人教版八年级数学上册15.2 分式 同步训练含答案
- 格式:pdf
- 大小:222.75 KB
- 文档页数:7
八年级数学(上)15.2 分式的运算知识网络重难突破知识点一分式的约分约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去。
最简公式的定义:分子与分母没有公因式的分式。
分式约分步骤:1)提分子、分母公因式2)约去公因式3)观察结果,是否是最简分式或整式。
注意:1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式典例1(2019·西城区期中)下列各式约分正确的是( )A.B.C.D.典例2(2019·静安区期中)下列分式中,是最简分式的是()A.22222x yx xy y--+B.C.D.典例3(2020·泰安市期中)化简的结果是()A.1x-B.C.D.典例4(2019·宁阳县期中)下列运算正确的是()A.B.C.D.典例5(2019·临淄区期中)下列分式中,最简分式是( )A.615xB.236xx--C.D.22a ba b-+知识点二分式的通分通分的定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
分式通分的关键:确定最简公分母确定分式的最简公分母的方法1.因式分解2.系数:各分式分母系数的最小公倍数;3.字母:各分母的所有字母的最高次幂4.多项式:各分母所有多项式因式的最高次幂5.积约分与通分的相同点:典例1(2019·绵阳市期末)分式的最简公分母是()A.B.C.D.典例2(2019·郓城县期末)分式,,的最简公分母是( )A .(a²-2ab+b²)(a²-b²)(a²+2ab+b²)B .(a+b )²(a -b )²C .(a+b )²(a -b )²(a²-b²)D . 44a b -典例3(2019·市中区期末)下列各题所求的最简公分母,错误的是 ( ) A .的最简公分母是6x 2 B .的最简公分母是6a 2b 2cC .的最简公分母是x 2-9D .的最简公分母是mn (x+y )·(x -y )典例4 (2018·五莲县期末)把分式-xx y,,的分母化为x 2-y 2后,各分式的分子之和是( ) A .x 2+y 2+2 B .x 2+y 2-x +y +2 C .x 2+2xy -y 2+2D .x 2-2xy +y 2+2 典例5(2018·聊城市期末)把、、通分过程中,不正确的是( )A .最简公分母是(x -2)(x +3)2B .C .D .知识点三 分式的四则运算与分式的乘方1)分式的乘除法法则:用分子的积作为积的分子,分母的积作为积的分母。
人教版八年级数学上册《15.2 分式的运算》练习题-附参考答案一、选择题1.2020−1的值是()A.-2020 B.−12020C.12020D.12.计算a2b3⋅2b23a2的结果是()A.23a B.23b C.2bD.23b3.计算xx+1+1x+1的结果是()A.1 B.x+1C.1x+1D.x( x+1 )24.计算:(m+2+52−m )⋅2m−43−m=()A.﹣2m﹣6 B.2m+6 C.﹣m﹣3 D.m+35.一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B.m+n2C.mnm+nD.m+nmn6.如果m=y x−x y,n=y x+x y那么m2−n2等于()A.4 B.2y2x2C.0 D.-47.已知ab =3,则a2−4ab+4b2a(a−2b)+2b(a−2b)的值为()A.0 B.15C.1 D.58.a、b为实数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1则P和Q的大小关系是()A.P>Q B.P<Q C.P=Q D.不能确定二、填空题9.计算:c2a ⋅a2bc= .10.计算:(13)−1+(−2)3×(π−2)0= ;11.化简:3y2x−2y +2xyx2−xy的计算结果是.12.计算a−1a ÷(a−1a)的结果是.13.若1a +1b=3,则分式2a+2b−5ab−a−b的值为.14.计算或化简(1)(2)15.先化简,再求值:,其中x的值从的整数解中选取.16.先化简,再求值:(2m2−4m2−1)÷m2+2mm2,其中m=(12)−1+(3.14−π)0.17.若x=a+ba−b ,y=b+cb−c,z=c+ac−a设M=(x+1)(y+1)(z+1)(1)请你任意给出一组a,b,c的值,计算出M和N的值;(2)猜想M和N的大小关系,并证明.1.C 2.D 3.A 4.A 5.C 6.D 7.B 8.C9.acb 10.-511.7y2x−2y12.1a+113.−1314.(1)解:原式= == ;(2)解:原式== . 15.解:;∵,且∴当时,原式16.解:(2m2−4m2−1)÷m2+2mm2=m2−4m2÷m2+2mm2=(m+2)(m−2)m2·m2 m(m+2)=m−2m∵m=(12)−1+(3.14−π)0∴m=2+1=3当m=3时,原式=3−23=13.17.(1)解:a=1,b=0,c=−1(a,b,c互不相等即可).x=a+ba−b =1,y=b+cb−c=−1,z=c+ac−a=0.M=(x+1)(y+1)(z+1)=(1+1)(−1+1)(0+1)=0.N=(x−1)(y−1)(z−1)=(1−1)(−1−1)(0−1)=0.(2)解:猜想M=N.证明:M=(x+1)(y+1)(z+1)=(a+ba−b +1)(b+cb−c+1)(c+ac−a+1)=2aa−b⋅2bb−c⋅2cc−a=8abc(a−b)(b−c)(c−a).N=(x−1)(y−1)(z−1)=(a+ba−b −1)(b+cb−c−1)(c+ac−a−1)=2ba−b⋅2cb−c⋅2ac−a=8abc(a−b)(b−c)(c−a).∴M=N.。
人教版 八年级数学上册 第15章 分式方程及其应用(含答案) 例1. 解方程:x x x --+=1211 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以,得()()x x +-11 x x x x x x x x x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。
例2. 解方程x x x x x x x x +++++=+++++12672356 解:原方程变形为:x x x x x x x x ++-++=++-++67562312 方程两边通分,得 167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =-92。
例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+-- 解:由原方程得:3143428932874145--++-=--++-x x x x 即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。
1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--== 例4. 解方程:61244444402222y y y y y y y y +++---++-=2 解:原方程变形为:622222220222()()()()()()()y y y y y y y y ++-+--++-= 约分,得62222202y y y y y y +-+-++-=()()方程两边都乘以()()y y +-22,得 622022()()y y y --++= 整理,得经检验:是原方程的根。
21688y y y =∴==5、中考题解:例1.若解分式方程产生增根,则m 的值是( )2111x x m x x x x +-++=+A. B. --12或-12或C. D. 12或12或- 分析:分式方程产生的增根,是使分母为零的未知数的值。
15.2分式的运算专题一 分式的混合运算1.化简221111x x ⎛⎫-÷ ⎪+-⎝⎭的结果是( ) A . ()21x 1+ B .()21x 1- C .()21x + D .()21x - 2.计算211x x x ---.3.已知:22x x y x +6+9=-9÷2x x x+3-3-x +3.试说明不论x 为任何有意义的值,y 的值均不变.专题二 分式的化简求值4.设m >n >0,m 2+n 2=4mn ,则22m n mn -的值等于( ) A .23B .3C .6D . 35.先化简,再求值:b a b b a b ab a +++2222-2-,其中a =-2,b=1.6.化简分式222()1121x x x x x x x x --÷---+,并从—1≤x ≤3中选一个你认为适合的整数x 代入求值.状元笔记 【知识要点】 1.分式的乘除乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 上述法则用式子表示为d b c a d c b a ⋅⋅=⋅,c b d a c d b a d c b a ⋅⋅=⋅=÷. 2.分式的乘方分式乘方要把分子、分母分别乘方.用式子表示为()nn n a a b b=. 3.分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则用式子表示为a b a b c c c ±±=,a c ad bc ad bc b d bd bd bd ±±=±=. 4.负整数指数幂1n n a a-=(a ≠0),即a -n (a ≠0)是a n 的倒数. 5.用科学记数法表示小于1的正数小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【温馨提示】1.分式的运算结果一定要化为最简分式或整式.2.分式乘方时,若分子或分母是多项式,要避免出现类似2222()a b a b c c++=这样的错误. 3.同分母分式相加减“把分子相加减”就是把各个分式的“分子整体”相加减,各分子都应加括号,特别是相减时,要避免出现符号错误.【方法技巧】1.分式的乘除运算归根到底是乘法运算,其实质是分式的约分.2.除式或被除式是整式时,可把它们看作分母是1的分式,然后依照除法法则进行计算.参考答案:1.D 解析:原式=2)1()1)(1(11)1)(1(1121-=+-⋅+-=-+÷+-+x x x x x x x x x .故选D . 2.原式221(1)(1)11111x x x x x x x x +-+-=-==---. 3.解:22x x y x +6+9=-9÷2x x x+3-3-x +3 =2(3)(3)(3)x x x ++-×()x x x -3+3-x +3 =x -x +3 =3.根据化简结果与x 无关可以知道,不论x 为任何有意义的值,y 的值均不变.4.A 解析:∵224m n mn += ∴2226m n mn mn ++=,2222m n mn mn +-=, ∴()22()()()6223m n m n m n m n mn mn mn +-+⋅-⋅===,选择A . 5.解:原式=b a b b a b a b a ++-+-))(()(2=ba b b a b a +++-=b a b b a ++-=b a a +, 当a =2-,1=b 时,原式=2122=+--. 6.解:原式=22221()11x x x x x x x x-+-⋅--- =22(1)(1)1(1)(1)(1)(1)x x x x x x x x x x x --⋅-⋅--+-- =111x -+ =1x x +. ∵x ≠-1,0,1∴当x =2时,原式=22213=+.。
精品第十五章 15.2 分式的运算学校:姓名:班级:考号:一、选择题()A. 2B.C.D. -22. 下列计算正确的是()A. +=B. +=C. -=D. +=3. 化简+的结果是()A. x+1B. x-1C. -xD. x4. 已知-=,则的值是( )A. B. - C. 2 D. -25. 计算,结果是( )A. x-2B. x+2 C. D.6. 计算-的结果为()A. B. - C. -1 D. 1-a7. 计算·÷得()A. x5B. x5yC. y5D.xy58. 计算·,其结果为()A. B. C. D.9. 某人骑自行车匀速爬上—个斜坡后立即匀速下坡回到出发点,若上坡速度为v1,下坡速度为v2,则他上、下坡的平均速度为()A. B. C. D.10. 分式++的结果是()A. B. C. D.评卷人得分二、填空题11. 化简得________;当m=-1时,原式的值为________.12. 已知ab=-1,a+b=2,则式子+=______.13. 化简:÷=.14. 对于实数a,b,定义运算如下:ab=例如,24=2-4=,计算[22]×[(-3) 2]= .15. 计算:-=________.三、解答题2 014时,求代数式÷-+1的值”时,聪聪认为x只要任取一个使原式有意义的值代入都有相同的结果.你认为他说的有道理吗?请说明理由.17. 观察下面一列分式:,-,,-,….(其中xy≠0)(1)用任意一个分式除以它的前一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的这列分式中的第七个分式.四、计算题(1)++;(2)-+-.19. 计算:(1)·;(2)÷8x2y;(3)(a2-a)÷;(4)÷·.20. 先化简,再求值:·÷.其中a为整数且-3<a<2.21. 先化简:÷,然后从-1≤x≤2中选一个合适的整数作为x的值代入求值.参考答案精品1. 【答案】A【解析】÷=÷=÷=2.2. 【答案】D【解析】由分式的加减法法则:异分母的分式相加减,应先通分,变为同分母的分式,再加减,可知D选项正确.A选项,+=;B选项,+=;C选项,.-=.3. 【答案】D【解析】+=-===x.故选D.4. 【答案】D【解析】∵-==,∴=-2,故选D.5. 【答案】B【解析】==x+2.故选B.6. 【答案】C【解析】原式===-1,故选C.7. 【答案】A【解析】原式=·÷=··=x5.故选A.8. 【答案】D【解析】·=·==,故选D.9. 【答案】D【解析】设斜坡长度为s,则上坡时间为,下坡时间为,所以上、下坡用的总时间为+,故其上、下坡的平均速度=总路程÷总时间==.故选D.10. 【答案】D【解析】原式=++==.故选D.11. 【答案】 112. 【答案】-613. 【答案】m-614. 【答案】15. 【答案】-17.(1) 【答案】∵÷=-,÷=-,÷=-,…,故可发现任意一个分式除以它的前一个分式,其商都为-.(2) 【答案】由第1问中的规律可得这列分式中的第七个分式为:·=·=.18. 【答案】原式=-+-=-+-=--+=--=-===.19. 【答案】原式=··=.20. 【答案】解:·÷=·÷(3分)=··(a+1)(a-1)(4分)=a(a+1).(5分)[注:结果为a2+a不扣分.a2+2a=a(a+2),a2-2a+1=(a-1)2,a2-1=(a+1)(a-1)各1分]∵a≠±1,-2时分式有意义,又∵-3<a<2且a为整数,∴a=0.(7分)∴当a=0时,原式=0×(0+1)=0.(8分)21. 【答案】原式=÷=·=当x=0时,结果为1(当x=1时,结果为3)。
15.2.2 分式的加减 第1课时 分式的加减学习目标:1.熟练地进行同分母的分式加减法的运算.2.会把异分母的分式通分,转化成同分母的分式相加减. 预习阅读教材=,完成预习内容. 知识探究 观察思考:(1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,________不变,把分子________. 异分母分数相加减,先________,再把________相加减. 类比分数的加减,你能说出分式的加减法则吗?1.同分母分式相加减,________不变,把________相加减. 用字母表示为:a c +b c =________;a c -bc=________.2.异分母分式相加减,先________,变为________的分式,再________. 用字母表示为:a b +c d =________;a b —cd =________.自学反馈1.y x +2x =________.2.5y -a y =________.3.a x +b y =________.4.2x 3m -x2n=________.活动1 小组讨论例1.(1)课本问题3中的1n +1n +3=2n +3n (n +3).(2)课本问题4中的s 3-s 1s 2-s 2-s 1s 1=s 1(s 3-s 1)-s 2(s 2-s 1)s 1s 2.例2.计算:(1)5x +3y x 2-y 2-2x x 2-y 2; (2)12p +3q +12p -3q .解:(1)原式=5x +3y -2x x 2-y 2=3x +3y (x +y )(x -y )=3(x +y )(x +y )(x -y )=3x -y. (2)原式=2p -3q (2p +3q )(2p -3q )+2p +3q (2p +3q )(2p -3q )=2p -3q +2p +3q (2p +3q )(2p -3q )=4p4p 2-9q 2.活动2 跟踪训练 1.计算:(1)x +1x -1x ; (2)a b +1+2a b +1-3a b +1.2.计算:(1)12c 2d +13cd 2; (2)32m -n -2m -n (2m -n )2; (3)a a 2-b 2-1a +b .点拨:1.在分式有关的运算中,一般总是先把分子、分母分解因式; 2.注意:过程中,分子、分母一般保持分解因式的形式.课堂小结1.分式加减运算的方法思路:异分母相加减――→通分转化为同分母相加减――→分母不变分子(整式)相加减2.分式相加减时,如果分子是一个多项式,要将分子看成一个整体,先用括号括起来,再运算,可减少出现符号错误.3.分式加减运算的结果要约分,化为最简分式(或整式).第2课时 分式的混合运算学习目标1.灵活应用分式的加减法法则. 2.会进行分式加减乘除混合运算. 预习阅读教材“例7、例8”,完成预习内容. 知识探究1.同分母的分式相加减,________不变,分子相加减.异分母的分式相加减:先________,化为____________,然后再按________分式的加减法法则进行计算.分式加减的结果要化为________.2.分数的混合运算顺序是________________________.类比分数的混合运算法则你能猜想出分式的混合运算顺序吗?试一试. 分式的混合运算顺序是________________________.自学反馈 计算:(1)1-3x 2y ÷3x 2y ·2y 3x ; (2)1+1a -1-2a +1a 2+a -2; (3)⎝ ⎛⎭⎪⎫-a b 2÷⎝ ⎛⎭⎪⎫2a 5b +a 25b .点拨:严格按照计算顺序计算,在计算过程中,分式前面是“-”号时,计算时一定要注意符号变化.活动1 小组讨论计算:(1)(x 2y )2·y 2x -x y 2÷2y 2x ; (2)x +1x ·(2x x +1)2-(1x -1-1x +1).解:(1)原式=x 24y 2·y 2x -x y 2·x 2y 2=x 8y -x 22y 4=xy 38y 4-4x 28y 4=xy 3-4x28y4. (2)原式=x +1x ·4x 2(x +1)2-[x +1(x +1)(x -1)-x -1(x +1)(x -1)] =4x x +1-2(x +1)(x -1)=4x (x -1)(x +1)(x -1)-2(x +1)(x -1)=4x 2-4x -2(x +1)(x -1).活动2 跟踪训练 1.计算:x +y +x 2+y2x -y .2.先化简,再求值:x -y x +2y ÷x 2-y2x 2+4xy +4y2-2,其中x =2.25,y =-2.点拨:在运算过程中,要注意分式乘方不要漏乘;加减计算要注意符号;和整数或整式相加减时注意把整式或整数看成分母是1的整式或整数,通分后再计算;化简求值,一定要换成最简分式再求值. 课堂小结 1.“把分子相加减”就是把各个分式的分子“整体”相加减.在这里要注意分数线的作用.2.注意分式和分数有相同的混合运算顺序:先乘方,再乘除,然后加减.3.运算结果,能约分的要约分,要化成最简分式.课堂小练一、选择题1.化简的结果是()A.x+1B.x﹣1C.﹣xD.x2.已知,则的值是()A. B.﹣ C.2 D.﹣23.计算的正确结果是()A.0B.C.D.4.计算:的结果为()5.计算﹣a﹣1的正确结果是( )A.﹣ B. C.﹣ D.6.如图所示的分式化简,对于所列的每一步运算,依据错误的是( )A.①:同分母分式的加减法法则B.②:合并同类项法则C.③:提公因式法D.④:等式的基本性质二、填空题7.化简1x +3+6x 2-9的结果是________.8.计算: += .9.计算:﹣= .10.= .11.化简:= .12.计算:﹣= .13.计算: += .14.计算的结果是___________15.计算:a a +2-4a 2+2a=________.参考答案1.D .2.D3.C4.A5.答案为:A .6.答案为:D7.答案为:1x -3;8.答案为:x+1 9.答案为:1. 10.答案为:a ﹣3. 11.答案为:x+y.12.故答案为:.13.答案为:2 14.答案为:.15.答案为:a -2a。
2024-2025学年人教版数学八年级上册同步专题热点难点专项练习专题15.2 分式方程的应用(专项拔高30题)考试时间:90分钟试卷满分:100分难度:0.56姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•磁县期末)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用22秒通过AC路段,其中通过BC路段的速度是通过AB路段速度的1.2倍,则小敏通过AB 路段时的速度是()A.0.5米/秒B.1米/秒C.1.5米/秒D.2米/秒2.(2分)(2023春•衡山县期末)某市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,共有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③,剩下的工程由乙队单独做,也正好如期完工.某同学设规定的工期为x天,根据题意列出了方程:,则方案③中被墨水污染的部分应该是()A.甲乙合作了4天B.甲先做了4天C.甲先做了工程的D.甲乙合作了工程的3.(2分)(2023•裕华区校级二模)某工厂计划生产1500个零件,但是在实际生产时,…,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“…”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成4.(2分)(2021秋•交口县期末)瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来将提高50%,行驶时间缩短2h,那么汽车原来的平均速度为()A.80km/h B.70km/h C.75km/h D.65km/h5.(2分)(2020秋•凉山州期末)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.乙骑自行车的速度是()米/分.A.600 B.400 C.300 D.1506.(2分)(2023•巧家县校级三模)某市为了构建城市立体交通网络,决定修建一条轻轨铁路,为使工程提前半年完成,需将工作效率提高25%,则原计划完成这项工程需要()A.30个月B.25个月C.36个月D.24个月7.(2分)(2022秋•凤台县期末)甲、乙两人同时从圆形跑道(圆形跑道的总长小于700m)上一直径两端A,B相向起跑,第一次相遇时离A点100m(AB上方),第二次相遇时离B点60m(AB下方),则圆形跑道的总长为()A.240m B.360m C.480m D.600m8.(2分)(2022秋•高邑县期中)甲、乙、丙三名打字员承担一项打字任务,已知如下信息信息一:甲单独完成任务所需时间比乙单独完成任务所需时间多5小时;信息二:甲4小时完成工作量与乙3小时完成的工作量相等;信息三:丙的工作效率是甲的工作效率的2倍.如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.小时B.小时C.小时D.小时9.(2分)(2022秋•晋州市期中)学校需采购部分课桌,现有A,B两个商家供货,A商家每张课桌的售价比B商家的优惠30元.若该校花费1800元采购款在A商家购买课桌的数量与花费2250元采购款在B 商家购买课桌的数量一样多,则A商家每张课桌的售价为()A.90元B.120元C.150元D.180元10.(2分)(2021秋•思明区校级期末)两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成.设乙队单独施工1个月完成总工程的,则可以表示“两队共同工作了半个月完成的工程量”的代数式是()A.B.C.D.评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•代县期末)甲乙两地相距50km,A骑自行车从甲地到乙地,出发3h20min后,B骑摩托车也从甲地去乙地,已知B的速度是A的速度的3倍,结果两人同时到达乙地,则A的速度是km/h.12.(2分)(2022秋•洪山区校级期末)要在规定的时间内加工一批机器零件,如果甲单独做,刚好在规定时间内完成,乙单独做则要超过3天才能完成.现在甲、乙两人合作2天后,再由乙单独做,正好按时完成,则规定时间是天.13.(2分)(2022秋•巨野县期中)甲、乙两人站在一条道路的两端同时出发相向而行,1.2小时相遇,若甲走完这条道路需2小时,则乙走完这条路需小时.14.(2分)(2021秋•宁远县校级月考)一个两位数的十位数字是6,如果把十位数字与个位数字对调,那么所得的两位数与原来的两位数之比是,原来得两位数是.15.(2分)(2020秋•兖州区期末)某中学假期后勤中的一项工作是请30名木工制作200把椅子和100张课桌,已知一名工人在单位时间内可以制作10把椅子或7张课桌,将这30名工人分成两组,一组制作课桌,一组制作椅子,两组同时开工.应分配人制作课桌,才能使完成此项工作的时间最短.16.(2分)(2022秋•海淀区校级月考)为了全力抗击新型冠状病毒感染肺炎,减少相互感染,每个人出门都必须带上口罩,所以KN95型的口罩需求量越来越大.某大型口罩工厂接到生产200万副KN95型口罩的生产任务,计划在若干天完成,由于情况疫情紧急,工厂全体员工不畏艰苦,工人全力以赴,每天比原计划多生产5万副口罩,结果只用了原计划时间的就圆满完成生产任务,则原计划每天生产万副口罩.17.(2分)(2022•铁岭模拟)为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,甲工程队每天改造的道路长度是米.18.(2分)(2022春•大鹏新区期中)甲、乙两个服装厂加工一批校服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套校服,甲厂比乙厂少用4天,则乙厂每天加工套校服.19.(2分)(2022秋•江北区期末)“巩固脱贫成果,长兴乡村经济”,大力发展高山生态经济林是一重大举措.某村委会决定在红光、红旗、红锦三个村民小组种植高山脆李和晚熟香桃两种果树,初步预算这三个村民小组各需两种果树之和的比为4:5:6,其中需要高山脆李树的棵数分别为4千棵,3千棵和7千棵,并且红光、红旗两个村民小组所需晚熟香桃树之比为2:3.在购买这两种果树时,高山脆李树的价格比预算低了10%,晚熟香桃树的价格高了20%,晚熟香桃树购买数量减少了12.5%.结果发现购买两种果树的总费用与预算总费用相等,则实际购买高山脆李树的总费用与实际购买晚熟香桃树的总费用之比为.20.(2分)(2022秋•沂源县期中)甲、乙、丙三名工人共承担装搭一批零件.已知甲乙丙丁四人聊天时的对话信息如表,如果每小时只安排1名工人,那么按照甲、乙、丙的轮流顺序至完成工作任务,共需小时.甲说:我单独完成任务所需时间比乙单独完成任务所需时间多5h;乙说:我3小时完成的工作量与甲4小时完成工作量相等;丙说:我工作效率不高,我的工作效率是乙的工作效率的;丁说:我没参加此项工作,但我可以计算你们的工作效率,知道工程问题三者关系是:工作效率×工作时间=工作总量.评卷人得分三.解答题(共10小题,满分60分,每小题6分)21.(6分)(2023春•天长市校级月考)某蔬菜超市两次去批发市场采购同一品种的辣椒,第一次用1700元购进了若干千克,很快卖完,第二次用3000元所购数量比第一次多80千克,且每千克的进价比第一次提高了20%.(1)求第一次购买辣椒的进价;(2)求第二次购买辣椒的数量;(3)该蔬菜超市按以下方案卖出第二次购买的辣椒:先以a元/千克的价格售出m千克,再以16元/千克的价格售出剩余的全部辣椒(不计损耗),共获利1800元,若a,m均为正整数,且a不超过第二次进价的2倍,求a和m的值.22.(6分)(2023春•金沙县期末)某校开展了主题为“粽叶飘香,自包米粽,共度端午,互赠祝福”活动,让住校生亲身体验包粽子的实践活动.学校决定用1800元购进包粽子的两种原材料,腊肉丁馅和绿豆花生馅的粽子,已知用来购买两种馅的费用一样,腊肉丁馅粽子比绿豆花生馅每个粽子成本价高20%,两次共包粽子1100个,求腊肉丁馅的粽子每个成本价是多少元?23.(6分)(2023•新泰市一模)某超市准备购进甲、乙两种绿色袋装食品,它们的进价和售价如下表所示.已知用2000元购进甲种绿色袋装食品的数量与用1600元购进乙种绿色袋装食品的数量相同.甲乙进价/(元/袋)m m﹣2售价/(元/袋)20 13(1)求m的值.(2)现在要购进甲、乙两种绿色袋装食品共800袋,且总利润不少于4800元,则该超市至少要购进甲种绿色袋装食品多少袋?24.(6分)(2022秋•丰都县期末)春节,即中国农历新年,俗称新春、新岁、岁旦等,口头上又称过年、过大年.春节历史悠久,由上古时代岁首祈岁祭祀演变而来.春节民俗经国务院批准列入第一批国家级非物质文化遗产名录.我国北方除夕夜多吃饺子,南方除夕一般是吃元宵和年糕.元宵又叫“汤圆”、“团子”、“圆子”,中间包糖为多,取全家团圆美满甜蜜之意,年糕由糯米做成,以谐音取“年高”之意,直到今天,北方过年包饺子、南方过年包汤圆的习俗仍然极为普遍.今年春节前,某商店老板用450元购进一批年糕,又用800元购进了饺子,所购年糕数量是饺子数量的75%,且年糕每袋进价比饺子进价每袋少1元.(1)求年糕和饺子每袋的进价;(2)除夕当天,老板分别以5元每袋、6元每袋的价格销售年糕和饺子.当年糕售出,饺子售出一半后,为了尽快售完,老板决定将剩下的年糕和饺子都以相同的折扣进行降价销售,很快就全部卖完.求老板最低打几折可以使获得的总利润不少于530元.25.(6分)(2023春•襄汾县月考)2022年第22届世界杯足球赛在卡塔尔举行,其官方吉祥物是一个外形酷似头巾的卡通人物,名字叫做拉伊卜,受到众人的热捧.某工厂计划加急生产一批该吉祥物,已知甲车间每天加工的数量是乙车间每天加工数量的2倍,两车间各加工3000个该吉祥物时,甲车间比乙车间少用5天.(1)求甲乙两车间每天各加工多少个吉祥物?(2)已知甲乙两车间加工该吉祥物每天的费用分别是1800元和600元,该工厂计划生产15000个这种吉祥物,如果总加工费用不超过39000元,那么乙车间至少要加工多少天?26.(6分)(2023春•铁西区月考)2022年第22届世界杯足球赛在卡塔尔举行,联营商场在世界杯开始之前,用6000元购进A,B两种世界杯吉祥物公仔和吉祥物手办共220个,且用于购买A种吉祥物公仔与购买B吉祥物手办的费用相同,且A种吉祥物公仔的单价是B种吉祥物手办的1.2倍.(1)求A,B两种吉祥物的单价各是多少元?(2)世界杯开始后,联营商场的吉祥物很快售罄,于是计划用不超过15000元的资金再次购进A,B两种吉祥物共300个,已知A,B两种吉祥物的进价不变,求A种吉祥物最多能购进多少个?27.(6分)(2023•宁化县模拟)“冰墩墩”和“雪容融”作为第24届北京冬奥会和残奥会的吉祥物深受大家喜爱,某文旅店订购“冰墩墩”花费6000元,订购“雪容融”花费3200元,其中“冰墩墩”的订购单价比“雪容融”的订购单价多20元,并且订购“冰墩墩”的数量是“雪容融”的1.25倍.(1)求文旅店订购“冰墩墩”和“雪容融”的数量分别是多少个;(请列分式方程作答)(2)该文旅店以100元和80元的单价销售“冰墩墩”和“雪容融”,在“冰墩墩”售出,“雪容融”售出后,文旅店为了尽快回笼资金,决定对剩余的“冰墩墩”每个打a折销售,对剩余的“雪容融”每个降价2a元销售,很快全部售完,若要保证文旅店总利润不低于6060元,求a的最小值.28.(6分)(2022秋•忻府区期末)某地对一段长达2400米的河堤进行加固.在加固800米后,采用新的加固模式,每天的工作效率比原来提高25%,用26天完成了全部加固任务.(1)原来每天加固河堤多少米?(2)若承包商原来每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资增加了20%,完成整个工程后承包商共支付工人工资多少元?29.(6分)(2022秋•河北区期末)为助力乡村振兴,某单位给结对帮扶的家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗每棵的价格比甲种树苗贵10元,用690元购买乙种树苗的棵数恰好是用460元购买甲种树苗的棵数的倍.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)二十天后,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的价格比第一次购买时降低了10%,乙种树苗的价格不变,如果再次购买两种树苗的总费用不超过2100元,那么这次他们最多可购买多少棵乙种树苗?30.(6分)(2022秋•日照期末)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?。
第15章分式一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作______(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?4.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.6.(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?18.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.19.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.20.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.21.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?22.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?23.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)24.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?25.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?26.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?27.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?30.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.第15章分式参考答案与试题解析一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.【解答】解:(1)设乙工程队单独完成此项工程需要x天,由题意得: +=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.【解答】解:设普通列车的速度2x千米/小时,则动车的速度是5x千米/小时,由题意有:解得:x=40,经检验:x=40是分式方程的解,∴2x=80,5x=200.答:普通列车的速度80千米/小时,动车的速度是200千米/小时.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?【解答】解:(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据题意,得=,解得x=8.经检验:x=8是原分式方程的解,x+4=12.答:文学书的单价是8元,则科普书的单价是12元.(2)设购进科普书65本后还能购进y本文学书,则12×65+8y≤1250,解得:y≤58.75,∵y为整数,∴y最大是58,答:购进科普书65本后至多还能购进58本文学书.4.(2014•西藏)列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.【解答】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.6.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得 x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.。