第八章数字逻辑电路
- 格式:ppt
- 大小:3.49 MB
- 文档页数:89
数字逻辑电路基础知识整理数字逻辑电路是电子数字系统中的基础组成部分,用于处理和操作数字信号。
它由基本的逻辑门和各种组合和顺序逻辑电路组成,可以实现各种功能,例如加法、减法、乘法、除法、逻辑运算等。
下面是数字逻辑电路的一些基础知识整理:1. 逻辑门:逻辑门是数字逻辑电路的基本组成单元,它根据输入信号的逻辑值进行逻辑运算,并生成输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
2. 真值表:真值表是描述逻辑门输出信号与输入信号之间关系的表格,它列出了逻辑门的所有输入和输出可能的组合,以及对应的逻辑值。
3. 逻辑函数:逻辑函数是描述逻辑门输入和输出信号之间关系的数学表达式,可以用来表示逻辑门的操作规则。
常见的逻辑函数有与函数、或函数、非函数、异或函数等。
4. 组合逻辑电路:组合逻辑电路由多个逻辑门组合而成,其输出信号仅取决于当前的输入信号。
通过适当的连接和布线,可以实现各种逻辑操作,如加法器、多路选择器、比较器等。
5. 顺序逻辑电路:顺序逻辑电路由组合逻辑电路和触发器组成,其输出信号不仅取决于当前的输入信号,还取决于之前的输入信号和系统状态。
顺序逻辑电路可用于存储和处理信息,并实现更复杂的功能,如计数器、移位寄存器、有限状态机等。
6. 编码器和解码器:编码器将多个输入信号转换成对应的二进制编码输出信号,解码器则将二进制编码输入信号转换成对应的输出信号。
编码器和解码器可用于信号编码和解码,数据传输和控制等应用。
7. 数字信号表示:数字信号可以用二进制表示,其中0和1分别表示低电平和高电平。
数字信号可以是一个比特(bit),表示一个二进制位;也可以是一个字(word),表示多个二进制位。
8. 布尔代数:布尔代数是逻辑电路设计的数学基础,它通过符号和运算规则描述了逻辑门的操作。
布尔代数包括与、或、非、异或等基本运算,以及与运算律、或运算律、分配律等运算规则。
总的来说,数字逻辑电路是由逻辑门和各种组合和顺序逻辑电路组成的,它可以实现各种基本逻辑运算和数字信号处理。
数字逻辑门电路数字逻辑门电路是现代电子技术领域中重要的基础概念。
它们是通过组合逻辑来实现逻辑运算的电子元件。
本文将介绍数字逻辑门电路的基本概念、常见的逻辑门类型以及它们在计算机和电子设备中的应用。
一、基本概念数字逻辑门电路由逻辑门组成,逻辑门是指一种通过输入信号产生输出信号的电子电路。
在数字电子系统中,逻辑门能够根据输入信号的逻辑值(通常为1或0)产生相应的输出信号。
常见的逻辑门类型有与门(AND)、或门(OR)、非门(NOT)以及异或门(XOR)等。
与门(AND)是一种具有两个或多个输入端口和一个输出端口的逻辑门。
仅当所有输入端口的信号均为高电平时,输出端口才为高电平;否则,输出端口为低电平。
与门的符号通常是将输入端口以及输出端口连接的圆点和直线图形。
或门(OR)是一种具有两个或多个输入端口和一个输出端口的逻辑门。
只要有一个或多个输入端口的信号为高电平,输出端口就为高电平;只有所有输入端口的信号均为低电平时,输出端口才为低电平。
或门的符号通常是将输入端口以及输出端口连接的弧线和直线图形。
非门(NOT)是一种具有一个输入端口和一个输出端口的逻辑门。
当输入信号为高电平时,输出信号为低电平;当输入信号为低电平时,输出信号为高电平。
非门的符号通常是一个小圆圈加一个小三角形。
异或门(XOR)是一种具有两个输入端口和一个输出端口的逻辑门。
只有当输入端口的信号不全为1或不全为0时,输出端口才为高电平;否则,输出端口为低电平。
异或门的符号通常是将两个相连的弧线和直线图形。
二、常见逻辑门组合在数字电子系统中,不仅可以单独使用各种逻辑门,还可以通过多个逻辑门的组合构建出更为复杂的逻辑电路。
以下是一些常见的逻辑门组合。
1. 与非门(NAND):是将与门的输出信号输入到非门中的一种组合。
当与门的输出信号为低电平时,非门的输出信号为高电平;当与门的输出信号为高电平时,非门的输出信号为低电平。
与非门因其功能的广泛应用而变得非常重要。
数字逻辑电路数字逻辑电路是现代电子领域中的重要概念,它是指在数字信号处理中使用的集成线路电子设备。
数字逻辑电路通过控制与门、或门、非门等组合来实现逻辑运算,从而处理数字信息。
数字逻辑电路在计算机、通信系统、数字信号处理等领域中都有着广泛的应用。
1. 数字逻辑电路的基本概念数字逻辑电路使用不同的门电路(如与门、或门、非门)来实现不同的逻辑功能。
其中,与门输出为1的条件是所有输入均为1;或门输出为1的条件是至少有一个输入为1;非门将输入反转。
数字逻辑电路的设计和分析通常基于布尔代数,它是由乔治·布尔于19世纪中叶创立的代数体系。
利用布尔代数,可以描述逻辑运算的基本规则,并通过代数表达式描述数字逻辑电路的功能。
2. 数字逻辑电路的分类数字逻辑电路可以分为组合逻辑电路和时序逻辑电路两类。
•组合逻辑电路:组合逻辑电路的输出仅取决于当前输入的状态,与时间无关。
最简单的组合逻辑电路为三种基本门电路的组合,通过组合不同的门电路可以实现不同的逻辑功能。
•时序逻辑电路:时序逻辑电路的输出不仅受当前输入的影响,还受到系统内部状态的影响。
时序逻辑电路中通常包含寄存器、触发器等时序元件,可以实现存储和时序控制功能。
3. 通用逻辑门通用逻辑门是数字逻辑电路设计中常用的元件,它可以实现不同的逻辑功能。
常见的通用逻辑门包括与非门(NAND门)、或非门(NOR门)和异或门(XOR 门)等。
通用逻辑门的特点在于可以通过适当的电路连接和组合来实现各种复杂的逻辑功能,是数字逻辑电路设计中的核心组成部分。
4. 数字逻辑电路在计算机领域的应用数字逻辑电路在计算机体系结构设计中发挥着重要作用。
如CPU内部的控制逻辑、寄存器文件、算术逻辑单元(ALU)等模块,都是由数字逻辑电路实现的。
在计算机的数据通路设计中,数字逻辑电路用于数据的选择、传输、处理等操作,确保计算机可以正确高效地完成各种计算任务。
5. 结语数字逻辑电路作为数字电子技术的基础,对现代电子设备的设计和功能发挥起着至关重要的作用。
数字逻辑电路教案
数字逻辑电路是组成数字电路的基本组件,是数字电路设计的核心。
本教案将介绍数字逻辑电路的基本概念、运算方式和设计方法。
一、基本概念
数字逻辑电路是由数字逻辑门组成的电路,其输入和输出在离散的时间点上取值。
数字逻辑门是用来实现逻辑运算的基本元件,包括与门、或门、非门、异或门等。
数字逻辑电路中的输入信号只能取0或1两个状态,输出信号也只能是0或1两个状态。
因此数字逻辑电路也称为二进制电路。
二、运算方式
数字逻辑电路的运算方式包括与运算、或运算、非运算、异或运算等。
与运算(AND):当所有的输入信号都为1时,输出信号为1,否则为0。
或运算(OR):当任意一个输入信号为1时,输出信号为1,否则为0。
非运算(NOT):输入信号为0时,输出信号为1,输入信号为1时,输出信号为0。
异或运算(XOR):当两个输入信号不相同时,输出信号为1,否则为0。
三、设计方法
数字逻辑电路的设计方法分为组合逻辑电路和时序逻辑电路两种。
组合逻辑电路:输入信号直接决定输出信号,适合于处理实时信号。
时序逻辑电路:输出信号的状态由输入信号的变化以及之前的状态决定,适合于存储数据、计数器等应用。
数字逻辑电路的设计需要考虑输入、输出、中间信号的数量和取值范围,以及逻辑门的选择和连接方式等因素。
四、总结
数字逻辑电路是数字电路的基础,是计算机硬件系统的核心组成部分。
掌握数字逻辑电路的基本概念、运算方式和设计方法对于计算机专业的学生来说非常重要。
一、各章的重点、难点和教学要求(这里所的难点内容中的难点,不包括非重点内容中的难点。
)第一章逻辑代数基础逻辑代数是本书中分析和和设计数字逻辑电路时使用的主要数学工具,所以把它安排在第一章。
本章重点内容有:1、逻辑代数的基本公式和常用公式:2、逻辑代数的基本定理;3、逻辑函数的各种表示方法及相互转换;4、逻辑函数的化简方法;5、约束项、任意项、无关项的概念以及无关项在化简逻辑函数中的应用。
“最小项”和“任何一个逻辑函数式都可以化为最小项之和形式”是两个非常重要的概念,在逻辑函数的化简和变换中经常用到。
而“最大项”用得很少,不是本章的重点内容。
第一章里没有太难掌握的内容。
稍微难理解一点的是约束项、任意项、无关项这几个概念。
建议讲授过程中多举几个例子,这样可加深对这几个概念的理解。
第二章门电路虽然这章讨论的只是门电路铁外特性,但无论集成电路内部电路多么复杂,只要它们和这一章所讲的门电路具有相同的输入、输出电路结构,则这里对输入、输出特性的分析对它们也同样适同。
因此,这一章是全书对电路进行分析的基础。
本章的重点内容包括以下三个方面:1、半导体二极管三极管(包括双极型和MOS型)开关装态下的等效电路和外特性;2、TTL电路的外特性及其应用;3、CMOS电路的外特性及应用。
为了正确理解和运用这些外特性,需要了解TTL电路和CMOS电路的输入电路和输出电路结构及它们的工作原理。
内部的电路结构不是重点内容。
鉴于CMOS电路在数字集成电路中所占的比重已远远超过了TTL电路,建议在讲授时适当加大C MOS电路的比重,并相应压缩TTL电路的内容。
其他类型的双极型数字集成电路属于扩展知识面的内容。
第2.8节两种集成电路的接口问题可以作为学生自学时的阅读材料。
TTL电路的外特性是本章的一个难点,同时也是一个重点。
尤其是输入端采用多发射极三极管结构时,对输入特性的全面分析比较复杂。
从实用的角度出发,只要弄清输入为高/低时输入电流的实际方向和数值的近似计算就可以了。
数字逻辑电路的原理和应用前言数字逻辑电路是计算机系统中关键的组成部分,它可以实现数字信号的处理和控制。
本文将介绍数字逻辑电路的原理以及它们在实际应用中的一些常见场景。
数字逻辑电路的基本原理逻辑门逻辑门是数字逻辑电路的基本构建块,它可以根据输入信号的逻辑状态(通常为0或1)产生相应的输出信号。
常见的逻辑门包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
这些逻辑门可以通过组合和连接实现更复杂的逻辑功能。
组合逻辑电路组合逻辑电路由逻辑门和连接它们的导线组成,其中逻辑门的输出信号直接取决于其输入信号的状态。
组合逻辑电路通常用于执行特定的操作或运算,如加法、乘法、选择等。
它使用了逻辑门的特性来实现所需的功能。
时序逻辑电路时序逻辑电路通过引入时钟信号来控制逻辑门的行为。
时序逻辑电路中的输出信号不仅取决于输入信号的状态,还取决于时刻。
这使得时序逻辑电路能够存储和处理信息,从而实现更复杂的功能,如计数器、存储器等。
数字逻辑电路的应用场景计算机系统在计算机系统中,数字逻辑电路被广泛应用于控制单元、算术逻辑单元(ALU)和存储器等核心部件。
控制单元使用时序逻辑电路来处理指令,从而控制计算机的运行。
ALU负责执行各种算术和逻辑运算。
存储器用于存储计算机的数据和程序。
通信系统数字逻辑电路在通信系统中起着重要的作用。
例如,在数字通信中,数据必须被编码成数字信号,然后通过数字逻辑电路进行调制和解调。
这些电路能够快速地将原始数据转换为数字信号,并将其传输到远程位置。
数字逻辑电路还可以实现各种编码和解码技术,如差分编码、哈夫曼编码等。
汽车电子系统数字逻辑电路在汽车电子系统中也有广泛的应用。
例如,车载娱乐系统中的音频处理和信号传输需要使用数字逻辑电路。
汽车安全系统中的传感器和控制单元也使用数字逻辑电路来实现各种功能,如碰撞检测、自动刹车等。
工业控制系统数字逻辑电路在工业控制系统中扮演着关键角色。
它们可以控制各种设备和机器的运行,如自动化生产线、机器人等。
第八章脉冲产生与整形在时序电路中,常常需要用到不同幅度、宽度以及具有陡峭边沿的脉冲信号。
事实上,数字系统几乎离不开脉冲信号。
获取这些脉冲信号的方法通常有两种:直接产生或者利用已有信号变换得到。
本章主要讨论常用的脉冲产生和整形电路的结构、工作原理、性能分析等,常见的脉冲电路有:单稳态触发器、施密特触发器和多谐振荡器。
第一节基本知识、重点与难点一、基本知识(一)常用脉冲产生和整形电路1. 施密特触发器(1)电路特点施密特触发器是常用的脉冲变换和脉冲整形电路。
电路主要有两个特点:一是施密特触发器是电平型触发电路;二是施密特触发器电压传输特性具有回差特性,或称滞回特性。
输入信号在低电平上升过程中,电路输出状态发生转换时对应的输入电平称为正向阈值电压U T+,输入信号在高电平下降过程中,电路状态转换对应的输入电平称为负向阈值电压U T-,U T+与U T-的差值称为回差电压ΔU T。
(2)电路构成及参数施密特触发器有多种构成方式,如:门电路构成、集成施密特触发器、555定时器构成。
主要电路参数:正向阈值电压U T+、负向阈值电压U T-和回差电压ΔU T。
(3)电路应用施密特触发器主要应用范围:波形变换、波形整形和幅度鉴别等。
2. 单稳态触发器(1)电路特点单稳态触发器特点如下:①单稳态触发器有稳态和暂稳态两个不同的工作状态;②在外加触发信号的作用下,触发器可以从稳态翻转到暂稳态,暂稳态维持一段时间,自动返回原稳态;③暂稳态维持时间的长短取决于电路参数R和C。
(2)电路构成及参数单稳态触发器有多种构成方式,如:门电路构成的积分型单稳态触发器、门电路构成的微分型单稳态触发器、集成单稳态触发器、555定时器构成的单稳态触发器等。
主要电路参数:暂稳态的维持时间t w、恢复时间t re 、分辨时间t d、输出脉冲幅度U m。
(3)电路应用单稳态触发器主要应用范围:定时、延时、脉冲波形整形等。
3. 多谐振荡器多谐振荡器是一种自激振荡器,接通电源后,就可以自动产生矩形脉冲,是数字系统中产生脉冲信号的主要电路。
数字逻辑电路数字逻辑电路是一种基于数字信号的电子电路,用于处理和操控数字信息。
它是计算机、通信系统和其他电子设备的核心组成部分。
数字逻辑电路可以执行诸如加法、乘法、逻辑运算等基本操作,并且可以通过逻辑门和触发器等元件组合成更复杂的电路,实现数字数据的存储、处理和传输。
数字逻辑电路的基本元件是逻辑门。
逻辑门根据输入信号的不同组合产生输出信号,它们包括与门、或门、非门、异或门等。
与门的输出信号只有当所有输入信号都为1时才为1,否则为0;或门的输出信号只有当至少一个输入信号为1时才为1,否则为0;非门的输出信号与输入信号相反;异或门则在输入信号中有奇数个1时输出为1,否则为0。
这些逻辑门可以根据需要灵活地组合,形成不同功能的数字逻辑电路。
数字逻辑电路在计算机的运算单元中起到了关键作用。
在计算机中,最基本的数字逻辑电路是加法器。
加法器用于实现数字的二进制相加,其基本原理是将两个二进制数的对应位相加,并将结果保存在相应的输出位上。
复杂的电子计算器和计算机处理器中,会使用多级加法器来实现多位数的相加。
除了加法器,还有减法器、乘法器等用于实现数字运算的数字逻辑电路。
除了基本的算术操作,数字逻辑电路还可以实现逻辑运算。
逻辑运算可以判断输入信号的真假,并根据逻辑关系产生相应的输出信号。
逻辑门是实现逻辑运算的基本元件,通过组合不同的逻辑门可以实现逻辑门电路。
常见的逻辑门电路有与门电路、或门电路、非门电路等。
例如,在计算机的控制单元中,通过与门电路和非门电路的组合可以实现条件分支和循环控制等逻辑功能。
数字逻辑电路还可以实现存储和传输数字信息。
触发器是一种常用的数字逻辑电路,用于存储和传输数字信息。
触发器可以在时钟脉冲的驱动下改变其输出信号,从而实现数字信号的存储和传输。
在计算机的内存系统中,使用触发器来存储和读取计算过程中的数据。
另外,计算机的通信接口中也会使用触发器来处理输入和输出的数字信号。
数字逻辑电路在现代科技中发挥着重要作用。
数字逻辑电路王秀敏第8章7.10第⼋章检测题⼀、可以⽤来暂时存放数据的器件叫寄存器。
⼆、移位寄存器除寄存数据功能外,还有移位功能。
三、某寄存器由D触发器构成,有4位代码要存储,此寄存器必须由 4 个触发器构成。
四、⼀个四位⼆进制加法计数器,由0000状态开始,问经过18个输⼊脉冲后,此计数器的状态为 0010 。
五、n级环形计数器的计数长度是n,n级扭环形计数器的计数长度是2n。
六、集成计数器的模值是固定的,但可以⽤清零法和置数法来改变它们的模值。
七、通过级联⽅式,把两⽚4位⼆进制计数器74161连接成为8位⼆进制计数器后,其最⼤模值是 256 ;将3⽚4位⼗进制计数器74160连接成12位⼗进制计数器后,其最⼤模值是4096 。
⼋、设计模值为38的计数器⾄少需要 6 个触发器。
习题[题8.1] 试画出⽤2⽚74LS194A 组成8位双向移位寄存器的逻辑图。
74LS194A 的功能表见表8.1.4。
解:电路逻辑图如图A8.1所⽰图A8.1[题8.2] 图P8.2所⽰电路是⽤8选1数据选择器74LS151和移位寄存器CC40194组成的序列信号发⽣器。
试分析在C P 脉冲作⽤下电路的输出序列信号(Y )。
图P8.2解:74LS194A 组成3位扭环形计数器210Q Q Q :000→001 →011 →111 →110 →100 →000,因此74LS151输出013764Y D D D D D D …=111100…。
[题8.3] 分析图P8.3的计数器电路,画出电路的状态转换图,说明这是多少进制计数器。
⼗六进制计数器74161的功能表如表8.2.2所⽰。
图P8.3解:采⽤同步预置数法,31LD Q Q =。
计数器起始状态为0011,结束状态为1010,所以该计数器为⼋进制加法计数器。
状态转换图略。
[题8.4] 分析图P8.4的计数器电路,说明这是多少进制的计数器,并画出电路的状态转换图。
⼗进制计数器74160的功能表如表8.2.6所⽰。
数字电路数字逻辑
数字电路是一种用来处理数字信号的电子电路,也称为数字系统或数字逻辑电路。
它是现代电子设备的基础,如计算机、通信设备和各种控制系统等。
数字电路以二值数字逻辑为基础,其工作信号是离散的数字信号,反映在电路上就是低电平和高电平两种状态(即0和1两个逻辑值)。
数字电路中的基本单元是逻辑门,它实现基本的逻辑运算,如与、或、非等。
逻辑门由半导体工艺制成的数字集成器件构造而成,常见的有与门、或门、非门、异或门等。
存储器是用来存储二进制数据的数字电路,它对数据的存储和读取都是以二进制的形式进行的。
从整体上看,数字电路可以分为组合逻辑电路和时序逻辑电路两大类。
组合逻辑电路的输出信号只与当时的输入信号有关,而与电路以前的状态无关,它不具有记忆功能。
而时序逻辑电路则具有记忆功能,其输出信号不仅和当时的输入信号有关,而且与电路以前的状态有关。
常见的时序逻辑电路有触发器和寄存器等。
数字电路的发展与模拟电路一样经历了由电子管、半导体分立器件到集成电路等几个时代。
现代的数字电路由半导体工艺制成的若干数字集成器件构造而成,具有体积小、功耗低、可靠性高、速度快、功能强等特点。
总的来说,数字电路是数字系统的基础,它的设计和应用涉及到计算机科学、电子工程、通信工程等多个领域。
数字逻辑电路分析步骤
由于数字规律电路的主要讨论对象是电路的输出与输入之间的规律关系,因而数字规律电路分析的目的是为了确定已知电路的规律功能,所采纳的分析工具是规律代数,表达电路的功能主要用真值表、功能表、规律表达式、卡诺图、状态转换图及波形图等。
数字规律电路分析的步骤大致如下:①由规律图写出各输出端的规律表达式,并化简。
对于组合规律电路来说,写出各输出端的规律表达式,再用代数法或卡诺图法简化即可;而对于时序规律电路来说,则应写出电路的驱动方程、状态方程和输出方程。
②依据简化的规律表达式列出真值表或状态转换表。
对于组合规律电路来说,直接列出真值表即可;而对于时序规律电路,则应进一步分析其时钟接法是同步还是异步,然后假定一个初态,分析在时钟信号和输入信号的共同作用下,电路的状态转换状况,最终得出状态转换表。
③对真值表、状态转换表或规律表达式进行分析总结,确定电路的规律功能。
这一步要求我们有分析归纳的力量,对抽象的真值表和状态转换表进行分析归纳,总结出电路的详细规律功能。
对于比较简洁的组合规律电路,有时不必进行以上全部步骤,而是由规律图直接得出真值表,从而概括出电路的规律功能。
或者用画波形图的方法,依据输入信号,逐级画出输出波形,最终依据波形图概括出电路的规律功能。
对于比较简洁的时序规律电路,有时同样可以直接由规律图假定一个初态,分析电路的次态,再以这个次态为新的初态,分析出新的次态,如此逐一分析,
最终得出完整的状态转换表,并总结其规律功能。