高等数学之重积分应用
- 格式:ppt
- 大小:1.29 MB
- 文档页数:30
重积分的积分性质和计算规则重积分是高等数学中的一种重要概念,指对于一个二元函数而言,将其在一个二维区域上进行积分的过程。
与单积分类似,重积分也有其特定的积分性质和计算规则。
本文将详细介绍重积分的这些性质和规则,以帮助读者更好地理解和应用重积分的相关知识。
一、积分性质1. 线性性质:重积分具有线性性,即对于常数c与两个可积函数f(x,y)和g(x,y),有如下式子成立:∬ (c*f(x,y) + g(x,y)) dxdy = c * ∬ f(x,y) dxdy + ∬g(x,y)dxdy2. 可积性与非负性:如果函数f(x,y)在一个有限二维区域上是可积的,那么它在该区域上的积分一定存在;而如果函数g(x,y)在该区域上非负,则其积分也是非负的。
3. 积分次序可交换:如果二元函数f(x,y)在一个矩形区域上是可积的,则对于该区域内的任意两个积分限定,这两个积分的次序可以任意交换而不影响结果,即:∬ f(x,y) dxdy = ∬ ( ∬f(x,y)dy ) dx = ∬(∬f(x,y) dx)dy二、计算规则1. Fubini定理:Fubini定理是重积分中的一个重要定理,可以将对二元函数在一个区域上的重积分转化为两个一元函数相应区域上的积分,即:∬f(x,y)dxdy = ∫a∫b f(x,y)dxdy = ∫b∫a f(x,y)dydx = ∫a∫b f(x,y)dydx其中f(x,y)为被积函数,a和b分别为区域在x和y轴上的积分限。
2. 直角坐标系下的计算规则:在直角坐标系下,重积分可以用二重积分的形式表示,即:∬f(x,y)dxdy = ∫c∫d f(x,y)dxdy其中 c 和 d 分别为区域在x和y轴上的积分限,这个积分区域可以是矩形、梯形、三角形等形状。
在进行计算时,通常需先用对x或y的积分公式进行计算,再对另一个变量进行积分。
3. 极坐标系下的计算规则:在极坐标系下,重积分可以用二重积分的极坐标形式表示,即:∬f(x,y)dxdy = ∫α∫β f(r*cosθ,r*sinθ)rdrdθ其中α和β为对应极角的积分限,r是到极点的距离,θ是到x轴的角度。
重积分的积分应用和物理意义重积分是高等数学中一个重要的概念和工具。
它的出现是为了解决多元函数在空间区域内的积分问题。
在实际应用中,重积分有着广泛的应用,尤其是在物理学领域。
本文就对重积分的积分应用和物理意义进行分析。
一、重积分的积分应用1.体积和质量的计算在几何学和物理学中,体积和质量的计算都涉及到对空间中某个区域的积分。
例如,在三维空间中,某个具有规则形状的立体体积可以通过三重积分计算得出。
具体地,设空间中一个体积为V的区域为S,对其进行三重积分可以得到S的体积为:V = ∫∫∫ S dx dy dz同样的,如果在空间中某一点对应有一定质量,那么对该区域进行三重积分可以得到该区域的质量。
这时需要考虑到每个小立方体所包含的质量及其对应的体积,即:m = ∫∫∫ S ρ(x, y, z) dx dy dz其中,ρ(x, y, z)表示该点的密度。
2.力的计算在物理学中,重积分可用于计算某个物体所受的外力。
例如,平面上某个点的引力如果可以看成是均匀分布的,那么该点所受的外力可以通过对其周围区域进行二重积分得到。
具体地,如果某一点所受的引力函数的密度为ρ(x, y),则该点所受的外力F可以表示为:F = ∫∫ D ρ(x, y) dS其中,D为该点周围的区域面积,dS为微小面积元素。
3.能量的计算在物理学中,重积分还可用于计算某个系统所具有的能量。
例如,某个三维物体所具有的动能可以通过对其质点进行积分计算得到。
具体地,设空间中某个物体的速度场为V(x, y, z),则其动能可以表示为:E = 1/2 * m * ∫∫∫ S [V(x, y, z)]^2 dx dy dz其中,m为该物体的总质量。
二、重积分的物理意义重积分在物理学中有着广泛的应用,它可以帮助我们理解物理现象的本质和规律。
以下就以几个例子来说明重积分的物理意义。
1.空间电荷密度在电学中,空间电荷密度常常需要进行积分计算。
例如,在计算某一电场强度时,我们需要考虑到空间中每个点的电荷密度对该点电场强度的影响。
高数大一知识点总结重积分高数大一知识点总结:重积分高等数学中的重积分是一种扩展了二重积分的概念,它在多变量函数的积分中扮演重要的角色。
本文将对高数大一课程中的重积分进行总结和讲解。
一、重积分的概念和性质重积分是定义在三维空间内的函数的积分,通常用来计算多变量函数在某个区域上的累积效应。
与二重积分类似,重积分可以通过分割区域,将其近似为无穷小的小区域,然后对每个小区域进行积分,再将这些积分进行累加而得到。
重积分的计算通常与坐标系的选择有关,常见的坐标系有直角坐标系、极坐标系和柱坐标系等。
根据实际问题的特点和对称性的分析,选择合适的坐标系可以简化计算过程。
在计算重积分时,需要注意积分顺序的选择。
根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,这样有助于简化计算,并得到准确的结果。
重积分具有一些重要的性质,例如线性性、划分性和保号性等。
这些性质在具体计算过程中可以灵活运用,简化计算和分析。
二、重积分的计算方法1. 直角坐标系下的重积分计算方法直角坐标系下的重积分计算通常通过多次积分来实现。
根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,再对另一个自变量进行积分。
通过逐步积分,最终可以得到准确的结果。
2. 极坐标系下的重积分计算方法极坐标系下的重积分计算常常适用于具有旋转对称性的问题。
在极坐标系下,将函数和区域表示成极坐标形式,通过选择合适的积分顺序和极角范围,可以简化计算过程,得到准确的结果。
3. 柱坐标系下的重积分计算方法柱坐标系下的重积分计算通常应用于具有柱对称性的问题。
在柱坐标系下,将函数和区域表示成柱坐标形式,通过选择合适的积分顺序和柱角范围,可以简化计算过程,得到准确的结果。
三、重积分的应用领域重积分在科学和工程领域有广泛的应用。
例如,在物理学中,用重积分可以计算物体的质量、质心和转动惯量等;在电磁学中,可以用重积分计算电荷、电场和电势等;在流体力学中,可以用重积分计算流体的质量、流速和流量等。
“穿线法”技巧在高等数学重积分计算中的应用
“穿线法”是一种常见的高等数学计算技巧,常用于重积分的
计算中。
其基本思想是通过将多重积分区域划分成一系列简单区域,并逐一计算每个简单区域的积分值来计算多重积分的值。
以下是“穿线法”技巧在高等数学重积分计算中的应用方法:
1. 先将所给区域按照需求进行切割,通常将其分成几个互相独
立的区间。
2. 对于每一个区间,可以将其分成两个互相独立的部分,然后
进行分别计算。
可以使用曲面跑分和分块方法来计算。
3. 再根据所要求的重积分的形式,对于每个区间计算其对应部
分的积分值。
在这一过程中,可以使用两种方法进行计算:直接计
算或变量置换。
4. 将所有区间的积分值相加,即可得到整个多重积分的值。
总体来说,“穿线法”通过对重积分区域的分离和分块,使得
每个区块可以独自计算,从而将整个区域的重积分转化为各区块的
积分值相加的形式,简化了计算过程,具有较高的实用价值。
重积分的积分变换和积分替换积分是高等数学中的一个重要概念,它被广泛应用在各个领域中,包括物理学、统计学、经济学等。
在微积分中,一类重要的积分就是重积分。
和单变量积分不同,重积分涉及到多个变量,其计算难度往往更大。
近年来,学者们发现,利用积分变换和积分替换的技巧,可以有效地简化重积分的计算过程。
本文就介绍一些有关积分变换和积分替换的基本知识和重要应用。
一、积分变换积分变换是将一类积分变换成另一类积分的过程,通常是通过一些数学技巧来实现的。
积分变换有很多种,包括线性变换、仿射变换、圆柱变换、球坐标变换等。
在这里,我们主要介绍球坐标变换和柱坐标变换两种。
1. 球坐标变换球坐标变换是将三维空间中的积分转化为球坐标系下的积分。
通过这种变换,可以将具有各向同性的问题转化为与方向无关的问题,从而简化积分的计算。
球坐标系下的积分变量包括径向距离r、极角θ和方位角φ。
一般来说,球坐标变换的步骤如下:(1)将被积函数写成球坐标的形式;(2)将坐标变量x、y、z表示为r、θ和φ的函数;(3)将分子(dx dy dz)替换成球坐标系下的积分元素r²sinθ dr dθ dφ;(4)对变量r、θ和φ进行变量替换,计算出新的积分区域。
例如,设空间中有一个函数f(x,y,z),要求其在球形区域内的积分。
那么,将被积函数转化为球坐标系下的形式:f(x,y,z)→f(r,θ,φ)然后,把直角坐标系下的坐标写成球坐标系下的形式:x=r sinθ cosφ;y=r sinθ sinφ;z=r cosθ。
接着,计算出雅可比行列式,替换分子,并对积分区域进行调整。
最终得到球坐标下的积分表达式:∫∫∫f(x,y,z) dxdydz = ∫∫∫f(r,θ,φ) r²sinθ dr dθ dφ2. 柱坐标变换柱坐标变换是将三维空间中的积分转化为柱坐标系下的积分。
柱坐标系下的积分变量包括径向距离r、极角θ和高度z。
柱坐标变换的一般步骤如下:(1)将被积函数写成柱坐标系下的形式;(2)将直角坐标系下的坐标表示为柱坐标系下的形式;(3)将分子(dx dy dz)替换成柱坐标下的积分元素r d r dθ dz;(4)对变量r、θ和z进行变量替换,计算出新的积分区域。
《高等数学》——重积分摘要:高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。
重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。
重积分主要用来解决实际问题,在本文中,首先我总结一下学习中遇到的重积分的应用,比如求空间立体的体积,空间物体的质量及其在几何和物理方面的应用,并借以实例加以说明。
其次,谈谈我个人对学习重积分的一些建议和想法。
关键词:重积分;曲面面积;重心;转动惯量;引力;应用.在高等数学中,重积分是多元函数积分学的内容,在一元函数积分学中我们知道定积分是某种确定形式的和的极限。
这种和的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。
高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。
在本章中将介绍重积分的概念、计算法以及它们的一些应用。
重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。
文章中我分为两个部分来谈重积分,第一部分主要归纳了重积分的应用,对于重积分的学习,要求主要掌握重积分的计算和应用,会用重积分的思想解决实际问题,然而计算又涵盖在具体应用中。
因此学习重积分要从它的应用着手。
第二部分谈了谈自己对学习重积分的一些建议和想法。
主要从学习重积分的思想和计算方法两方面来谈。
I .重积分的应用归纳如下:1.1曲面的面积 设曲面∑的方程为(),y x f z,=∑在xoy 面上的投影为xy D ,函数()y x f ,在D 上具有连续偏导数,则曲面∑的面积为: 若曲面∑的方程为(),z y g x ,=∑在yoz 面上的投影为yz D ,则曲面∑的面积为:若曲面∑的方程为(),x z h y ,=∑在zox 面上的投影为zx D ,则曲面∑的面积为:例1:计算双曲抛物面xy z =被柱面222R y x =+所截出的面积A 。
重积分知识点总结(一)前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
它在物理学、工程学和计算机科学等领域都有广泛的应用。
本文将针对重积分的知识点进行总结,以帮助读者更好地理解和掌握这部分知识。
正文一、重积分的定义与性质1.重积分的定义:对于二重积分来说,可以将其理解为将被积函数在某个有界闭区域上的“总体积”。
而对于三重积分来说,则是将被积函数在某个有界闭区域上的“总体积”。
2.交换积分次序:在某些情况下,交换积分次序可以简化重积分计算的复杂程度。
3.重积分的性质:包括线性性质、保号性质、次可加性质等。
这些性质在进行重积分计算时非常重要。
二、二重积分的计算方法1.二重积分的计算方法主要有面积法、直角坐标法和极坐标法。
在具体的计算过程中,可以根据题目要求和被积函数的形式选择合适的计算方法。
2.面积法:将被积函数看做是一片平面上每一点的贡献,通过对整个区域的累加求和来计算二重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.极坐标法:将被积函数用极坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,极坐标法可以简化计算过程。
三、三重积分的计算方法1.三重积分的计算方法主要有体积法、直角坐标法和柱坐标法。
在具体的计算过程中,同样需要根据题目要求和被积函数的形式选择合适的计算方法。
2.体积法:将被积函数看做是空间内每一点的贡献,通过对整个区域的累加求和来计算三重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.柱坐标法:将被积函数用柱坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,柱坐标法可以简化计算过程。
结尾重积分是数学中重要而复杂的知识点,在实际应用中具有广泛的价值。
通过本文的总结,希望读者们能够对重积分的定义、性质和计算方法有更深入的理解,从而更好地应对相关问题的解决和应用。
前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
第九章(二) 重积分的应用重积分的应用十分广泛。
尤其是在几何和物理两方面。
几何方面的应用有利用二重积分求平面图形的面积;求曲面面积;利用三重积分求立体体积。
物理方面的应用有求质量;求重心;求转动惯量;求引力等。
在研究生入学考试中,该内容是《高等数学一》和《高等数学二》的考试内容。
通过这一章节的学习,我们认为应到达如下要求:1、掌握重积分的几何和物理意义,并能应用于实际计算。
2、对于重积分的应用领域和常见应用问题有全面的了解,并能利用重积分解决应用问题。
3、具备空间想象能力,娴熟的重积分计算技巧和将理论转化为应用的能力。
一、知识网络图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧求引力求转动慣量求重心求质量物理应用求曲面面积求立体体积求平面图形面积几何应用重积分的应用 二、典型错误分析例1. 求如下平面区域D 的面积,其中D 由直线x y x ==,2及曲线1=xy 所围成。
如图: y[错解]89)2(2212221=-===⎰⎰⎰⎰⎰dy y dx dy d S y Dσ[分析]平面图形的面积可以利用二重积分来计算,这一点并没有错。
问题在于区域D ,假设先按x 积分,再按y 积分,则应注意到区域D 因此划分为两个部分,在这两个部分,x 、y 的积分限并不相同,因此此题假设先积x, 后积y ,则应分两部分分别积分,再相加。
[正确解] 2ln 2322112121-=+==⎰⎰⎰⎰⎰⎰yyDdx dy dx dy d S σ 例 2..设平面薄片所占的闭区域D 是由螺线θγ2=上一段弧)20(πθ≤≤与直线2πθ=所围成,它的面密度为22),(y x y x +=ρ,求该薄片的质量。
[错解] 24023420320220πθθθσρπθπ====⎰⎰⎰⎰⎰d r dr r d d MD[分析] 平面物体的质量是以面密度函数为被积函数的二重积分,因此解法的第一步是正确的。
注意到积分区域的边界有圆弧,而被积函数为22),(y x y x +=ρ,因此积分的计算采用极坐标系算,这一点也是正确的。
多重积分的应用和计算方法多重积分是高等数学中的一个重要分支,它的应用范围涵盖了众多学科领域。
多重积分的计算方法和应用十分重要,下面我们就来详细讲述多重积分的应用和计算方法。
一、多重积分的应用1.立体几何多重积分能够用来解决与立体几何相关的问题,如体积、质心、惯性矩、转移积分等问题。
例如,当我们要求一个不规则物体的体积时,就需要对该物体进行三重积分。
2.统计多重积分在统计中也有广泛应用,如求解双变量统计分布函数中的相关系数,以及用于分析双变量分布密度函数等问题。
3.物理学多重积分在物理学中的应用也十分广泛,例如计算含密度分布的碰撞情形、电场和磁场的建模等。
4.金融学多重积分在金融学中的应用主要集中在随机过程建模中,如模拟股票价格、债券价格等,解决了很多股票价格计算的问题。
二、多重积分的计算方法1.重积分的概念在高维空间中,重积分的概念是对于一个有限的函数f(x1,x2,...,xn),我们可以定义在一个n维矩形区域R上的积分,那么该积分的值就是重积分。
重积分可以看作是多个积分的组合,其中x1到xn表示积分变量,而dx1、dx2等则代表积分变量相应的微元。
这样,通过多个积分的嵌套计算,我们就能算出具体的重积分值。
2.变换积分公式变换积分公式是计算多重积分的重要工具。
它被用来处理一个积分区域的坐标系的变换。
假设F(u1,u2)是一个单变量函数,而(x,y)和(u,v)分别是两种坐标系中的坐标,那么对于某个区域R,它可以被写成一对(u,v)值的函数:x = x(u,v) y = y(u,v)在这种情况下,我们可以把在(x,y)坐标系下的积分转化为在(u,v)坐标系下的积分,具体而言,计算过程如下:$\int\int_Rf(x,y)dxdy = \int\int_Df(x(u,v),y(u,v))|J(u,v)|dudv$在这里,J(u,v)被称为Jacobi矩阵,它是变换的导数。
这个公式就是变换积分公式。
例 利用二重积分的性质,估计积分2222(2)d Dx y x y σ+-⎰⎰ 的值,其中D 为半圆形区域224,0x y y +≤≥.解 我们先求函数2222(,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值.由22220,420,x yf x xy f y x y '⎧=-=⎪⎨'=-=⎪⎩解得D 内驻点为(2,1)±,(2,1)2f ±=. 在边界1:0L y =(22)x -≤≤上,2()(,0)g x f x x ==在1L 上(,)f x y 的最大值为4,最小值为0.在边界222:4L x y +=(0)y ≥上,242()(,4)58(22)h x f x x x x x =-=-+-≤≤由3()4100h x x x '=-=得驻点123550,,22x x x ==-=,(0)(0,2)8h f ==. 5537()(,)2224h f ±=±=. 综上,(,)f x y 在D 上的最大值为8,最小值为0.又D 的面积为2π,所以由二重积分的估值性质知222202(2)d 82Dx y x y πσπ⋅≤+-≤⋅⎰⎰,即22220(2)d 16Dx y x y σπ≤+-≤⎰⎰.例 设D 为xoy 平面上以(1,1),(1,1),(1,1)---为顶点的三角形区域,1D 为D 在第一象限的部分,则(cos sin )()Dxy x y dxdy +=⎰⎰.(A )12cos sin D x y dxdy ⎰⎰ (B )12D xy dxdy ⎰⎰(C )14(cos sin )D xy x y dxdy +⎰⎰ (D )0解 区域D 如图所示,并记0D 为以(1,1),(1,1),(0,0)-为顶点的三角形区域,则0D 关于y 轴对称,且1D 为0D 在y 轴右侧的部分区域,区域0D D -关于x 轴对称.又xy 关于x 和y 均为奇函数;而cos sin x y 关于x 为偶函数.关于y 为奇函数,由二重积分的奇偶对称性得0,0D D D xy dxdy xy dxdy -==⎰⎰⎰⎰,故0Dxy dxdy =⎰⎰;1cos sin 2cos sin ,cos sin 0D D D D x ydxdy x y dxdy x y dxdy -==⎰⎰⎰⎰⎰⎰,故1cos sin 2cos sin DD x y dxdy x y dxdy =⎰⎰⎰⎰.所以1(cos sin )cos sin 2cos sin DDDD xy x y dxdy xy dxdy x y dxdy x y dxdy +=+=⎰⎰⎰⎰⎰⎰⎰⎰.因此我们选(A ).例 设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,()f x 为D 上的正值连续函数,,a b 为常数,则Dσ= .解 由题意知,D 关于直线y x =对称,由二重积分轮换对称性得DσDσ=12D d σ=⎰⎰ 211()π2π22242D D a b a b a b a b d d σσ+++=+==⋅⋅=⎰⎰⎰⎰. 因此,我们应填“π2a b+.”例 计算二次积分220sin xydx dy yππ⎰⎰解 积分区域如图,则 原式20sin yydy dx yπ=⎰⎰2200sin sin sin y dy ydy ydy ππππ==+-⎰⎰⎰4=;例设D为椭圆区域22(1)(2)149x y--+≤,计算二重积分()Dx y dxdy+⎰⎰.解令12cos,23sin,x ry r=+⎧⎨=+⎩θθ则D的极坐标表示为01,02r≤≤≤≤θπ,且(,)6(,)x yrrθ∂=∂.由式(10.2.8),可得2100()6(32cos3sin)Dx y dxdy d r r rdr+=++⎰⎰⎰⎰πθθθ2326(cos sin)1823d=++=⎰πθθθπ.例计算二重积分⎰⎰+Dyxyx dd)(,其中D为.122++≤+yxyx解解法1 D的边界曲线为,2/3212122=⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-yx这是一个以⎪⎭⎫⎝⎛21,21为圆心,23为半径的圆域,采用一般的变量代换,令⎪⎪⎩⎪⎪⎨⎧-=-=,21,21yvxu即作变换⎪⎪⎩⎪⎪⎨⎧+=+=,21,21vyux于是D变为.2/3:22≤+'vuD.111),(),(==∂∂=vuyxJ所以,()d d(1)1d dD Dx y x y u v u v'+=++⋅⋅⎰⎰⎰⎰(再用极坐标).23023d d )cos (sin d d d )1sin cos (d 222/30202/3020ππθθθθθθθππ=+⎪⎪⎭⎫ ⎝⎛⋅=++=++=⎰⎰⎰⎰⎰⎰r r r r rr r r D解法2 由于积分区域D :23212122≤⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x 关于21=x (即)021=-x 对称,故⎰⎰=⎪⎭⎫ ⎝⎛-D y x x .0d d 21 类似地,由于D 关于⎪⎭⎫⎝⎛=-=02121y y 即对称,故 ⎰⎰=⎪⎭⎫ ⎝⎛-D y x y .0d d 21 从而.2323d d d d 1d d 21d d 21d d )(2ππ=⎪⎪⎭⎫ ⎝⎛⋅===⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰面积D y x y x y x y y x x y x y x D D D DD例 计算y x e I Dy xd d },max{22⎰⎰=,其中,}10,10|),{(≤≤≤≤=y x y x D解 D 由x y =分为D 2,D 2两部分,如图.⎪⎩⎪⎨⎧≤≤≤≤≤≤≤≤=1,10:,0,10:,21},max{2222y x x D e x y x D e e y x y x x e y y e x y x e y x e I yy xx D y D x d d d d d d d d 01010222212⎰⎰⎰⎰⎰⎰⎰⎰+=+=21110d d 2d d 2222x e x xe y e x x x xx ⎰⎰⎰⎰===.1102-==e e x例 利用二重积分计算定积分1(,0)ln b ax x I dx a b x-=>⎰解 因为1ln ln bb a btt aa x x x dt x x x-==⎰所以 ⎰⎰⎰⎰⎰⎪⎭⎫⎝⎛++=+=+===bab aba batta b t dt t dx x dt dx dt x I 11ln )1ln(11)(11例 ],[)(b a x f 为上的连续函数,且0)(>x f ,试利用二重积分证明.)()(1d )(2a b x f x x f baba-≥⎰⎰证 因为x x f y y f x x f x x f b a b a babad )(1d )(d )(1d )(⎰⎰⎰⎰=,d d )()(d d )()(y x y f x f y x x f y f DD⎰⎰⎰⎰≥= 其中 所以},,|),{(b y a b x a y x D ≤≤≤≤=⎰⎰⎰⎰⎰⎰+=DD bab ay x y f x f y x x f y f x x f x x f d d )()(d d )()(d )(1d )(2 y x y f x f y f x f y x y f x f x f y f DDd d )()()()(d d )()()()(22⎰⎰⎰⎰≥+=,)(2d d 22a b y x D-==⎰⎰亦即.)(d )(1d )(2a b x x f x x f baba-≥⎰⎰例 计算⎰1d )(x x xf ,其中⎰=21d int)(x t tS x f 解 当10,102≤≤≤≤x x 时⎰⎰⎰-===111222,d sin d sin d sin )(x x x y yy y y y t t tx f从而x y y y x x x xf x d d sin d )(101102⎰⎰⎰⎥⎦⎤⎢⎣⎡-= 图y x y yx y y y x x xDd d sin d sin d 1102⎰⎰⎰⎰-=⋅-=,其中D 曲线1,2==y x y ,和0=x 所围成,如图10-8。
习题 9.41. 求下列平面闭区域D 的面积.(1) D 由曲线e ,e x x y y -==及1x =围成;(2) D 由曲线21,1y x y x =+=--围成;(3) D 由双纽线22222()4()x y x y +=-围成;(4) {(cos ,sin )|24sin }D r r r θθθ=≤≤;(5) 1(cos ,sin )1cos 2D r r r θθθ⎧⎫=≤≤+⎨⎬⎩⎭; (6) D 由曲线2223()2(0)x y ax a +=>围成;(7) D 由椭圆22(234)(567)9x y x y +++++=围成;(8) D 是由曲线3y x =,34y x =,3x y =,34x y =所围成的位于第一象限部分;2. 利用二重积分计算下列各题中立体Ω的体积.(1) Ω为第一卦限中由圆柱面224y z +=与平面2,0,0x y x z ===所围成;(2) Ω由平面0,0,y z y x ===及6236x y z ++=围成;(3) 22{(,,)|1x y z x y z Ω=+≤≤+;(4) 222{(,,)|1,11}x y z x y z z Ω=+≤+-≤≤;(5) Ω由平面0,0,0,1x y z x y ===+=及抛物面226x y z +=-围成.3. 设平面薄片所占的闭区域是由直线2,x y y x +==和x 轴所围成,它的面密度22(,)x y x y ρ=+,求该薄片的质量.4. 在一半径为R 的球体内,以某条直径为中心轴用半径为r 的圆柱形钻孔机打一个孔(r R <),求剩余部分的体积. 若圆柱形孔的侧面高为h ,证明所求体积只与h 有关,而与r 和R 无关.5. 利用三重积分求所给立体Ω的体积.(1) Ω是由柱面2x y =和平面0z =及1x z +=所围成的立体;(2) Ω是由抛物面22z x y =+和所2218z x y =--围成的立体;(3) Ω为圆柱体cos r a θ≤内被球心在原点、半径为a 的球所割下的部分;(4) Ω是由单叶双曲面2222x y z R +-=和平面0,z z H ==围成的立体;(5) 1Ω是Oxyz 坐标系中体积为5的立体,Ω为1Ω在变换448u x y z =++,274v x y z =++,43w x y z =++下的像.6. 已知物体Ω的底面是xOy 平面上的圆域222{(,)|}x y x y R +≤,当用垂直于x 轴的平面截Ω均得到正三角形, Ω的体密度函数为(,,)1x x y z Rρ=+,试求其质量. 7. 计算下列曲面的面积.(1) 平面63212x y z ++=位于第一卦限部分的曲面;(2) 正弦曲线的一拱sin y x =(0πx ≤≤)绕x 轴旋转一周而成的曲面;(3) 球面2222x y z a ++=含在圆柱面22x y ax +=内部的曲面;(4) 曲面222z x y =+被柱面22222()x y x y +=-所截下部分的曲面;(5) 抛物面22z y x =-夹在圆柱面221x y +=和224x y +=之间部分的曲面;(6) 球面22223x y z a ++=(0z >)和抛物面222x y az +=(0a >)所围成立体的表面;(7) 圆柱面229x y +=,平面4312y z +=和4312y z -=所围成立体的表面;(8) 两个底面半径都为R , 轴相互正交的圆柱所围立体的表面.8. 求占有下列区域D , 面密度为(,)x y μ的平面薄片的质量与质心:(1) D 是以(0,0),(2,1),(0,3)为顶点的三角形闭区域, (,)x y x y μ=+;(2) D 是第一象限中由抛物线2y x =与直线1y =围成的闭区域, (,)x y xy μ=;(3) D 是由心脏线1sin r θ=+所围成的闭区域, (,)2x y μ=;(4) 22{(,)|(1)1}D x y x y =+-≤, (,)|1|x y y y μ=+-.9. 计算下列立体Ω的体积和形心:(1) 2222{(,,)|3633}x y z x y z x y Ω=+≤≤--;(2) 2222(,,)1x y x y z z a b ⎧⎫⎪⎪Ω=+≤≤⎨⎬⎪⎪⎩⎭; (3) Ω位于锥面3πϕ=上方,球面4cos ρϕ=下方.10. 若半径为R 的半球体上任一点密度与该点到底面之距离成正比(比例系数为k ), 求其质量与质心.11. 求下列平面薄片或物体对指定轴的转动惯量.(1) 均匀薄片{(cos ,sin )|2sin 4sin }D r r r θθθθ=≤≤(面密度为1)对极轴;(2) 底长为a ,高为h 的等腰三角形均匀薄片(面密度为1)对其高;(3) 质量为M , 半径为R 的非均匀球体(其上任一点的密度与球心到该点的距离成正比)对其直径;(4) 密度为1的均匀物体2222x y z ++≤,222x y z +≥对Oz 轴.12. 设物体Ω占有的区域为222{(,,)|,||}x y z x y R z H +≤≤,其密度为常数. 已知Ω关于x 轴及z 轴的转动惯量相等. 证明:2H R =.13. 求下列密度为1的均匀物体对指定质点的引力(引力常数为k ).(1) 高为h ,半顶角为α的圆锥体对位于其顶点的单位质量质点;(2) 柱体222x y R +≤(0z h ≤≤)对位于点0(0,0,)()M a a h >处的单位质量质点;(3) 半径为R 的球体对球内的单位质量质点P .。
重积分的定义与性质重积分是高等数学中的一个重要概念,是对多元函数在空间内的积分运算。
在实际应用中,经常需要对物理量、几何量等进行多个变量的积分运算,这时就需要用到重积分。
本文将对重积分的定义和性质进行详细阐述。
一、连续函数的重积分对于连续函数$f(x,y)$,其中$(x,y)$为定义域内的任意一个点,其重积分定义如下:$$\iint_D f(x,y) dxdy$$在上式中,$D$为定义域。
这个式子的含义是在二维平面上对函数$f(x,y)$从定义域$D$内的每个点$(x,y)$到坐标轴正方向的区域进行积分。
其中,$dxdy$表示微元,用来表示积分的范围。
重积分也可以用极坐标系进行表示:$$\iint_D f(x,y) dxdy=\iint_D f(r\cos\theta,r\sin\theta) rdrd\theta$$这里,$r$和$\theta$分别表示极坐标系下的径向坐标和角度坐标。
二、重积分的性质对于重积分,我们要了解一些基本的性质。
1. 线性性:若$f(x,y)$和$g(x,y)$是$D$上的可积函数,$k_1$和$k_2$为常数,则:$$\iint_D (k_1f(x,y)+k_2g(x,y)) dxdy=k_1\iint_D f(x,y)dxdy+k_2\iint_D g(x,y) dxdy$$也就是说,重积分运算具有线性性。
2. 绝对可积性:如果$\iint_D |f(x,y)| dxdy$有定义,则称$f(x,y)$是$D$上的绝对可积函数。
3. 积分中值定理:如果$f(x,y)$在$D$上连续,则存在一点$(\xi,\eta)\in D$,使得:$$\iint_D f(x,y) dxdy=f(\xi,\eta) Area(D)$$这个公式的含义是,若在平面上将定义域$D$分成许多小的矩形,则在每个小矩形上,函数$f(x,y)$的大小是近似相等的。
因此,整个定义域上的积分值与函数的平均值在某个点上相等。
高等数学中的多重积分应用引言:数学作为一门基础学科,广泛应用于各个领域。
在高等数学中,多重积分是一个重要的概念和工具,它在实际问题的建模和求解中发挥着重要作用。
本文将从多重积分在几何学、物理学和经济学中的应用三个方面进行论述,以展示多重积分的重要性和广泛性。
一、多重积分在几何学中的应用几何学是研究空间形状和位置关系的学科,而多重积分在几何学中的应用主要涉及到空间体积和质心的计算。
以三维空间为例,我们可以通过多重积分来计算任意形状的立体体积。
对于简单形状如球体、立方体等,可以直接利用几何关系进行计算;而对于复杂形状,可以通过将其分解为无穷小的体积元素,再进行积分求和来计算体积。
此外,多重积分还可以用于计算曲面的面积以及空间曲线的弧长。
二、多重积分在物理学中的应用物理学是研究自然界各种现象的学科,而多重积分在物理学中的应用主要涉及到质量、质心和力学矩的计算。
以质量为例,我们可以通过多重积分来计算物体的质量分布情况。
对于连续分布的物体,可以将其分解为无穷小的质量元素,再进行积分求和来计算总质量。
而对于质心的计算,可以通过多重积分来计算物体在各个方向上的质量分布情况,从而确定质心的位置。
此外,多重积分还可以用于计算物体的力矩,从而研究物体的平衡情况以及转动运动。
三、多重积分在经济学中的应用经济学是研究人类社会中资源配置和经济行为的学科,而多重积分在经济学中的应用主要涉及到利润、收益和效用的计算。
以利润为例,我们可以通过多重积分来计算企业的成本和收入情况,从而确定企业的利润水平。
对于成本的计算,可以将其分解为无穷小的生产要素,再进行积分求和来计算总成本。
而对于收入的计算,可以通过多重积分来计算销售量和价格的函数关系,从而确定总收入。
此外,多重积分还可以用于计算效用函数,从而研究消费者的选择行为以及市场供求关系。
结论:多重积分在几何学、物理学和经济学中的应用举足轻重,为解决实际问题提供了强有力的工具。
通过对空间体积、质心、质量、力矩、利润、收益和效用等的计算,我们可以深入理解和分析各个领域的问题,并提出相应的解决方案。