载流导体短路时电动力计算.
- 格式:ppt
- 大小:300.00 KB
- 文档页数:15
教学目标:掌握短路电流热效应和电动力效应的实用计算。
重点:短路电流的效应实用计算方法。
难点:短路电流的效应计算公式。
一、短路电流电动力效应1.电动力:载流导体在相邻载流导体产生的磁场中所受的电磁力。
当电力系统中发生三相短路后,导体流过冲击短路电流时必然会在导体之间产生最大的电动力。
2.电动力的危害:引起载流导体变形、绝缘子损坏,甚至于会造成新的短路故障。
3.两平行导体间最大的电动力载流导体之间电动力的大小,取决于通过导体电流的数值、导体的几何尺寸、形状以及各相安装的相对位置等多种因素。
(N)式中:i1 、i2—通过两根平行导体的电流瞬时最大值,A;L—平行导体长度,(m);ɑ—导体轴线间距离,(m);K f—形状系数。
形状系数K f:表明实际通过导体的电流并非全部集中在导体的轴线位置时,电流分布对电动力的影响。
实际工程中,三相母线采用圆截面导体时,当两相导体之间的距离足够大,形状系数K f取为1;对于矩形导体而言,当两导体之间的净距大于矩形母线的周长时,形状系数K f可取为1。
电动力的方向:两个载流导体中的电流方向相同时,其电动力为相互吸引;两个载流导体中的电流方向相反时,其电动力为相互排斥。
4.两相短路时平行导体间的最大电动力发生两相短路时,平行导体之间的最大电动力F(2)(N):(N)式中:—两相短路冲击电流,(A)。
5.三相短路时平行导体之间的最大电动力发生三相短路时,每相导体所承受的电动力等于该相导体与其它两相之间电动力的矢量和。
三相导体水平布置时,由于各相导体所通过的电流不同,所以边缘相与中间相所承受的电动力也不相同。
边缘相U相与中间相V相导体所承受的最大电动力、分别为:(N)(N)式中:—三相冲击短路电流,(A)。
发生三相短路后,母线为三相水平布置时中间相导体所承受的电动力最大。
计算三相短路时的最大电动力时,应按中间相导体所承受的电动力计算。
6.短路电流电动力效验当系统中同一处发生三相或两相短路时,短路处三相冲击短路电流与两相冲击短路电流之比为。
1.a.正常运行时导体载流量计算(长期发热计算)的目的是为了保证导体能够可靠地运作;b.载流导体短路时发热计算的目的是确定短路时导体的最高温度Qh,它不应超过所规定的导体短时发热允许温度,以便以进行热稳定校验;c.载流导体短路时电动力计算的目的是进行电力设备的动稳定校验;d.三相短路时最大电动力发生在B相;2.限制短路电流的方法在发电厂变电站中各有什么特点(区别)a.加装限流电抗器限制短路电流,常用于发电厂和变电站的6~10kv配电装置。
根据电抗器的结构分为普通电抗器和分裂电抗器两类;b.为了减小短路电流,可选用计算阻抗较大的接线和运行方式,如大容量发电机采用单元接线,尽可能在发电机电压级不采用母线;在降压变电站中可采用变压器低压侧分列运行方式即所谓“母线硬分段”接线方式;3.什么叫厂用电率?答:厂用电耗电量占同一时期内全厂总发电量的百分数,称为厂用电率。
厂用电率可计为Kp=Ap/A*100%4.厂用电中有几种电源及各自的用途?答:厂用电中有下列几种电源:a.工作电源,其用途是保证正常运行的基本电源;b.备用电源,其用于工作电源因事故或检修而失电时替代工作电源起后备作用;c.启动电源,其一般是指机组在启动或停运过程中,工作电源不可能供电的情况下为该机组的厂用负荷提供电源,其实质也是个备用电源;d.事故保安电源,其用途是当厂用工作电源和备用电源都消失时,确保在严重事故状态下能安全停机,事故消除后又能及时恢复供电5.厂用电系统接线形式,通常都采用单母线分段接线形式,并多以成套配电装置接受和分配电能。
6.为什么要进行电动机的自启动校验?答:因为若参加自启动的电动机数量多,容量大时,启动电流过大,可能会使厂用母线及厂用电网络电压下降,甚至引起电动机过热,将危及电动机的安全以及厂用电网络的稳定运行,因此必须进行电动机自启动校验7.为保证重要厂用机械的电动机能自启动,通常可采取以下措施:a.限制参加自启动的电动机数量;b.负载转矩为定值的重要设备的电动机;c.对重要的厂用机械设备,应选用具有较高启动转矩和允许过载倍数较大的电动机与其配套;d.在不得已的情况下,或增大厂用变压器的容量,或结合限制短路电流问题一起考虑时适当减小厂用变压器的阻抗值8.a.电弧产生的原因是碰撞游离所致;b.交流电弧的熄灭条件是耐受电压Ud(t)应大于恢复电压Ur(t),即Ud(t)> Ur(t),反之,弧隙被电击穿,电弧重燃9.灭弧的方法:a.利用灭弧介质;b.采用特殊金属材料作灭弧触头;c.利用气体或油吹动电弧;d.采用多断口熄弧;e.提高短路器触头的分离速度,迅速拉长电弧,可使弧隙的电场强度骤降;同事,使电弧的表面突然增大,有利于电弧的冷却和带电质点向周围介质扩散和离子复合10.什么是自启动?惰行什么含义?答:a.若电动机失去电压以后,不与电源断开,在很短时间内,(0.5~1.5S)厂用电压又恢复或通过自动切换装置将备用电源投入,此时,电动机惰行尚未结束,又自动恢复到稳定状态运行,这一过程叫电动机的自启动;b.惰行指的是厂用电系统中运行的电动机,当突然断开电源或厂用电压降低时,电动机转速就会下降,甚至会停止运行,这一转速下降的过程称为惰行。
教学目标:掌握短路电流热效应和电动力效应的实用计算。
重点:短路电流的效应实用计算方法。
难点:短路电流的效应计算公式。
一、短路电流电动力效应1.电动力:载流导体在相邻载流导体产生的磁场中所受的电磁力。
当电力系统中发生三相短路后,导体流过冲击短路电流时必然会在导体之间产生最大的电动力。
2.电动力的危害:引起载流导体变形、绝缘子损坏,甚至于会造成新的短路故障。
3.两平行导体间最大的电动力载流导体之间电动力的大小,取决于通过导体电流的数值、导体的几何尺寸、形状以及各相安装的相对位置等多种因素。
(N)式中:i1 、i2—通过两根平行导体的电流瞬时最大值,A;L—平行导体长度,(m);ɑ—导体轴线间距离,(m);K f—形状系数。
形状系数K f:表明实际通过导体的电流并非全部集中在导体的轴线位置时,电流分布对电动力的影响。
实际工程中,三相母线采用圆截面导体时,当两相导体之间的距离足够大,形状系数K f取为1;对于矩形导体而言,当两导体之间的净距大于矩形母线的周长时,形状系数K f可取为1。
电动力的方向:两个载流导体中的电流方向相同时,其电动力为相互吸引;两个载流导体中的电流方向相反时,其电动力为相互排斥。
4.两相短路时平行导体间的最大电动力发生两相短路时,平行导体之间的最大电动力F(2)(N):(N)式中:—两相短路冲击电流,(A)。
5.三相短路时平行导体之间的最大电动力发生三相短路时,每相导体所承受的电动力等于该相导体与其它两相之间电动力的矢量和。
三相导体水平布置时,由于各相导体所通过的电流不同,所以边缘相与中间相所承受的电动力也不相同。
边缘相U相与中间相V相导体所承受的最大电动力、分别为:(N)(N)式中:—三相冲击短路电流,(A)。
发生三相短路后,母线为三相水平布置时中间相导体所承受的电动力最大。
计算三相短路时的最大电动力时,应按中间相导体所承受的电动力计算。
6.短路电流电动力效验当系统中同一处发生三相或两相短路时,短路处三相冲击短路电流与两相冲击短路电流之比为。
第一章概述电力网=变电所+送电线路+用户电力系统=发电厂+变电所+输电线路+用户动力系统=电力系统+动力装置1、一次电气设备定义: 通常把生产、变换、输送、分配和使用电能的设备,如发电机、变压器和断路器等称为一次设备。
(1)生产和转换电能的设备。
如发电机、电动机、变压器。
(2)接通或断开电路的开关电器。
如断路器、隔离开关、负荷开关,熔断器、接触器等,它们用于正常或事故时,将电路闭合或断开。
(3)限制故障电流和防御过电压的保护电器。
如限制短路电流的电抗器和防御过电压的避雷器等。
(4)载流导体。
如传输电能的裸导体、电缆等。
(5)接地装置。
无论是电力系统中性点的工作接地,还是保护人身安全的保护接地,均同埋入地中的接地装置相连。
2、二次设备定义:对一次设备和系统的运行状态进行测量、控制、监视和保护的设备,称为二次设备。
(1)仪用互感器,如电压互感器和电流互感器,可将电路中的高电压、大电流转换成低电压、小电流,供给测量仪表和保护装置使用。
(2)测量表计,如电压表、电流表、功率表和电能表等,用于测量电路中的电气参数。
(3)继电保护及自动装置,这些装置能迅速反应系统不正常情况并进行监控和调节或作用于断路器跳闸,将故障切除。
(4)直流电源设备,包括直流发电机组、蓄电池组和硅整流装置等,供给控制、保护用的直流电源和厂用直流负荷、事故照明用电等。
(5)操作电器、信号设备及控制电缆,如各种类型的操作把手、按钮等操作电器实现对电路的操作控制,信号设备给出信号或显示运行状态标志,控制电缆用于连接二次设备。
3、电气接线电气接线--各种电气设备依其电力生产中的作用、功能等要求连接成的电路。
用规定的图形、文字符号描述电气设备,按一次(二次)电路的实际连接而绘制出的电路图。
一般画成单线图形式(局部三线)电气主接线- --由一次设备,如发电机、变压器、断路器等,按预期生产流程所连成的电路(又称为一次主回路,一次主接线)二次接线--由二次设备所连成的电路(或称二次回路)4、配电装置配电装置一根据电气主接线的连接方式和要求,由开关电器、母线、保护和测量设备以及必要的辅助设备和建筑物组建而成的总体电气装置。
教学目标:掌握短路电流热效应和电动力效应的实用计算。
重点:短路电流的效应实用计算方法。
难点:短路电流的效应计算公式。
一、短路电流电动力效应1.电动力:载流导体在相邻载流导体产生的磁场中所受的电磁力。
当电力系统中发生三相短路后,导体流过冲击短路电流时必然会在导体之间产生最大的电动力。
2.电动力的危害:引起载流导体变形、绝缘子损坏,甚至于会造成新的短路故障。
3.两平行导体间最大的电动力载流导体之间电动力的大小,取决于通过导体电流的数值、导体的几何尺寸、形状以及各相安装的相对位置等多种因素。
(N)式中:i1 、i2—通过两根平行导体的电流瞬时最大值,A;L—平行导体长度,(m);ɑ—导体轴线间距离,(m);K f—形状系数。
形状系数K f:表明实际通过导体的电流并非全部集中在导体的轴线位置时,电流分布对电动力的影响。
实际工程中,三相母线采用圆截面导体时,当两相导体之间的距离足够大,形状系数K f取为1;对于矩形导体而言,当两导体之间的净距大于矩形母线的周长时,形状系数K f可取为1。
电动力的方向:两个载流导体中的电流方向相同时,其电动力为相互吸引;两个载流导体中的电流方向相反时,其电动力为相互排斥。
4.两相短路时平行导体间的最大电动力发生两相短路时,平行导体之间的最大电动力F(2)(N):(N)式中:—两相短路冲击电流,(A)。
5.三相短路时平行导体之间的最大电动力发生三相短路时,每相导体所承受的电动力等于该相导体与其它两相之间电动力的矢量和。
三相导体水平布置时,由于各相导体所通过的电流不同,所以边缘相与中间相所承受的电动力也不相同。
边缘相U相与中间相V相导体所承受的最大电动力、分别为:(N)(N)式中:—三相冲击短路电流,(A)。
发生三相短路后,母线为三相水平布置时中间相导体所承受的电动力最大。
计算三相短路时的最大电动力时,应按中间相导体所承受的电动力计算。
6.短路电流电动力效验当系统中同一处发生三相或两相短路时,短路处三相冲击短路电流与两相冲击短路电流之比为。
发电厂电气部分课程教案“发电厂电气部分”课程教案(1)一、讲授题目:绪论二、教学目的:作为平台课程,涉及的专业学生不同,应在课程的开始全面介绍电力专业的相关课程内容,让同学门对专业课程有个初步了解,以便选修相关课程。
通过本章内容的讲解,使学生对我国电力工业及发展历史和方向有一个比较全面的了解,引起同学们对专业课程的兴趣。
三、重点与难点:重点:1)我国电力工业发展简况。
2)电力工业发展前景。
3)能源和电能。
4)发电厂的类型。
5)变电所的类型。
6)发电厂的电气设备。
四、教学手段:本章的内容比较多,单纯地靠板书无法给同学们一个深刻的印象,应采用多媒体等辅助教学手段,引入大量的图片来讲解。
五、教学过程、时间分配:六、实验:无七、习题:习题集1-3、1-4、2-1、2-2、2-3“发电厂电气部分”课程教案(2)一、讲授题目:导体的发热和电动力二、教学目的:使学生深入了解电力系统导体发热和电动力的危害,掌握提高导体长期载流量的措施,短时发热的特点,短时发热导体可能出现的最高温度计算方法,以及计算导体电动力的方法,为电气设备的选择提供基础。
三、重点与难点:重点:1)导体载流量和运行温度计算方法。
2)载流导体短路时发热计算方法。
3)载流导体短路时电动力计算方法。
难点:1)载流导体短路时发热导体出现最高温度的计算方法四、教学手段:本章的公式比较多,推导过程复杂,但结论都比较简单,在充分理解推导过程含义的基础上,熟练掌握这些计算方法。
五、教学过程、时间分配:六、实验:无七、习题:习题集3-1~3-12“发电厂电气部分”课程教案(3)一、讲授题目电气主接线二、教学目的了解对电气主接线的基本要求,熟练掌握各类电气主接线的形式及特点,了解发电厂和变电所主变压器的选择,掌握限制短路电流的意义及方法,了解各类发电厂和变电所电气主接线的特点。
三、重点与难点教学重点:1.对电气主接线的基本要求;2.各类电气主接线的形式及特点;3.限制短路电流的方法。