形结合解不等式是解题的关键.17.(1)x =2,(2,-1);(2)答案见解析;(3)x <1或x >3【分析】(1)根据对称轴是2b x a =-,顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭,可得答案;(2)根据对称轴,可在对称轴的左边选两个,右边选两个,它们要关于对称轴对称,可填上表格,根据描点法,可得函数图象;(3)根据函数与不等式的关系,可得答案. 【解析】解:(1)抛物线243y xx =-+的对称轴是4222b x a -=-=-=, 4222b x a -=-=-=,()224344144ac b y a ⨯---===-①顶点坐标是(2,-1), 故答案为x =2,(2,-1); (2)列表:连线:(3)观察图象,函数图象在x 轴上方的部分的相应的自变量的取值范围为x <1或x >3, 即当x <1或x >3时,0y >.【点评】本题考查了二次函数图象与性质,函数与不等式的关系.熟悉掌握二次函数()20y ax bx c a =++≠的对称轴是2bx a =-,顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭是解(1)题的关键,会用描点法画函数图象是解(2)题的关键;了解函数与不等式的关系是解(3)题的关键.18.(1)①223y x x =-++,①4n =;(2)32m -≤≤-或m 1≥【分析】(1)①令x =3,则y=−x 2+2mx+4−m 2=0,解方程即可得到m 的值,从而得到二次函数的解析式;①由①可得二次函数的对称轴为x=1,然后根据二次函数的增减性可以得解;(2)令y =0,可以得到二次函数图象与x 轴交点,然后根据二次函数的增减性可以得解.【解析】(1)①二次函数为2()4y x m =--+,对称轴为x m =.令3x =有:2(3)40m --+=,解得:1m =或5m =.①(3,0)B 为该二次函数图象与x 轴靠右侧的交点,①点B 在对称轴右侧,①3m <,故1m =.①二次函数解析式为223y x x =-++.①由于二次函数开口向下,且对称轴为1x =.①2x n ≤≤时,函数值y 随x 的增大而减小;①当2x =时,函数取得最大值3;当x n =时,函数取得最小值2231n n n -++=--,①在2n >范围内解得4n =.(2)令0y =,得2()40x m --+=,解得12x m =-,2x m 2=+,将函数图象在x 轴上方的部分向下翻折后,新的函数图象增减性情况为:当2x m ≤-时,y 随x 的增大而增大,当2m x m -≤≤时,y 随x 的增大而减小,当2m x m ≤≤+时,y 随ⅹ的增大而增大,当2x m ≥+时,y 随x 的增大而减小.因此,若当21x -≤≤-时,y 随x 的增大而增大,结合图象有:①12m -≤-,即m 1≥时符合题意;①2m ≤-且12m -≤+,即32m -≤≤-时符合题意.综上,m 的取值范围是32m -≤≤-或m 1≥.【点评】本题考查二次函数的综合应用,熟练掌握二次函数解析式的求法、二次函数的对称轴与增减性是解题关键 .19.(1)12a =-,3b =-,174m =-;(2)见解析;(3)x 的取值范围是:-3≤x <0或1≤x≤2. 【分析】(1)先将(-1,2)和(1,-2)代入函数y=a (x -1)2+b x+1中,列方程组解出可得a 和b 的值,写出函数解析式,计算当x=4时m 的值即可;(2)描点并连线画图,根据图象写出一条性质即可;(3)画y=x -3的图象,根据图象可得结论.。
中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练函数及其图象1、坐标与象限定义1:我们把有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b)。
定义2:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴。
水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向。
两坐标轴的交点为平面直角坐标系的原点。
建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。
2、函数与图象定义1:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。
定义2:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
定义3:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
定义4:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。
这种式子叫做函数的解析式。
表示函数的方法:解析式法、列表法和图象法。
解析式法可以明显地表示对应规律;列表法直接给出部分函数值;图象法能直观地表示变化趋势。
画函数图象的方法——描点法:第1步,列表。
表中给出一些自变量的值及其对应的函数值;第2步,描点。
在直角坐标系中,以自变量的值为横坐标、相应的函数值为纵坐标,描出表格中数值对应的各点;第3步,连线。
按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来。
1、结合实例进一步体会用有序数对可以表示物体的位置。
2、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
九年级数学二次函数与反比例函数综合测试一.选择题(共10小题,满分40分,每小题4分)1.下列函数关系式中,是二次函数的是()A.y=x3﹣2x2﹣1 B.y=x2C.D.y=x+12.在下列关系式中,y是x的二次函数的关系式是()A.2xy+x2=1 B.y2﹣ax+2=0 C.y+x2﹣2=0 D.x2﹣y2+4=03.已知反比例函数y=,当x>0时,y随x的增大而增大,则关于x的方程ax2﹣2x+b=0的根的情况是()A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根4.如下图,等腰直角三角形ABC(∠C=90°)的直角边长与正方形MNPQ的边长均为4cm,CA 与MN在同一直线上,开始时A点与M点重合,让△ABC向右平移,直到C点与N点重合时为止,设△ABC与正方形MNPQ的重叠部分(图中阴影部分)的面积为ycm2,MA的长度为xcm,则y与x之间的函数关系大致为()A、 B C D5.如图,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°,动点P、Q同时以每秒1cm 的速度从点B出发,点P沿BA、AD、DC运动,点Q沿BC、CD运动,P点与Q点相遇时停止,设P、Q同时从点B出发x秒时,P、Q经过的路径与线段PQ围成的图形的面积为y(cm2),则y与x之间的函数关系的大致图象为()6.函数(k≠0)的图象如图所示,那么函数y=kx﹣k的图象大致是()A.B.C.D.7.已知反比例函数y=(a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y=﹣ax+a 的图象不经过( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限8.设反比例函数y=﹣(k ≠0)中,y 随x 的增大而增大,则一次函数y=kx ﹣k 的图象不经过( )9.二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=bx+a 的图象不经过( )10.二次函数y=ax 2+bx+c 的图象如图所示,则直线y=bx+c 的图象不经过( )二.填空题(共5小题,满分25分,每小题5分)11.关于x 的函数y=(m+1)x 2+(m ﹣1)x+m ,当m=0时,它是 _________ 函数;当m=﹣1时,它是 _________ 函数. 12.当m= _________ 时,函数是二次函数.13.已知抛物线y=ax 2+bx+c 的部分图象如下图1,若y >0,则x 的取值范围是 ______. A .B .C .D .A . 第一象限B . 第二象限C . 第三象限D . 第四象限A . 第一象限B . 第二象限C . 第三象限D . 第四象限A . 第一象限B . 第二象限C . 第三象限D . 第四象限14.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如下图2所示),则能使y1>y2成立的x的取值范围是____ .15.如上图3所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么a的值是______.三.解答题(共8小题,满分65分)16.已知反比例函数的图象经过点,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x轴的交点坐标.17.如图,已知A(﹣4,0),B(﹣1,4),将线段AB绕点O,顺时针旋转90°,得到线段A′B′.(1)求直线BB′的解析式;(2)抛物线y1=ax2﹣19cx+16c经过A′,B′两点,求抛物线的解析式并画出它的图象;(3)在(2)的条件下,若直线A′B′的函数解析式为y2=mx+n,观察图象,当y1≥y2时,写出x的取值范围.18.如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积.19.如图,A、B两点在函数y=m/x(x>0)的图象上.(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.20.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=12cm.点P从点C处出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,若一个点到达目的停止运动时,另一点也随之停止运动.运动时间为t秒;(1)用含有t的代数式表示BQ、CP的长;(2)写出t的取值范围;(3)用含有t的代数式表示Rt△PCQ和四边形APQB的面积;(4)当P、Q处在什么位置时,四边形PQBA的面积最小,并求这个最小值.21.为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?22.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2)(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.23.我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:(1)在图1中,抛物线所对应的二次函数的最大值是_________ ;(2)在图2中,相距4km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:①作图确定水塔的位置;②求出所需水管的长度.(3)已知x+y=6,求+的最小值;此问题可以通过数形结合的方法加以解决,具体步骤如下:①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA= _________ ,DB= _________ ;②在AB上取一点P,可设AP= _________ ,BP= _________ ;③+的最小值即为线段_________ 和线段_________ 长度之和的最小值,最小值为_________ .。
二次函数与其他函数的综合测试题2•在地表以下不太深的地方,温度y (C)与所处的深度x ( k m之间的关系可以近似用关系式y= 35x + 20表示,这个关系式符合的数学模型是( )(A)正比例函数(B)反比例函数.(C)二次函数(D) —次函数则m的取值范围是( )1 1(A n< 0 (B) n>0 (C) m< ( D) m> -2 2k4. 函数y = k x + 1与函数y 在同一坐标系中的大致图象是( )XdLy Ay 组*y(A) (B) (C)( D)y ax2 (a c)x c与一次函数y= a x+ c的大致图像,5.下列各图是在同一直角坐标系内,二次函数)A. (1 , 1)B. (1,- 1)C. (- 1, 1)D. (- 1,- 1)7.函数y=a x+b与y=a x2+bx+c的图象如右图所示,贝U下列选项中正确的是(A . a b>0, c>0B a b<0, c>0C . a b>0, c<0D a b<0, c<0&已知a, b,ac均为正数,且k=b c,在下列四个点3. 若正比例函数y=( 1 - 2m x的图像经过点y i)和点B( X2, y2),当X!< X2 时y! > y2 ,选择题:(每小题3分,共45分)t为时间),则函数图象为(正比例函数y kx的图像一定经过的点的坐标是( )1 1A • (I , -)B • (I , 2)C • (I )2 29.如图,在平行四边形ABCDK AC=4, B D=6 P是BD上的任一点,过P作EF// AC与平行四边形的两条边分别交于点E, F.设BPx, EF=y,则能反映y与x之间关系的图象为 .............( )Cl)_ 212 .二次函数y=x-2x+2有A.最大值是1C .最小值是154(A y x,y x 2 ,y一2x54(B y-x ,y x 2 ,y—2x54(C y x,y x 2 ,y2x54(D y x,y x 2 ,y2x11 . 张大伯出去散步,从家走了20分钟,的阅报亭,看了10分钟报纸后, 用了15关系( )10•如图4,函数图象①、②、③的表达式应为(F面哪个图形表示张大伯离家时间与距离之间的13 .设A (X1, yj、 B(X2,y2)是反比例函数-图象上的两点,若xX1<X2<0,贝U y1与y2之间的关系是( )A. y2< y1<014 .若抛物线y=x2-6x+c的顶点在x轴上,则B. y1 < y2<0 C . y2> D . y1> y2>0y1>0c的值是()A. 9 B C . -9 D . 015 .二次函数y3x 3的图象与x轴交点的个数是( )2(.最大值是.最小值是D . (1,—1)x3•看图,解答下列问题.A . 0个B . 1个 C. 2个 D.不能确定二、填空题:(每小题3分,共30分) 1•完成下列配方过程:2 2x 2 px 1 = x 2px ________________ __________2•写出一个反比例函数的解析式, 使它的图像不经过第一、第三象限:2上的一点,F D 丄x 轴于点0则厶F OD 的面积为x无交点. 7•某商场销售一批名牌衬衫,平均每天可售出 采取了降价措施,经调查发现如果每件计划降价 要赢利1200元,则每件衬衫应降价____________________________________________ ,&某学生在体育测试时推铅球,铅球所经过的路线是二次函数图像的一部分,如果这名学生出手处为 (0, 2),铅球路线最高处为 B (6, 5),则该学生将铅球推出的距离是29.二次函数y ax bx c(a 0)的图像与x 轴交点横坐标为一2, b ,图像与y 轴交点到圆点距离为3, 则该二次函数的解析式为k10.如图,直线y kx 2(k 0)与双曲线y 在第一象限内的交点xR 与x 轴、y 轴的交点分别为 P 、Q 过R 作RMLx 轴,M 为垂足, 若厶OPQf APRM 勺面积相等,则k 的值等于 _______________________ .三、解答题:(1-3题,每题7分,计21分;4 — 6题每题8分,计 24分;本题共45分)1已知二次函数 y x 2 bx c 的图像经过 A (0, 1) , B (2, - 1)两点. (1) 求b 和c 的值;(2) 试判断点P (- 1, 2)是否在此函数图像上?82.已知一次函数 y kx k 的图象与反比例函数y 的图象交于点F (4 , n ). x(1 )求n 的值.(2)求一次函数的解析式.4、已知实数 m 满足m 2 m0,当 m =.时,函数y x mm 1x m 1的图象与x 轴3.如图,点 P 是反比例函数5.二次函数 x 2(2m 1)x (m 2 1)有最小值0,则m =6.抛物线yx 2 2x 3向左平移5各单位,再向下平移2个单位,所得抛物线的解析式为 20件,每件可 盈利40元.为了扩大销售量,增加盈利, 1元,那么商场平均每天可多售出2件.若商场平均每天(1)求经过A B、C三点的抛物线解析式;(2 )通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.4. 已知函数y=x+bx-1的图象经过点(3, 2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y的x的取值范围.5. 某工厂设门市部专卖某产品,该产品每件成本40元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:假设当天定的售价是不变的,且每天销售情况均服从这种规律.(1)观察这些统计数据,找出每天售出件数y与每件售价x (元)之间的函数关系,并写出该函数关系式.(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元.求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)6. 如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.(1) (2)(1) 一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;(2) 为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行.求这时木板到地面的距离(供选用数据:V3.36 ~1 .8 ,J3.64 ~1 .9 , v'4.36 ~2.1 )27.已知抛物线y = —x + mx- m^2.(I)若抛物线与x轴的两个交点A B分别在原点的两侧,并且AB= 5,试求m的值;(H)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M N,并且 △ MNC 勺面积等于27,试求m 的值.四、附加题(每题 10分,共20分)&已知抛物线 y mx (m 5)x 5(m 0)与x 轴交于两点人(为,0)、B(x 2,0)(X i X 2),与y 轴交于点c,且AE =6.(1 )求抛物线和直线 BC 的解析式. (2)在给定的直角坐标系中,画出抛物线和直线 BC(3) 若e P 过A 、E C 三点,求e P 的半径. (4) 抛物线上是否存在点 M 过点M 作MNx 轴于点N,使 MBN 被直线BC 分成面积比为1 3的两部 分?若存在,请求出点 M 的坐标;若不存在,请说明理由.+ y解:⑴依题歆得,14 + 26 + c =-】.詢彳专b = - = L(2)由(1)知二次函数为护-滋+ 1.① 把玄=- 1代人①,得y = l+3+ 1 = 5*2. 儿点P(-l,2)不在此函数图像上”82.解:(1)由题意得:n —,4-一、选择题: 1 . A 2 . D 3 .D 4 .B 5 9 .A 10 . C 11 . D 12 .C 13 .C 14 . -二二 、填空题: 1 P 2 , 1 2 P , P , 1 2P .2 25y =3 .142或一15 .x4& 6 + 2 59 . y1 x 2x3或 y4.D 6 .A 7 . D 8 .AA 15 . C6 . y x 2 8x 107 . 10元或20元1 2 x x 310 . 2.241.n 2.参考答案:三、解答2(2)由点P (4, 2)在y kx k 上,2 4k k, k52 2 一次函数的解析式为y ^x -.5 53•解:(1)由图可知A (- 1,—1), B( 0,—2), C( 1, 1)2设所求抛物线的解析式为y= ax + bx+ ca b c1,a2,依题意,得c2,解得b1,2y= 2x + x—2a b c1c2/ 1、2172(2) y= 2x + x —2= 2(x + )—481 17 1 - 顶点坐标为(一一,一),对称轴为x =—-4 8 4(3) 图象略,画出正确图象4. 解:(1)函数y=x2+bx-1的图象经过点(3, 2)2••• 9+3b-1=2,解得b=-2 . 函数解析式为y=x-2x-1(2)y=x2-2x-1=( x-1) 2-2,图象略,图象的顶点坐标为(1, -2 )(3)当x=3时,y=2, 根据图象知,当x>3时,y>2•••当x>0时,使y >2的x的取值范围是x>3.5. 解:(1)由统计数据知,该函数关系为一次函数关系,每天售出件数y与每件售价x之间的函数关系为:y 600 6x .(2)当y 168 时,168 6x 600,解得:x 72 ;设门市部每天纯利润为z ①当x 72时,y 168z x 40 6006x 4036x 7025280当x70时,Z max5280z x40 6006x 40 2②当x 72时,y 16826x 705320x 70时,y随x的增大而减少x 72 时,z max 6 225320 52965296 5280 当x 72时,纯利润最大为5296元.6.解:(1)如图,建立直角坐标系,2设二次函数解析式为 y = ax + cD (- 0.4 , 0.7 ), B (0.8 , 2.2 ),=28a= ~5, •绳子最低点到地面的距离为c =0.2.(2)分别作 EG! AB 于 G FH! AB 于 H,AG= - (AB- EF )= - (1.6 — 0.4 )= 0.6 . 2 2在 Rt △ AGE 中, AE= 2, EG= £AE 2— AG 2 = W 0.62 = J 3.64 -1 .9 .• 2.2 — 1.9 = 0.3 (米).• 木板到地面的距离约为0.3米.27. 解:(I)设点 A (X 1, 0), B (x 2, 0),则 X 1 , X 2 是方程 x — m 灶 n — 2= 0 的两根.■/ X 1 + X 2 = m , X 1 • X 2 = m — 2 v 0 即 m< 2;(1) (2)又AB=| X1 x2 |= .—4X 1X 25,二 m 2— 4m+3=0解得:m=1或m =3(舍去),• m 的值为1 .(II )设 Ma , b ),则 N ( — a , — b ).•/ M N 是抛物线上的两点,a 2 ma m 2 b,L ① a 2 ma m 2 b.L ②2①+②得:—2a — 2m+ 4= 0 . •a 2=— m+ 2..••当2时,才存在满足条件中的两点 M N.这时 M N 到y 轴的距离均为J 2 m ,C 坐标为(0 , 2— m ),而 S A M N C = 27 , • 2X - x( 2 — m X 72~=27 .2又点 •••解得 m =— 7 .0.16a + c =0.7, 0.64a + c =2.2.0.2 米.m 5&解:(1)由题意得:x 1 x 2 -------------------, x 1 X 25 ,X 2 mX i 6.2/ 、2 ,“ m 5(% x 2)4%X 2 36,m2036, 解得m 1 1,m 2经检验n =1,A 抛物线的解析式为:x 24x 5. (或:由 mx 2(m 5)x0得,5x ——mQ m> 0, 1 — 6, m1.抛物线的解析式为x 2 4x 5.由x 24x 5 0 得x 15, X 2 1 ••• A (-5 , 0),0), C (0, -5 )•设直线 BC 的解析式为ykx b,5, b 0.•直线 BC 的解析式为y 5x 5. ⑵图象略. (3)解法一:在 RtDAOC 中,QOA OC 5, 又 BC 、OB 2 OC 2 ,26, • e P 的半径 解法二: 由题意,圆心 P 在AB 的中垂线上,即在抛物线 -h ) ( h >0),连结PB P C ,则 PB 2 (1 2)2 h 2, PC 2(5 5, 5.OAC PB45BPC 90 •2x 4x 5的对称轴直线x,设 P (-2 ,由PB 2PC 2,即(1 2)2h 2 P( 2, 2), e P 的半径 PBh)2 22, (5 h)222,解得 h =2.• (1 2)222 13 .解法三:延长CP 交e P 于点F .Q CF 为e P 的直径, 又 ABC AFC , CF CAF DACF ~ AC AC BC COB D OCB. •90 .BCCFOCOC又AC、52 52 5、2, CO5, BC 52 12 26 ,CF e P 的半径为.13.(4)设MN 交直线BC 于点E ,点M 的坐标为(t , t 2 4t 5),则点E 的坐标为(t ,5t 5)若S D MEB : S DENB1: 3,则ME:EN 1: 3.EN : MN 3:4, t2 4t 5 4(5t 5).3解得t1 1 (不合题意舍去),t25M 5 403 3 9右S DMEB:S DENB3: 1,则ME:EN3:1 .EN : MN 1:4, t2 4t 54(5t5)解得t3 1 (不合题意舍去),t415 , M15,280存在点5M点M的坐标为-,■40十或(15, 280).39。
第23章《二次函数与反比例函数》中考题集(10)
23.3. 二次函数y=ax2+bx+c的图象和性质
填空题
241.(2005•梅州)根据图中的抛物线,当时,y随x的增大而增大,当时,y 随x的增大而减小,当时,y有最大值.
242.(2005•辽宁)抛物线y=x2﹣6x+21的顶点坐标是.
243.(2005•枣庄)已知抛物线y=ax2+bx+c经过点A(﹣2,7)、B(6,7)、C(3,﹣8),则该抛物线上纵坐标为﹣8的另一点坐标为.
244.(2005•常州)已知抛物线y=x2﹣6x+5的部分图象如图,则抛物线的对称轴为直线
x= ,满足y<0的x的取值范围是,将抛物线y=x2﹣6x+5向平移个单位,则得到抛物线y=x2﹣6x+9.
245.(2008•青海)二次函数y=ax2+bx+c图象如图所示,则点A(b2﹣4ac,﹣)在第象限.
246.(2008•常州)已知二次函数y=﹣x2+2x+c的部分图象如图所示,则c= ;当x 时,y随x的增大而减小.
247.(2007•孝感)二次函数y=ax2+bx+c的图象如图所示,且P=|a﹣b+c|+|2a+b|,Q=|a+b+c|+|2a ﹣b|,则P、Q的大小关系为P Q.
248.(2007•南宁)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第象限.
249.(2006•宁波)若二次函数y=ax2+2x+a2﹣1(a≠0)的图象如图所示,则a的值是.
250.(2006•辽宁)已知二次函数y=ax2+bx+c(a≠0),其中a,b,c满足a+b+c=0和9a﹣3b+c=0,则该二次函数图象的对称轴是直线.
251.(2006•大连)如图是二次函数y=ax2﹣x+a2﹣1的图象,则a的值是.
253.(2008•白银)抛物线y=x2+x﹣4与y轴的交点坐标为.
254.(2007•黑龙江)抛物线y=x2+bx+3经过点(3,0),则b的值为.255.(2006•攀枝花)已知抛物线y=ax2+bx+c经过点(1,3)与(﹣1,5),则a+c的值是.256.(2006•长春)函数y=x2+bx﹣c的图象经过点(1,2),则b﹣c的值为.257.(2005•黑龙江)已知抛物线y=ax2+bx+c经过点(1,2)与(﹣1,4),则a+c的值是.
258.(2010•西宁)将抛物线y=2(x﹣1)2先向左平移1个单位后所得到的新抛物线的表达式为.
259.(2010•泸州)在平面直角坐标系中,将二次函数y=(x﹣2)2+2的图象向左平移2个单位,所得图象对应的函数解析式为.
260.(2010•郴州)将抛物线y=x2+1向下平移2个单位,则此时抛物线的解析式是.
261.(2009•上海)将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是.
262.(2009•黄石)若抛物线y=ax2+bx+3与y=﹣x2+3x+2的两交点关于原点对称,则a、b 分别为、.
263.(2009•鄂州)把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c= .
264.(2008•天津)已知抛物线y=x2﹣2x﹣3,若点P(﹣2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是.
265.(2008•南昌)将抛物线y=﹣3x2向上平移一个单位后,得到的抛物线解析式是.
266.(2012•宜城市模拟)将抛物线y=ax2+bx+c(a≠0)向下平移3个单位,再向左平移4
个单位得到抛物线y=﹣2x2﹣4x+5,则原抛物线的顶点坐标是.
267.(2007•沈阳)将抛物线y=2(x+1)2﹣3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为.
268.(2007•淮安)把函数y=x2﹣1的图象沿y轴向上平移1个单位长度,可以得到函数的图象.
269.(2006•梅州)将抛物y=﹣(x﹣1)2向左平移1个单位后,得到的抛物线的解析式是.
270.(2005•上海)如果将二次函数y=2x2的图象沿y轴向上平移1个单位,那么所得图象的函数解析式是.
第23章《二次函数与反比例函数》中考题集(10):23.3.
二次函数y=ax2+bx+c的图象和性质
参考答案
填空题
241.x<2x>2x=2 242.(6,3)243.(1,-8)244.31<x<5上4 245.四246.3>1 247.<248.三249.-1 250.x=-1 251.1 253.(0,-4)
254.-4 255.4 256.1 257.3 258.y=2x2259.y=x2+2 260.y=x2-1
261.y=x2-1 262. 3 263.11 264.(4,5)265.y=-3x2+1 266.(3,10)267.y=2x2268.y=x2269.y=-x2270.y=2x2+1。