《分子生物学MolecularBiology》英文知识点讲义教案整理3.docx
- 格式:docx
- 大小:86.57 KB
- 文档页数:3
Molecular Biology双语教学大纲课程编号:A0620059学分:3.5学时:56(其中:讲课学时: 40 实验学时:16 上机学时:先修课程:生物化学、遗传学、微生物学适用专业:生物工程(本科)教材:《基础分子生物学教程》(第三版)赵亚华编著科学出版社 2011一、课程的性质与任务课程的性质:分子生物学是一门近年来发展迅速并且在生命科学领域里应用越来越广泛、影响越来越深远的一个学科。
本课程是生物科学专业主干课。
分子水平的生物学研究,正在越来越多地影响各个传统生物科学领域。
课程的任务:通过学习本课程,要求学生能进一步加深对生命本质的认识,引导他们进入生物科学发展的前沿,并理解有关基础理论的实践意义和应用前景,使学生的学科知识由广度向纵深延伸。
为今后从事研究或教学工作打好基础。
要求学生掌握基因概念在分子水平上的发展与演变、基因的分子结构和特点、基因的复制、基因表达(在转录、翻译水平)的基本原理、基因表达调控的基本模式、分子生物学技术等。
另外,将介绍人类基因组计划、基因芯片、分子杂交等分子生物学前沿知识。
Molecular biology is an important course for the students majoring in biotechnology as one of main specialized basic courses. Its previous courses are general biology, biochemistry and genetics. And its following courses are gene engineering, microbiological engineering, cell engineering, evolutinary biology and comprehesive experiment of biotechnolgy.Molecular biology seeks to explain the relationships contrbute to the operation and control of biochemical processes. Of principal interest are the macromolecules and macromolecular complexes of DNA, RNA and protein and the processes of replication, transcription and translation. Rapid advances in these fields ask teachers for the course to deliver the core of the subject in a concise, easily assimilated form in their teaching. Because of large contents of the textbook and the limit lesson hours of the course, it necessary for the teachers to carefully select.二、课程的基本内容及要求Chapter 1 Introduction1.Contents(1)A retrospect to life science on the 19th and 20th century(2)Concept of molecular biology(3)prospect of molecular biology in the 21st century2.Key points分子生物学的概念、研究内容和发展历史3.Requirements(1)理解分子生物学研究的内容;(2)掌握分子生物学领域一些具有里程碑意义的事件。
《分子生物学》教学大纲课程名称:分子生物学英文名称:molecular biology课程总学时:48 课程总学分:3适用专业:动物医学专业丁颖创新班一、课程的性质与任务分子生物学(molecular biology)是研究核酸等生物大分子的功能、形态结构特征及其重要性和规律性的科学。
分子生物学的理论和方法已在生命科学、医学和工农业生产等各个领域里得到广泛应用。
通过本课程的学习应使学生了解生命科学发展的方向与前沿,了解分子生物学在食品安全等领域的应用与前景。
使学生掌握分子生物学的概念、研究内容与特点;掌握生命活动中重要的生物大分子的结构与功能、遗传信息的表达及其调节控制等内容。
总学时为48学时,理论课48学时,第5学期开课。
二、教学目的与基本要求通过本课程的学习应使学生掌握分子生物学的概念、研究内容与特点;掌握生命活动中重要的生物大分子的结构与功能;掌握基因与基因组的概念,原核生物与真核生物基因组的结构及特点;理解DNA复制的半保留机制和半不连续复制;掌握DNA复制的一般特点;理解转录的基本过程、机制;掌握真核RNA 的转录后加工;掌握蛋白质合成的生物学机制;掌握原核基因表达调控模式;掌握真核基因表达调控的一般规律;了解生命科学发展的方向与前沿,了解分子生物学在有关领域的应用与前景。
三、教学重点与难点1.教学重点:细胞与生物大分子;基因、基因载体、蛋白质的结构与功能、核酸的结构与功能、DNA的损伤与修复、基因工程原理、原核生物和真核生物的转录及调控。
2.教学难点:基因、基因载体、蛋白质的结构与功能、核酸的结构与功能、DNA的损伤与修复、基因工程原理。
四、教学方法与手段通过多媒体教学将分子生物学的基本理论知识进行讲解,课堂教学中结合适当的分子生物学实践,理论联系实际;通过课堂提问和课堂讨论增加学生的学习积极性;鼓励学生积极利用网络等课外资源;通过实践操作促进分子生物学的理论教学。
五、教学内容与目标教学内容教学目标课时分配理论课 481. 绪论 31.1 分子生物学定义掌握 0.51.2 分子生物学的核心内容掌握 11.3 发展简史了解 0.51.4 分子生物学研究内容掌握 0.51.5 分子生物学展望了解 0.52. 细胞与生物大分子 32.1 原核及真核生物的细胞特征掌握 12.2 细胞器结构了解 0.52.3 生物大分子的种类了解 0.52.4结构及其功能掌握 13 基因概念的演变与发展 33.1 基因的研究简史了解 13.2掌握基因的现代概念掌握 13.3基因种类及结构特征掌握 14 原核和真核生物染色体 34.1 原核生物的染色体结构掌握 0.54.2 真核生物的染色体结构掌握 14.3 基因组复杂度了解 0.54.4 遗传信息流理解 15. DNA复制 35.1 DNA复制概述了解 0.55.2 原核生物的DNA复制掌握 1 5.3 细胞周期了解 0.55.4 真核生物的DNA复制理解 16. 基因载体 36.1 基因载体概念及其特性理解 16.2 不同质粒载体的特征掌握 0.56.3 大片段载体掌握 16.4真核生物载体理解 0.57. 基因操作 27.1 DNA克隆概述理解 0.57.2 限制酶与电泳理解 0.57.3 连接、转化与重组体分析掌握 18. 基因文库与筛选 38.1 基因文库掌握 18.2 cDNA文库掌握 18.3 筛选流程掌握 19. 蛋白质结构与功能 39.1 氨基酸掌握 0.59.2 蛋白质的分子结构掌握 0.59.3 蛋白的结构与功能的关系掌握 19.4 蛋白质的分析法理解 110.核酸的结构与功能 310.1 基因的分子结构掌握 110.2 核苷的分子构象掌握 0.510.3 核酸分子的空间结构掌握 110.4核酸的理化性质、基因组结构掌握 0.511. DNA损伤、修复和突变 311.1 DNA的诱变掌握 111.2基因的损伤和修复掌握 111.3 重组掌握 112. 基因工程原理 412.1了解和掌握核酸的分离与纯化掌握 0.5 12.2 聚合酶链式反应掌握 112.3 DNA限制酶酶切反应掌握 1 12.4基因克隆掌握 112.5克隆DNA的鉴定掌握 0.513. 原核生物和真核生物的转录 313.1转录的酶学特征掌握 113.2控制转录的DNA序列理解 1 13.3转录的主要步骤了解 0.513.4转录后的加工过程了解 0.514.原核及真核生物的表达调控 3 14.1原核基因的表达调控理解 1 14.2真核生物基因表达的方式理解 1 14.3真核生物的调节蛋白了解 0.514.4真核生物基因表达调控特点了解 0.515. 功能基因组学及其新技术 315.1组学概述了解 115.2基因表达整体分析理解 0.5 15.3蛋白质组学了解 0.515.4细胞与分子成像理解 0.516.生物信息学 316.1生物信息学概述了解 116.2生物信息学运用了解 116.3结构生物信息学了解 1六、考核办法成绩评定比例(%)1. 平时成绩 50 %(1)课堂提问(每学生每学期至少2次) 15 (2)课后思考题 352.期末考试 50 %考试范围与分数比例以100分计(1)绪论 6(2)细胞与生物大分子 7(3)基因概念的演变与发展 6(4)原核和真核生物染色体 6(5)DNA复制 7(6)基因载体 7(7)基因操作 6(8)基因文库与筛选 7(9)蛋白质结构与功能 7(10)核酸的结构与功能 7(11)DNA损伤、修复和突变 7 (12)基因工程原理 9(13)原核生物和真核生物的转录 5 (14)原核及真核生物的表达调控 5 (15)功能基因组学及其新技术 5 (16)生物信息学 3考试题型与分数比例以100分计(1)名词解释 20(2)填空题 20(3)选择题 10(4)是非题 10(5)简答题 20(6)论述题 20七、教材与参考资料1、教材Instant Notes in Molecular Biology,第三版P.C.Turner等编著,刘进元等,2010.8,科学出版社。
生命基本特征(本质):生命是生物体所表现出来的复合现象,包括:自身繁殖,生长发育,新陈代谢,遗传变异,对刺激产生反应等生物学Biology:是一门研究生命的现象与本质及活动规律的科学。
它包揽了生命的各个方面,从生命的化学组成,细胞的结构与功能,个体生物学,生物的多样性,到生物的遗传、进化及生态等方面的完整知识体系。
分子生物学Molecular Biology:它是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐述蛋白质与核酸、蛋白质与蛋白质之间相互作用的关系及其基因表达调控机制的学科,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
Is a subject to understand the five basic cell behavior patterns (growth, division, specialization, movement, and interaction) in terms of the various molecules that are responsible for them.That is, molecular biology wants to generate a complete description of the structure, function, and interrelationships of the cell’s macromolecules, and thereby to understand why living cells behave the way they do.分子生物学的研究内容Research Contents of Molecular Biology :生物大分子的结构功能研究(结构部分,又称结构分子生物学):包括基因、基因组的结构;DNA 复制、转录、翻译(功能部分);基因表达调控研究(调控部分);DNA重组技术(又称基因工程)Structure and Function of Macromolecules (Structural Part, Also Known as Structural & Molecular Biology);DNA Replication, Transcription, Translation (Functional Part);Regulation of Gene Expression (Control Section);Recombinant DNA Technology (Genetics)F.Miescher就发现了核素(nuclein);Boyer 和Berg等发展了重组DNA技术,完成了第一个细菌基因的克隆;Sanger 等发明了DNA测序技术;Sanger、Maxam和Gilbert先后发明了三种DNA序列的快速测定法;Mullis等发明的聚合酶链式反应(PCR);90年代全自动核酸序列测定仪问世;生物芯片技术是生命科学研究中继基因克隆技术、PCR技术、基因自动测序技术后的又一次革命性技术突破;分子遗传学基本理论建立者Jacob和Monod最早提出的操纵元学说分子生物学的3条基本原理:构成生物体各类有机大分子的单体在不同生物中都是相同的;生物体内一切有机大分子的建成都遵循共同的规则;某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。
《Molecular Biology》课程教学大纲适用对象:本科药学专业全英班(学分: 3 学时:54 )一、课程的性质和任务:Molecular biology is defined very broadly as the attempt to understand biological phenomena in molecular terms. But this definition makes molecular biology difficult to distinguish from another well-known discipline, biochemistry. Another definition is more restrictive and therefore more useful: the study of gene structure and function at the molecular level. This attempt to explain genes and their activities in molecular terms is the subject matter of this course. Molecular biology grew out of the disciplines of genetics and biochemistry.Of the diverse ways to study the living world, molecular biology has been most remarkable in the speed and breadth of its expansion. New data are acquired daily, and new insights into well-studied processes come on a scale measured in weeks or months rather than years. It's difficult to believe that the first complete organi small genome sequence was obtained less than 20 years ago. The structure and function of genes and genomes and their associated cellular processes are sometimes elegantly and deceptively simple but frequently amazingly complex. This course is aimed at undergraduate students in molecular genetics and molecular biology to get closer to the realities and diversities of natural genetic systems. This course is organized into four parts, including Gene and Genome Structure, DNA Replication, Transcription and Posttranscriptional Mechanisms, and Regulation of Gene Expression.二、教学内容和要求(含每章教学目的、基本教学内容和教学要求):Introduction of Molecular Biology【教学基本要求】掌握分子生物学的概念和研究范畴,熟悉教材的布局和内容。
Chapter 3 Nucleic Acid1. Physical and chemical structure of DNA●Double-stranded helix● Major groove and minor groove● Base pairing● The two strands are antiparallel● G+C content (percent G+C)● Satellite DNASatellite DNA consists of highly repetitive DNA and is so called because repetitions of a short DNA sequence tend to produce a different frequency of the nucleotides adenine, cytosine, guanine and thymine, and thus have a different density from bulk DNA — such that they form a second or ’satellite’ band when genomic DNA is separated on a density gradient。
2。
Alternate DNA structureTwo bases have been extruded from base stacking at the junction. The white line goes from phosphate to phosphate along the chain。
O is shown red, N blue, P yellow and C grey.3. Circular and superhelical DNADNA can also form a double-stranded, covalently-closed circle。
《分子生物学》教案第一章:分子生物学概述1.1 分子生物学的定义和发展历程1.2 分子生物学的研究内容和方法1.3 分子生物学的重要性和应用领域第二章:DNA与基因2.1 DNA的结构和功能2.2 基因的概念和作用2.3 基因的表达和调控第三章:RNA与蛋白质3.1 RNA的结构和功能3.2 蛋白质的结构和功能3.3 蛋白质合成和调控第四章:酶与催化作用4.1 酶的定义和特性4.2 酶的分类和作用机制4.3 酶的研究方法和应用第五章:分子生物学实验技术5.1 分子克隆与基因工程5.2 PCR技术及其应用5.3 蛋白质分离和鉴定技术5.4 生物信息学在分子生物学中的应用第六章:基因表达调控6.1 基因表达的转录和翻译过程6.2 真核生物的转录调控机制6.3 翻译调控和后修饰机制第七章:蛋白质结构与功能7.1 蛋白质结构的基本层次7.2 蛋白质功能的多样性7.3 结构决定功能的原则第八章:信号传导与细胞代谢8.1 细胞信号传导的基本概念8.2 细胞信号传导的主要途径8.3 信号传导与细胞代谢的调控第九章:基因组学与遗传变异9.1 基因组学的基本概念和方法9.2 基因组结构和变异类型9.3 遗传变异在疾病和进化中的作用第十章:分子生物学在生物技术与医学中的应用10.1 基因克隆与基因治疗10.2 重组蛋白药物的开发与应用10.3 分子诊断与个性化医疗10.4 生物芯片技术及其应用第十一章:分子生物学实验设计与分析11.1 实验设计的原则和方法11.2 实验数据的收集与分析11.3 实验结果的验证与解释第十二章:蛋白质相互作用与网络12.1 蛋白质相互作用的机制12.2 蛋白质相互作用网络的构建与分析12.3 蛋白质相互作用在生物学中的意义第十三章:RNA干扰与基因沉默13.1 RNA干扰机制及其作用13.2 基因沉默技术在研究中的应用13.3 RNA干扰在医学和生物技术领域的应用第十四章:病毒分子生物学14.1 病毒的基本结构与生命周期14.2 病毒基因组的复制与表达14.3 病毒与宿主细胞的相互作用第十五章:分子生物学在生物技术与医学中的应用案例分析15.1 基因治疗与基因编辑技术的应用15.2 生物制药与重组蛋白的应用15.3 分子诊断与个性化医疗的实践案例重点和难点解析第一章:分子生物学概述重点:分子生物学的定义和发展历程,研究内容和方法,重要性和应难点:分子生物学研究方法的理解和应用。
分子生物学(第3版中译版)知识点Molecular biology is a fascinating and rapidly advancing field that has revolutionized our understanding of life at the most fundamental level. The third edition of the translated version of the textbook on molecular biology provides a comprehensive overview of the key concepts, principles, and techniques in this exciting discipline. From the structure and function of DNA, RNA, and proteins to the mechanisms of gene expression, regulation, and genetic engineering, the book covers a wide range of topics that are essential for understanding the molecular basis of life.One of the most important knowledge points in molecular biology is the structure and function of DNA, the molecule that carries the genetic information of an organism. The book delves into the double helix structure of DNA, the complementary base pairing that allows for faithful replication, and the central dogma of molecular biology, which describes the flow of genetic information from DNA toRNA to protein. Understanding the intricate molecular machinery involved in DNA replication, transcription, and translation is crucial for grasping the fundamental processes that drive the development, growth, andfunctioning of living organisms.Another key area of focus in molecular biology is the regulation of gene expression, which determines when and where specific genes are turned on or off in response to internal and external signals. The book explores the mechanisms of transcriptional and post-transcriptional regulation, including the role of transcription factors, enhancers, and silencers in controlling gene expression. It also discusses the epigenetic modifications that can alter the accessibility of genes to the transcriptional machinery, leading to heritable changes in gene expression without altering the underlying DNA sequence.In addition to the fundamental principles of molecular biology, the book also covers the latest advances in the field, including the applications of recombinant DNA technology and gene editing tools such as CRISPR-Cas9.These revolutionary techniques have opened up new possibilities for manipulating the genetic material of organisms, leading to the development of genetically modified organisms (GMOs), gene therapy for genetic diseases, and the editing of the human germline. Theethical and societal implications of these technologies are also discussed, highlighting the need for careful consideration of the potential risks and benefits of manipulating the genetic makeup of living organisms.Overall, the translated edition of the molecular biology textbook provides a comprehensive and up-to-date overview of the key concepts and techniques in the field. It is an invaluable resource for students, researchers, and anyone interested in gaining a deeper understanding of the molecular basis of life. The book not only covers the foundational knowledge of molecular biology but also explores the cutting-edge developments and ethical considerations that are shaping the future of the field. By delving into the intricate molecular mechanisms that underlie life processes, the book inspires a sense ofwonder and appreciation for the complexity and beauty of the biological world.。
Transcription in Prokaryotes
RNA polymerase
RNA polymerase contains: 2 large subunits (p,卩,)and o a subunits.
RNA polymerase holoenzyme includes B , o ,a 2
Core enzyme is without o subunit
Core enzyme contains the basic transcription machineiy and it only transcribe nicked DNA template, not intact DNA. Without o factor, the core enzyme will lose specificity.
Binding of RNA polymerase to promoters
Promoter search
Holoenzyme search for a binding site on the DNA
Transcription initiates in A or G, more A than G ・
Summary for o factor Help RNA polymerase binds to a promoter tightly
The tight binds need to melt the DNA, so a factor can select gene to
transcribe
After the initiation, o factor is bound loosely in the elongating
Bounding tightly, melting DNA and forming an
open promoter complex o factor Core
Bound loosely
Open promoter
complex formation Holoenzyme Elongation
complex
state
Elongation of transcription needs core enzyme, and DNA unwinding needs topoisomerases.
The role of the a subunit in UP element recognition: without a functional a subunit, UP element is no longer an enhance匚
卩in phosphodiester bond formation:卩subunit determining the rif(利福 ']" ) sensitivity
Rif block the transcription initiation.
Streptodi^in (利链菌索)blocks RNA chain elonglation, and the common thing for initiation and elongation is phosphodiester bond formation, p subunit ensures formation of phosphodiester bond
Two RNA polymerase binding sites exist on DNA,卩and 卩' arc the subunits binding DNA・
Termination of transcription
Terminator: a specific DNA sequence that signals transcription to tenninate.
D (rho) indcDcndcnt termination:
An inverted repeat allows a hairpin to form at the end of the transcription, and a string of Ts in the non-template strand results in a string of weak rU-dA base pairs holding the transcription to the template strand.
Model of p -independent termination
(a)The polymerase has paused at a string of weak rU-dA base
pairs, and a hairpin has started to fonn just upstream of these base
pairs.
(b)As the hairpin forms, it further destabilizes the RNA - DNA
hybrid.
(c)The RNA product and polymerase dissociate completely
from the DNA template, terminating transcription
p as a termination factor
The Mechanism of Rho
Rho consists of a hexamer of identical subunits, each of which has ATPase activity.Rlio is not a part of the polymerase. It binds to the transcript upstream of the termination site at a rho loading site. Binding of rho to RNA activates the ATPase, which supplies the energy to propel the rho hexamer along the RNA, following RNA polymerase. It continues until the polymerase stalls in the terminator region just after making the RNA hairpin ・
Then rho can catch up and release the transcript. Rho has RNA 一 DNA helicase activity that can unwind an RNA - DNA hybrid (a) Rho binds to transcr^t at rho loading site and pursues polymerase
(b) Hairpin forms; polymerase pauses; rho catches up.
(c) Rbo helicase releases transcript and causes termination。