群桩基础某单桩承载力计算
- 格式:doc
- 大小:137.00 KB
- 文档页数:5
群桩基础中的⼀根基桩单独受荷时的承载⼒和沉降性状读书报告河海⼤学⽜永前⼀.群桩基础效应的读书报告群桩基础中的⼀根基桩单独受荷时的承载⼒和沉降性状,往往与相同地质条件和设置⽅法的独⽴基础有显著差别,这种现象称为群桩应,因此,群桩的基础承载⼒g Q 常常不等于其中各基础的承载⼒之和i Q ∑。
通常⽤群桩效应系数/g iQ Q η=∑来衡量群桩基础中各个桩基的平均承载⼒⽐独⽴单桩降低或提⾼的幅度。
由摩擦⾏桩组成的低承台群桩基础,当其承受竖向荷载⽽沉降时,承台底必然产⽣⼟体反⼒,从⽽分担了⼀部分荷载,使桩基承载⼒随之提⾼,道路⼯程中的桩基础我⼀般以垫层或⼟⼯格栅类似于建筑⼯程中的低承台,低承台底⾯处的⼟所分担的荷载,可占总承载⼒的20%到35%。
当然,群桩基础建成后,可能出现承台底⾯与⼟基开脱情况,此时不⽤考虑承台底阻⼒对桩基承载⼒的影响。
这种情况⼤体有:1. 沉⼊挤⼟桩的庄周⼟体因孔隙⽔压⼒剧增所引起的隆起,于垫层或格栅修筑后孔压继续消散⽽⽽固结下沉。
2. 车辆频繁⾏驶震动。
3. 桩周产⽣负摩阻⼒的各种情况导致的承台底⾯与⼟基的初始接触随时间渐渐松弛⽽脱离。
4. 黄⼟地基湿陷或砂图地震液化所引起的承台与⼟基突然开裂。
端承型群桩基础端承型基桩的桩底持⼒层刚硬,沉降量较⼩,因此承台底⾯⼟反⼒很⼩,端承型群桩基础中各个基桩的⼯作性状接近于单桩,所以η可认为为1。
摩擦型群桩基础(1)不考虑承台效应的影响(即承台地⾯脱落)如上图所⽰,先假设承台底⾯脱离地⾯的群桩基础中各桩均匀受荷,就如独⽴单桩那样,桩顶荷载Q 主要通过桩侧摩阻⼒引起压⼒扩散⾓α范围内庄周桩⼟中的附加应⼒。
各桩在桩端平⾯上的附加压⼒分布⾯积的直径2tan D d l α=+。
当a S实际的群桩效应其实更为复杂,有以下⼏个⽅⾯:(1)承台刚度的影响: 这主要是针对建筑桩基础的刚性承台⽽⾔的,⼤致意思就是指刚性承台会使桩做同步沉降,同时会使各桩的桩顶荷载发⽣由承台向中部向外围转移,所以刚性承台下的桩顶荷载分配⼀般是⾓⾓桩最⼤,中⼼桩最⼩,边桩居中。
单桩水平承载力特征值单桩(群桩基础、基桩)水平承载力特征值是指在一定工况下,单个桩或一组桩在水平方向上能够承受的最大水平力大小。
它是基于各种因素综合而得出的一个数值,对于工程设计和施工具有重要意义。
本文将详细介绍单桩(群桩基础、基桩)水平承载力特征值的计算方法及其影响因素。
一、单桩水平承载力特征值的计算方法根据规范要求,单桩水平承载力特征值的计算分为两种情况:非水平荷载作用下的计算和水平荷载作用下的计算。
1.非水平荷载作用下的计算对于非水平荷载作用下的计算,常见的方法有静力法和动力法两种。
其中,静力法通过桩的反力平衡计算水平承载力,而动力法则通过给桩施加动力荷载后计算出的位移来计算水平承载力。
静力法计算单桩水平承载力的公式为:Qh = α * Ap * sd其中,Qh为单桩水平承载力,α为抗滑安全系数,Ap为桩的侧面面积,sd为桩侧面土壤的抗剪强度。
动力法计算单桩水平承载力的公式为:Qh=m*b*d/h其中,Qh为单桩水平承载力,m为振动质量,b为作用于振动质量上的加速度,d为桩的轴向刚度,h为桩的垂直刚度。
2.水平荷载作用下的计算对于水平荷载作用下的计算,常见的方法有平衡法和变位法两种。
其中,平衡法通过力的平衡计算出桩的水平承载力,而变位法则通过给桩施加水平荷载后计算出的位移来计算水平承载力。
平衡法计算单桩水平承载力的公式为:Qh=α*Ap*τ其中,Qh为单桩水平承载力,α为抗滑安全系数,Ap为桩的侧面面积,τ为侧摩阻力。
变位法计算单桩水平承载力的公式为:Qh=L*k其中,Qh为单桩水平承载力,L为变位的单位荷载,k为变位系数。
值得注意的是,以上方法仅适用于一根孤立桩,对于群桩基础和基桩,计算方法相对复杂,需要考虑桩之间的相互作用。
二、影响单桩水平承载力特征值的因素单桩水平承载力特征值受到多种因素的影响,主要包括以下几个方面:1.土质特性:土质特性包括土的密实度、土的粘性、土的抗剪强度等。
不同土质性质的土壤对单桩水平承载力的影响是不同的。
群桩基础承载力计算
首先,计算桩端阻力。
桩端阻力主要包括桩尖端桩基与土层接触所产
生的端阻力和尖端摩阻力。
其中,端阻力是由于桩尖端与土层之间的摩擦
力所产生的,可通过土力学试验测得。
尖端摩阻力可以根据静力实验和岩
土工程经验进行估算。
其次,计算桩侧摩擦力。
桩侧摩擦力是桩身与土层之间的摩擦力所产
生的,与桩的长度和土层的性质有关。
桩侧摩擦力通常采用土力学单桩摩
擦力计算方法估算,再根据群桩排列的间距和数量来计算总的桩侧摩擦力。
最后,计算群桩基础的承载力。
群桩基础的承载力主要由桩端阻力和
桩侧摩擦力共同组成。
根据土力学理论和大量的试验数据,可以使用承载
力公式进行计算。
常用的计算方法有传统的反分析法、数值模拟方法、理
论模型法等。
这些方法均考虑了土体侧封闭效应和变形特征,能够较为准
确地计算群桩基础的承载力。
需要注意的是,在群桩基础承载力计算时还需要考虑到桩与桩之间的
相互作用效应。
桩与桩之间会相互影响,通过桩与土体之间土压力作用、
变形传递等方式进行相互作用。
因此,在计算时需要综合考虑群桩中各个
桩的单桩承载力和桩与桩之间相互作用的影响。
综上所述,群桩基础承载力计算是基于土力学理论和桩与土地相互作
用原理,综合考虑土层对桩基础的桩端阻力和桩侧摩擦力的影响,通过承
载力公式等方法进行计算。
在进行计算时,需要考虑桩与桩之间的相互作
用效应,以获得较为准确的承载力结果。
1.某灌注桩,桩径,桩长。
从桩顶往下土层分布为:0.8d m =20l m =填土,;淤泥,;黏土,0~2m 30sik a q kP =2~12m 15sik a q kP =12~14m ;以下为密实粗砂层,,,该层厚度大,50sik a q kP =14m 80sik a q kP =2600pk a q kP =桩未穿透。
试计算单桩竖向极限承载力标准值。
【解】 uk sk pk sik ipk pQ Q Q uql q A =+=+∑()20.8302151050280426000.841583.41306.92890.3uk sk pkQ Q Q kNππ=+=⨯⨯⨯+⨯+⨯+⨯+⨯⨯=+=2.某钻孔灌注桩,桩径,扩底直径,扩底高度,桩长1.0d m = 1.4D m = 1.0m ,桩端入中砂层持力层。
土层分布: 黏土,;12.5l m =0.8m 0~6m 40sik a q kP =粉土,;以下为中砂层,6~10.7m 44sik a q kP =10.7m ,。
试计算单桩竖向极限承载力标准值。
55sik a q kP =1500pk a q kP =【解】 ,属大直径桩。
1.00.8d m m =>大直径桩单桩极限承载力标准值的计算公式为:ppk p i sik si pk sk uk A q l q u Q Q Q ψψ+=+=∑(扩底桩斜面及变截面以上长度范围不计侧阻力)d 2大直径桩侧阻、端阻尺寸效应系数为:桩侧黏性土和粉土:()1/51/5(0.8/)0.81.00.956si d ψ===桩侧砂土和碎石类土:()1/31/3(0.8/)0.81.00.928si d ψ===桩底为砂土:()1/31/3(0.8/)0.81.40.830p D ψ===()21.00.9564060.956440.831500 1.410581505253.3564uk Q kNππ=⨯⨯⨯⨯+⨯⨯+⨯⨯⨯=+=3.某工程采用泥浆护壁钻孔灌注桩,桩径,桩端进入中等风化岩,1.2m 1.0m中等风化岩岩体较完整,饱和单轴抗压强度标准值为,桩顶以下土层41.5a MP 参数见表,求单桩极限承载力标准值(取桩嵌岩段侧阻和端阻综合系数)0.76r ζ=层序土名层底深度()m 层厚()m sikq ()a kP pkq ()a kP ①黏土13.7013.7032/②粉质黏土16.00 2.3040/③粗砂18.00 2.0075/④强风化岩26.858.851802500⑤中等风化岩34.858.00//【解】桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成。
单桩(群桩基础基桩)⽔平承载⼒特征值计算
注:1、验算永久荷载控制的桩基的⽔平承载⼒,需乘以调整系数0.80;
2、验算地震作⽤桩基的⽔平承载⼒时需乘以调整系数1.25
表5.7.2桩顶(⾝)最⼤弯矩系数νm 和桩顶⽔平位移系数νx
注:1、铰接(⾃由)的νm系桩⾝的最⼤弯矩系数,固接的νm系桩顶的最⼤弯矩系数2、当αh>4时取4.0
表5.7.5地基⼟⽔平抗⼒系数的⽐例系数m值
注:1 当桩顶⽔平位移⼤于表列数值或灌注桩配筋率较⾼(≥0.65%)时, m 值应适当降低;当预制桩的⽔平向位移⼩于10mm 时, m 值可适当提⾼;
2 当⽔平荷载为长期或经常出现的荷载时,应将表列数值乘以0.4 降低采⽤;
3 当地基为可液化⼟层时,应将表列数值乘以本规范表5.3.12 中相应的系数ψl
4、附录C.0.2 基桩侧⾯为⼏种⼟层组成时,应求得主要影响深度h = 2(d +1) m ⽶范围内的m值作为计算值当 m深度内存在两层不同⼟时,m=m1h1^2+m2(2h1+h2)/hm^2
当 m深度内存在三层不同⼟时,m=m1h1^2+m2(2h1+h2)+m3(2h1+2h2+h3)/hm^2
灌
桩的换算埋深αhνmνx 140.768 2.441
2 3.5
0.750 2.502
4.0000.768 2.441
当降低;当预制桩的⽔平向⽶范围内的m值作为计算值。
桩基础水平承载力的概念及计算方法(一)对于承受水平荷载显著的建(构)筑物,根据其受荷方式的不同大致方式分为几类:一类是以长期水平荷载为主九种的构筑物,例如挡土墙、拱结构、堆载场地等构筑物桩基受到年力的高度力;另一类是以周期荷载或循环荷载为主的建筑物,例如地震或风产生的建(构)筑物水平力、吊车等产生的制动力、海洋客户端平台工程或岸边工程等波浪产生的水平力。
对于一般建筑物,当水平荷载较大且桩基埋深此时较浅时,人体工学桩基的水平承载力设计应成为重点。
本文章主要考虑单桩水平承载力的问题。
单桩在水平荷载下的承载特性是指桩顶在水平荷载下产生水平位移和转角,桩身出现弯曲应力、桩前应力受侧向挤压,产生危急情况桩身结构和地基的破坏情况。
影响单桩水平承载力和位移的因素包括桩身截面抗弯刚度、材料强度、桩侧土质条件、桩身入土深度、桩顶约束条件等。
根据水平力作用下单桩的承载变形性状,可将桩分为刚性桩、半刚性桩、柔性桩。
1.1.1水平受荷单桩的破坏机理研究单桩在低水平荷载区域时基本表现为由线性到非线性区段的过渡过程,在达到极限荷载后,即使不继续增加主梁,水平位移也会急剧增加,会出现水平荷载下降经常出现的特征,即到达了极限状态。
这种单桩水平承载的非线性物理性质是随着水平位移化学成分的增大,不仅会和桩周边地基的非线性特性一起从地表面延伸到地基深部产生渐进性破坏,还会相继出现处于稳定性状态桩体向出现塑性铰转化的情况,见图1.1.1-1。
图1.1.1-1单桩桩顶水平荷载-水平位移关系(引自《大韩民国建筑基础结构设计建筑指南》)在桩身结构出现破坏到形成极限状态时,此种破坏情况一般包含条件两种情况:①地基土在桩长范围内产生破坏的情况;②桩头固定时,桩顶和桩身地下部分形成两个塑性铰(桩头自由而地下部分为铰)的状态,并且这两个断面间的地基土也有发生破坏的情况。
总的说来,单桩水平承载力主要是由桩身抗弯能力和桩侧土强度(稳定性)控制。
对于低配筋率灌注桩,通常是由桩身先出现裂缝,随后断裂破坏;此时,单桩水平气压承载力由桩身强度控制。
群桩基础承载力计算①群桩的荷载传递机理一,概述由多根桩通过承台联成一体所构成的群桩基础,与单桩相比,在竖向荷载作用 下,不仅桩直接承受荷载,而且在一定条件下桩间土也可能通过承台底面参与承载: 同时各个桩之间通过桩间土产生相互影响;来自桩和承台的竖向力最终在桩端平面 形成了应力的叠加,从而使桩端平面的应力水平人人超过了单桩,应力扩散的范闱 也远人丁•单桩,这些方面影响的综合结果就是使群桩的工作性状号单桩仃很人的差别。
这种桩与土和承台的共同作用的结果称为群桩效应。
正确认识和分析群桩的工 作性状是搞好桩基设计的前提。
群桩效应主要表现在承我性能和沉降特性两方面,研究群桩效应的实质就是研1)端承桩型的荷載传递。
对于端承桩,桩底处为岩层或坚实的土层,轴向压力作用F 桩身几乎只令弹性压缩而无整体位移,侧壁摩擦阻力的发挥受到较人限制,在桩底平面处地 基所受压力町认为只分布在桩底面积范内,如图1所示。
在这种情况下,町以认为群桩基 础各桩的工作情况4独立单桩相同。
2)摩擦桩型的荷载传递。
对于摩擦桩,随着桩侧摩擦阻力的发挥,在桩土间发生荷我 传递,故桩底平而处地基所受压力就扩散分布到较大的而积上如图2 (a)所示。
试验表明, 当相邻桩的中心距Sa>6d 时(其中d 为桩的直径,有斜桩时Sa 应按桩底平面计算),桩底平 面处压力分布图才不致彼此重叠,肉而群桩中一根桩与独立单桩的工作惜况相同,如图2(b) 所示。
而当桩间距较小(中心距SaW6d)时,桩底平面处相邻桩的压力图将部分地发生重 叠现象,引起压力叠加,地基所受压力无论在数值上及其影响范柿I 和深度上都会明显加人, 如图2 (c)所示;这种现象就是群桩作用或群桩效应。
由此町见,只有摩擦桩群才有群桩效应问题,才需婆考虎群桩问题,因此,一下关于群宪群桩荷 下我们对 能做详细 二,群桩的荷群 通过承台 散应力, 路径传到 从而引起 为群桩的群 受到许多 复杂又务 的角度, 有两类:型。
单桩承载力计算方法嘿,咱今儿就来聊聊单桩承载力计算方法这档子事儿。
你说这单桩承载力,那可太重要啦!就好比是一个大力士,得知道自己到底能扛起多重的东西,不然稀里糊涂地去干活儿,那不就得出乱子嘛!计算单桩承载力的方法呢,就像是一把钥匙,能帮我们打开了解桩基础能力的大门。
咱先说说静载试验法吧。
这就好比是真刀真枪地去测试,把重物实实在在地压在桩上,看看它到底能撑住多少。
这可是最直接、最靠谱的办法,就像你要知道自己能跑多快,那就直接去操场上跑一圈试试呗!不过呢,这个办法也有点麻烦,费时间又费精力。
还有经验公式法呢,这就像是老祖宗传下来的秘方。
根据以往的经验和数据,总结出一些公式来计算。
虽然不是百分百准确,但也能给个大概的范围呀。
这就好比你知道了一般人的饭量,那你就能估摸出一群人大概要吃多少饭啦。
再说说动力试桩法。
这就有点像听声音猜东西,通过桩在受到动力作用时的表现来推测它的承载力。
就像听一个人唱歌,你能大概猜到他的肺活量咋样。
每种方法都有它的特点和适用情况,就跟人穿衣服一样,得选合适的。
你总不能大热天穿棉袄,大冬天穿短袖吧!咱在实际工程中,可不能死脑筋只用一种方法。
就好比你去买东西,不得货比三家呀!多试试几种方法,相互印证一下,这样心里才更有底嘛。
比如说,要是只用静载试验法,万一遇到特殊情况,那不是傻眼了?要是光靠经验公式法,那要是碰到新情况,老经验可不顶用啦。
所以呀,咱得灵活运用,就像孙悟空一样,有七十二变,啥情况都能应对。
哎呀呀,这单桩承载力计算方法可真是个大学问!咱可得好好研究,认真对待。
不然盖出来的房子不结实,那可就麻烦大啦!咱可不能拿安全开玩笑,对吧?你想想,要是房子摇摇晃晃的,那住得能安心吗?所以呀,这计算方法可得搞清楚,弄明白,让我们的建筑稳稳当当的,给大家一个安全可靠的家!这就是咱搞工程的责任呀!你说是不是这个理儿呢?。
单桩群桩基础基桩水平承载力特征值计算单桩水平承载力特征值的计算通常采用规范方法进行。
根据规范的要求,单桩的水平承载力特征值可以通过以下步骤进行计算:
1.首先,需要确定单桩横向力作用的荷载特征值。
这可以根据设计要求和规范中给出的公式计算得到。
2.然后,需要确定单桩的水平承载容量。
这可以通过一些经验公式、试验数据或数值分析等方法得到。
3.最后,可以计算得到单桩的水平承载力特征值。
这通常需要将承载容量与荷载特征值进行对比,并考虑到安全系数来确定。
群桩基础基桩的水平承载力特征值计算相对复杂一些,通常需要进行数值分析。
以下是群桩基础基桩水平承载力特征值计算的一般步骤:
1.首先,需要确定群桩基础基桩的荷载特征值。
这可以根据设计要求和规范中给出的公式计算得到。
2.然后,需要进行桩-土相互作用的分析。
这包括计算每个桩单独承受的荷载以及桩之间的相互作用。
3.接下来,可以使用数值方法,如有限元数值分析等,来计算群桩基础基桩的水平承载力特征值。
这需要考虑土体的非线性特性和桩之间的相互作用。
4.最后,可以将得到的结果与设计要求进行对比,并考虑到安全系数来确定群桩基础基桩的水平承载力特征值。
需要注意的是,水平承载力特征值的计算是一个复杂的问题,并且可能涉及到许多参数的考虑,如土体的地质特征、桩的几何特征、桩的材料
特性等。
因此,在进行计算时,应该尽量使用合适的方法,并参考相关的规范和指导文件。
综上所述,单桩群桩基础基桩水平承载力特征值的计算是一项重要的工程计算任务,需要考虑多个因素,并通过适当的方法来进行。
单桩承载力验算一、土层分布情况二、单桩竖向承载力特征值桩端持力层为全风化花岗岩,按《建筑桩基技术规范》(JGJ94-2008),中性点深度比l n /l 0=,桩周软弱土层下限深度l 0=,则自桩顶算起的中性点深度l n =。
根据规范可知,该处承载力特征值只计中性点以下侧阻值及端阻值。
kN l q u A q Q i sik p pk 3976)613021.712(1141600uk =⨯+⨯⨯⨯+⨯⨯=+=∑ππkN Q K R uk a 19883894211=⨯== 三、单桩负摩阻力第一层路堤填土和杂填土自重引起的桩周平均竖向有效应力: 地下水以上部分:Pa k 93.6594.6192111=⨯⨯=σ; 地下水以下部分:Pa k 06.1396.1)1019(2194.61912=⨯-⨯+⨯=σ; 则kPa 20512111=+=σσσ;第二层淤泥自重引起的桩周平均竖向有效应力:kPa 26.182)54.863.21()105.15(216.1)1019(94.6192=-⨯-⨯+⨯-+⨯=σ; ;,故取kPa q kPa kPa q n s n n s 24245.612053.01111=>=⨯==σξ ;,故取kPa q kPa kPa q n s n n s 121245.3626.1822.01222=>=⨯==σξ 对于单桩基础,不考虑群桩效应则1n =η;基桩下拉荷载:kN l q u Q n i i n si n ng1137))54.863.21(1254.824(10.11=-⨯+⨯⨯⨯⨯==∑=πη 四、单桩分担面积上的荷载kN N 720)2520(44k =+⨯⨯=五、验算N R N Q N a n k 1988k 185********g k =<=+=+故单桩承载力满足要求。
按照摩擦性桩验算: kN l q u A q Q i sik p pk 2752)313021.712(1141600uk =⨯+⨯⨯⨯+⨯⨯=+=∑ππkN Q K R uk a 137********=⨯== kN N 720)2520(44k =+⨯⨯= a R N <k故单桩承载力满足要求。
最全面的桩基计算总结桩基础计算一.桩基竖向承载力《建筑桩基技术规范》5.2.2 单桩竖向承载力特征值Ra应按下式确定:Ra=Quk/K式中Quk——单桩竖向极限承载力标准值;K——安全系数,取K=2。
5.2.3对于端承型桩基、桩数少于4根的摩擦型柱下独立桩基、或由于地层土性、使用条件等因素不宜考虑承台效应时,基桩竖向承载力特征值应取单桩竖向承载力特征值。
5.2.4对于符合下列条件之一的摩擦型桩基,宜考虑承台效应确定其复合基桩的竖向承载力特征值: 1 上部结构整体刚度较好、体型简单的建(构)筑物;2 对差异沉降适应性较强的排架结构和柔性构筑物;3 按变刚度调平原则设计的桩基刚度相对弱化区;4 软土地基的减沉复合疏桩基础。
当承台底为可液化土、湿陷性土、高灵敏度软土、欠固结土、新填土时,沉桩引起超孔隙水压力和土体隆起时,不考虑承台效应,取η=0。
单桩竖向承载力标准值的确定:方法一:原位测试1.单桥探头静力触探(仅能测量探头的端阻力,再换算成探头的侧阻力)计算公式见《建筑桩基技术规范》5.3.32.双桥探头静力触探(能测量探头的端阻力和侧阻力)计算公式见《建筑桩基技术规范》5.3.4方法二:经验参数法1.根据土的物理指标与承载力参数之间的关系确定单桩承载力标准值《建筑桩基技术规范》5.3.52.当确定大直径桩(d>800mm)时,应考虑侧阻、端阻效应系数,参见5.3.6钢桩承载力标准值的确定:1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.7混凝土空心桩承载力标准值的确定:1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.8嵌岩桩桩承载力标准值的确定:1.桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成。
后注浆灌注桩承载力标准值的确定:1.承载力由后注浆非竖向增强段的总极限侧阻力标准值、后注浆竖向增强段的总极限侧阻力标准值,后注浆总极限端阻力标准值;特殊条件下的考虑液化效应:对于桩身周围有液化土层的低承台桩基,当承台底面上下分别有厚度不小于1.5m、1.0m 的非液化土或非软弱土层时,可将液化土层极限侧阻力乘以土层液化折减系数计算单桩极限承载力标准值。
单桩水平承载力计算一、静力分析法静力分析法是根据桩体受到的水平荷载产生的内力平衡条件来计算单桩水平承载力的方法。
计算步骤如下:1.确定桩的几何参数:包括桩的直径或截面面积、桩的长度等。
2.确定土的力学参数:包括土的内摩擦角、土的内聚力及土的重度等。
3.计算桩的自重:根据桩的几何参数和土的重度来计算桩的自重。
4.计算桩身的抗侧摩擦力:根据土的内摩擦角和桩的几何参数来计算桩身的抗侧摩擦力。
5.计算桩身的抗拔摩擦力:根据土的内摩擦角和桩的几何参数来计算桩身的抗拔摩擦力。
6.计算土中桩端反力:根据桩身的抗侧摩擦力、抗拔摩擦力和桩的自重来计算土中桩端反力。
7.确定桩身的刚度:根据桩的几何参数和土的力学参数来计算桩身的刚度。
8.计算桩的弯矩及最大挠度:根据土中桩端反力、桩的刚度和水平力来计算桩的弯矩和最大挠度。
9.计算桩的水平承载力:根据桩的弯矩和最大挠度来计算桩的水平承载力。
二、动力分析法动力分析法是根据桩体在水平荷载作用下的振动特性来计算单桩水平承载力的方法。
计算步骤如下:1.进行动力试验:通过在桩头上施加不同振动力和观测振动信号,得到桩的动力特性。
2.确定动力参数:包括桩的共振频率和桩的阻尼比等。
3.确定土的力学参数:包括土的剪切模量和土的阻尼比等。
4.计算桩的共振频率:根据桩的几何参数和土的力学参数来计算桩的共振频率。
5.确定桩的最大振幅:根据桩的几何参数、土的力学参数、桩的共振频率和振动力来计算桩的最大振幅。
6.计算桩的水平承载力:根据桩的最大振幅来计算桩的水平承载力。
静力分析法和动力分析法在实际工程中都有广泛的应用,选择合适的方法需要根据具体的工程情况和数据可靠性来决定。
此外,还有基于现场试验和数值模拟的方法可供选择,可以根据具体情况选择最合适的方法进行单桩水平承载力计算。
群桩基础某单桩承载力计算
群桩基础是指多个桩共同共享荷载的一种基础形式。
在一些土质条件较差的情况下,使用单桩作为基础常常会出现承载力不足的情况。
此时,可以通过使用多个桩同时承载荷载来提高整体承载力,降低基础沉降,增加基础的稳定性。
群桩基础单桩承载力的计算,一般可采用邱启明法进行分析。
该方法是以桩顶水平位移为基础,根据荷载-沉降曲线的变形特征判断桩顶承载力。
首先,需要确定各个桩之间的距离,并根据实际情况选择合适的计算高度。
然后,根据各个桩的直径、长度及桩间距等参数计算每个桩的单桩承载力。
这里可以使用公式:
Qs=α*Nc*A*c+α*Nq*A*q+α*Ng*A*γ
其中,Qs为单桩的承载力,α为整体系数,Nc、Nq、Ng分别为桩端土的轴力系数、桩端土的静外抗力系数和桩体积土的重力系数,A为桩的截面面积,c、q、γ为相应的土的参数。
接下来,根据桩的相对刚度按照机构分析的原则确定各个桩的水平位移。
然后,根据桩的刚度系数计算各个桩的荷载。
最后,根据实际的荷载-沉降曲线,通过比较计算得到的承载力和实际荷载确定群桩基础单桩的承载力。
此外,还有其他的计算方法可供参考,如静力触探法、动力触探法、振动法等。
不同的方法适用于不同的土质条件和工程要求,需要根据实际情况选择合适的计算方法进行分析。
总之,群桩基础单桩承载力的计算是一个复杂的问题,需要综合考虑土质条件、桩的直径、长度、桩间距、荷载等因素,通过合适的计算方法得出准确的结果,以确保基础的安全稳定。
桩基水平承载力特征值
按《建筑桩基技术规范》(JGJ94-2008)第5.7.2条公式计算
注:1、验算永久荷载控制的桩基的水平承载力,需乘以调整系数0.80;
2、验算地震作用桩基的水平承载力时需乘以调整系数1.25
表5.7.2
桩顶(身)最大弯矩系数νm 和桩顶水平位移系数νx
注:1、铰接(自由)的νm系桩身的最大弯矩系数,固接的νm系桩顶的最大弯矩系数2、当αh>4时取4.0
表5.7.5
地基土水平抗力系数的比例系数m 值
注:1 当桩顶水平位移大于表列数值或灌注桩配筋率较高(≥0.65%)时, m 值应适当降低;当预制桩的水平向
位移小于10mm 时, m 值可适当提高;
2 当水平荷载为长期或经常出现的荷载时,应将表列数值乘以0.4 降低采用;
3 当地基为可液化土层时,应将表列数值乘以本规范表5.3.12 中相应的系数ψl
4、附录C.0.2 基桩侧面为几种土层组成时,应求得主要影响深度h = 2(d +1) m 米范围内的m值作为计算值
当 m深度内存在两层不同土时,m=m1h1^2+m2(2h1 +h2)/hm^2
当 m深度内存在三层不同土时,m=m1h1^2+m2(2h1 +h2)+m3(2h1+2h2 +h3)/hm^2
桩的换算埋深αhνmνx 140.768 2.441 2 3.50.750 2.502
4.0000.768
2.441。
桥梁桩基础课程设计桥梁桩基础课程设计一、恒载计算(每根桩反力计算)1、上部结构横载反力N1 N1=12⨯2350=1175kN 2、盖梁自重反力N2 N2=12⨯350=175kN 3、系梁自重反力N312⨯25 ⨯3.5 ⨯0.8 ⨯1=35kN 4、一根墩柱自重反力N4KN N 94.222)1025(5.01.5255.0)1.54.13(224=-⨯⨯⨯+⨯⨯⨯-=ππ(低水位)KN N 47.195255.08.4155.06.8224=⨯⨯⨯+⨯⨯⨯=ππ (常水位)5、桩每延米重N5(考虑浮力) m KN N /96.16152.1425=⨯⨯=π二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路二级:7.875/k q kN m = 193.2k P kN =Ⅰ、单孔布载 55.57822.1932875.74.24=⨯+⨯=)(R Ⅲ、双孔布载 24.427.875(193.2)2766.3082R k N⨯⨯=+⨯= (2)、人群荷载Ⅰ、单孔布载 113.524.442.72R kN =⨯⨯=Ⅲ、双孔布载 23.524.485.4R k N =⨯=q —人群荷载集度 l —跨径 2、柱反力横向分布系数ϕ的计算 柱反力横向分布影响线见图5。
70.50.51图5图5⑴、汽车荷载汽ϕ ()111.1670.7670.4780.078 1.24522q η=∑=+++=⑵、人群荷载人ϕ =1.33 三、荷载组合1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u )汽ϕ∑i i y P +人ϕql= 1175+175+(1+0.2)⨯1.245⨯766.308+1.33⨯85.4 =2608.45kN (汽车、人群双孔布载)2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力 R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21= 1175+175+1.2⨯1.245⨯578.55+1.33⨯42.7= 2271.14kN (汽车、人群单孔布载)⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)= 2608.45+35+195.47=2838.92 kN0Q = 1H + 1W + 2W= 22.5+8+10=40.5 kN0M = 14.71H + 14.051W + 11.252W + 0.3活max R= 14.7⨯22.5+14.05⨯8+11.25⨯10+0.3⨯(2608.45-1175-175) = 933.185kN.m活max R ——组合Ⅰ中活载产生的竖向力。
1.大桥7#承台6a-0桩基桩顶荷载计算:
大桥桥梁跨径组成为5×40+(65+120+65)+3×40连续刚构、预应力混凝土结构连续T梁,桥梁全长579 m。
主桥上部采用三向预应力混凝土连续刚构,主墩采用2.2 m×6.5 m×45.459 m双薄壁墩,基础采用人工挖孔灌注桩基础;荷载为纵向控制设计,作用于混凝土承台顶面中心的荷载如下:
图1.大桥桩断面示意图(除标高以m计外,其余以cm计)
承台自重:N =w ·l ·h ·γ
N =16.5×22.75×4.5×25 =42229.7 kN
双薄壁墩自重:N =w ·l ·h ·γ
N =(2.2×6.5×45.46×4+5.6×1.5×6.5×2+0.3×0.5/2×6.5×8)×25 =67835 kN
w —宽度(m ); l —长度(m ); h —高度(m );
γ—钢筋混凝土重度(kN/m 3)。
梁(中跨一半+0#块)自重:14
0/2i i N N N ==+∑0
N=(52.3/2+105+106.1+108.3+111.2+117.3+124.3+130+121.8+
130.2+136.7+143.6+151.1+159+167.5+1097.9)×10 =29361.5 kN
梁(边跨)自重:15
0i i N N ==∑
N =(166.3+52.3+105+106.1+108.3+111.2+117.3+124.3+130+
121.8+130.2+135.9+143.6+151.1+159+167.5)×10 =20299 kN
N i —第i 块梁自重(kN )。
由于边跨自重对于主墩属非对称传递荷载,固对其取梁高加权自重:
N =7.2/(3+7.2)×20299=14328.7 kN
2.计算
(1)桩的计算宽度b 1
b 1=K f ·K 0·K ·d
d —与外力H 作用方向相垂直平面上桩的直径;
K f —形状换算系数,即在受力方向将各种不同截面形状的桩宽度,乘以K f
换算为相当于矩形截面宽度;
K 0—受力换算系数,既考虑到实际上桩侧土在承受水平荷载时为空间受力
问题,简化为平面受力时所给的修正系数;
K —桩间相互影响系数。
当桩基有承台连接,在外力作用平面内有数根桩时,各桩间的受力将会相应产生影响,其影响与桩间净距L 1的大小有关。
b 1=K f ·K 0·K ·d =0.9×(1+1/d )×0.78·d =2.457 m
(2)桩—土变形系数α
E =0.67E h =0.67×3.1×107=2.08×107 kN/m 2
4
1.91764
d I π=
= m 4
0.42α=== m -1 h α=25×0.42=10.5>2.5,故按弹性桩来计算。
b 1—桩的计算宽度;
E 、I —桩的弹性模量及截面惯性矩; H —桩的入土深度。
(3)桩顶刚度系数1ρ、2ρ、3ρ、4ρ
根据《公桥基规》,挖孔桩采用1
2ξ=,h =25 m ,222.5 4.90944d A ππ=== m 2 对于岩石地基系数C 0可以查的C 0=5×106 kN/m 3
2
0 2.545(25tan =121.6524
A π︒=+⨯) m 2
按桩中心距计算面积,故取2
0 6.25=30.682
A π=⨯(
) m 2 ∴ 1000
7611
=0.2811
025124.409 3.11051030.68
h EI l h AE C A ρξ==++⨯+
+
⨯⨯⨯⨯
已知:0.422510.5(4)h h α-
==⨯=>,取用4,00.4200l l α-
==⨯= 查表得: 1.06423Q x =;0.98545m x =; 1.48375m ϕ=。
∴3320.42 1.064230.0788Q EIx EI EI ρα==⨯=
2230.420.985450.1738m EIx EI EI ρα==⨯=
40.42 1.483750.623m EI EI EI ραϕ==⨯=
(4)计算承台地面原点处位移0b 、0β a . 承台作用在桩顶时的位移:
0142229.712568.36120.28N b n EI EI
ρ=
==⨯ b . 承台和墩作用在桩顶时的位移:
01110064.732757.35
120.28N b n EI EI
ρ=
==⨯ c. 承台、墩和梁作用在桩顶时的位移:
01153754.945760.39
120.28N b n EI EI
ρ=
==⨯ 22411
120.6230.2812 3.12540.2885n
i i n x EI EI EI ρρ=+=⨯+⨯⨯=∑
2120.07880.9456n EI EI ρ=⨯= 2120.07880.9456n EI EI ρ=⨯=
30222
24131()n
i i n H
n n x n ρβρρρρ==
+-∑
2
2.085620012.26
0.9456(120.62332.8125)(2.0856)EI EI EI EI EI EI
⨯=
=⨯+- n —桩的根数
(5)计算作用在角桩顶上作用力p i
a. 承台作用在桩顶时角桩顶上的作用力:
10012568.3612.36
()0.28( 3.125)3529.956i i p b x EI EI EI ρβ=+=+⨯= kN
b. 承台和墩作用在桩顶时角桩顶上的作用力:
10032757.3512.36
()0.28(
3.125)9182.87i i p b x EI EI EI
ρβ=+=+⨯= kN c. 承台、墩和梁作用在桩顶时角桩顶上的作用力:
10045760.3912.36
()0.28(
3.125)12823.72i i p b x EI EI EI
ρβ=+=+⨯= kN。