利息理论第1章
- 格式:pptx
- 大小:581.52 KB
- 文档页数:62
《利息理论》复习提纲第一章 利息的基本概念 第一节 利息度量 一. 实际利率某一度量期的实际利率是指该度量期内得到的利息金额与此度量期开始时投资的本金金额之比,通常用字母i 来表示。
利息金额I n =A(n)-A(n-1)对于实际利率保持不变的情形,i=I 1/A(0); 对于实际利率变动的情形,则i n =I n /A(n-1); 例题:1.1.1二.单利和复利考虑投资一单位本金,(1) 如果其在t 时刻的积累函数为 a(t)=1+i*t ,则称这样产生的利息为单利;实际利率 )()()()(1111-+=---=n i in a n a n a i n(2) 如果其在t 时刻的积累函数为a(t)=(1+i)t ,则称这样产生的利息为复利。
实际利率 i i n =例题:1.1.3 三.. 实际贴现率一个度量期的实际贴现率为该度量期内取得的利息金额与期末的投资可回收金额之比,通常用字母d 来表示实际贴现率。
等价的利率i 、贴现率d 和贴现因子(折现因子)v 之间关系如下:,(1),1111,,,1d ii d i i d d iv d d iv v i d idi=+==-+=-==-=+例题:1.1.6 四.名义利率与名义贴现率用()m i 表示每一度量期支付m 次利息的名义利率,这里的m 可以不是整数也可以小于1。
所谓名义利率,是指每1/m 个度量期支付利息一次,而在每1/m 个度量期的实际利率为()/m i m 。
与()m i 等价的实际利率i 之间的关系:()1(1/)m m i i m +=+。
名义贴现率()m d ,()1(1/)m m d d m -=-。
名义利率与名义贴现率之间的关系:()()()()m m m m i d i d m m m m-=⋅。
例题:1.1.9 五.利息强度定义利息强度(利息力)为()()()()t A t a t A t a t δ''==, 0()ts ds a t e δ⎰=。
第一章利息的基本概念1. A(t) = A(O)a(t)2. a(0) =1二 b =1 100a(5)=180,3~5.用公式(1-4b ) 7~9.用公式(1-5)、( 1-6)12. k(1 +"(1 +i 2)(1 5) =1000 14.(1 +i)n+(1 +i)』〉2j (1 +i)n'(1 +i)』16. 用p.6公式17. 用P.7最后两个公式 19. 用公式(1-26)20. (1)用公式(1-20);⑵用公式(1-23) 22. 用公式(1-29)23. (1)用公式(1-32);(2)用公式(1-34)及题6( 2)结论 24. 用公式(1-32)41 < 6% V25. ----------------------------------- (1+i)4=(1+10%) [1+— 2丿 1-8% I 4 丿 < 5%YI 2丿26.对于 c)及 d),a(n) =e n&,二 a(1)=e 5 = 1+i =11 - dd)中,d =1 -e 』j&x) dx 28.a(t) =e 029.1 +i; 1 + j =e31. (1) 902 天46.d =1000~920=0.08,x(1 -0.08) +288(1 —0.08xJ) =92011.第三个月单利利息1%,复利利息(1+1%)3 -(1 +1%)2■300a(8^508a(5)-1=V C)中,6 = - In V ,39.e =1+t 二 0仇4「=1 n (1+t ),两边同时求导,S (t)= 1丙3B (t )类似1000 2第二章年金an - X - i 二 (1+i ) =1-Xi _2n 2 1—(1 +i ) 1 一(1 -xi )a 2n - y - i ipl将i = 代入(*)_n 5.解:(*)1-d _n1-(1 +i \ 4.解: 」+0.087 l16000 =A +1000 ” 0.087 12 +0087舊+占 12人 12丿 1000 1000 1000 1718_51000鵝(1+0.08)P =39169.848.解:5000齬0.1 =9.解:5000s^.^0.1514.解:永续年金每年支付 R17.解:15OOa m0.008 =100000 解得m 止95.6 即正常还款次数为 95次1500a 埶.008 + f (1 +0.008)』5=100000 解得 f =965.7419.解:+2000S i (2)=170005^—21000LS 肚-s5e< 2 2丿 105/. (1 +i j +(1+i ) -17(1令 f(t) =t10+t 5—17t +150 — f(1.03) = f (1.035) — f (1.03) i —1.03 1.035—1.03 f (1.032) = —0.003186iV 18=1 -ia 诃=1 -iM5001也轴半(1 + i 半)」=100001=(1 +i 半 2= 1+i 半=(1 —d P ,1 -L3_ = 2037.解: 1 20 123该永续年金现值为12441—(1+i ) 6 ( 0.04]23.解:a 6004 + ---- --- 1.04 ,1+i =|1+ -----24.解: R 1.1025R 1.205R 012 34R>c1.054+1.1025R1.053+1.1025R1.052+1.205R1.05 =11000 得 R = 2212.1471 -(1 +i f 25.解:a n =' '€a n n (1+i f i-1 + (1 + i『c ic i _ Hi _ 弔0.102 — an0.1甞6宀"=0.002其中n 通过公式(2-76)得到29.解:a 7 =1-v 7/. v 7 =1 -i a 7 =1 -iK类似地,V11:v7v 11= v 18/. (1-iK)(1-iL) =1-iM从而 i = L + K-MKL31.解:= 1-v nC _ 1- V12丿an32.解: 1 +i =1 -36.解 : g 卄屮-20.••95.36mm1 1 1该永续年金现值为: 4 +(1+i ) •••所求年金现值为: 1 + --- (2 + i)i (2+i)int 39.解: —g —h f =lim a-i =limn ^C ni n _^ § , n .1 -v 1 (2+i)ig =(1-kn)- v n 0 40.解:a(t)=e 0^dr=1 +t J0a 」(t )dt = J 。