高等量子力学 第五章 矢量空间的直和与直积
- 格式:ppt
- 大小:977.00 KB
- 文档页数:22
第五章 中心力场§5.1 中心力场中粒子运动的一般性质一、角动量守恒与径向方程设质量为μ的粒子在中心力场中运动,则哈密顿量算符表示为:2ˆˆ()2p H V r μ=+ 22()2V r μ=-∇+ ,与经典力学中一样,角动量 l r p =⨯ 也是守恒量,即ˆ0l t∂=∂ˆˆ[,]0l H = 222221ˆ()22l H r V r r r r rμμ∂∂⎛⎫=-++ ⎪∂∂⎝⎭ 2,0z l l ⎡⎤=⎢⎥⎣⎦; 2ˆ,0l H ⎡⎤=⎢⎥⎣⎦ ; ()2ˆ,,z H l l构成力学量完全集,存在共同本征态; 定态薛定谔(能量本征方程):222221()22l r V r E r r r r ψψμμ⎡⎤∂∂⎛⎫⎢⎥-++= ⎪∂∂⎝⎭⎢⎥⎣⎦上式左边第二项称为离心势能,第一项称为径向动能算符。
取ψ为 ()2,,z H l l 共同本征态,即:()()(),,,l lmr R r Y ψθϕθϕ= (),lm Y θϕ是()2,z l l共同本征态:0,1,2,...l =,0,1,2,...,m l =±±± 分离变量:()()22222120l l l E V l l d d R R R r dr dr r μ-+⎛⎫++-= ⎪⎝⎭径向方程可写为:()()22222()120l l l E V r l l dR d R R dr r dr r μ-+⎡⎤++-=⎢⎥⎣⎦,0,1,2,...l = (1) 为求解径向方程,引入变换:()()l l r R r rχ=;径向方程简化为:()()22222()10l l E V r l l d dr r μχχ-+⎡⎤+-=⎢⎥⎣⎦ (2) 不同的中心力场中粒子的能量本征波函数的差别仅在于径向波函数R l (r )或χl (r ),它们由中心势V (r )的性质决定。
一般而言,中心力场中粒子的能级是2l +1重简并的。
第五章 对称性对称性是一个体系最重要的性质。
前面求解一维Schroedinger 方程时,我们看到,利用体系相互作用的左右对称性,导致态有确定的宇称,可以大大简化方程的求解。
1.守恒量若力学量的平均值不随时间变化0d Fdt=, 则称力学量为守恒量。
F 由 ˆF F ψψ= 和Schrodinger 方程 ˆi H tψψ∂=∂ , 有ˆˆˆˆ1ˆˆ,d FF F Fdt t t tF F H t i ψψψψψψ∂∂∂=++∂∂∂∂⎡⎤=+⎣⎦∂若不显含时间, ˆFt 1ˆˆ,d F F H dt i ⎡⎤=⎣⎦ 若与ˆFˆH 对易,则为守恒量。
ˆF 例如:a )对于自由粒子体系,2ˆˆ2p H m =,动量不显含时间t ,且ˆp ˆˆ,p H ⎡⎤0=⎣⎦,有动量守恒; b )对于一般体系,()2ˆˆ2p H V x m=+ˆˆ,0p H ⎡⎤,≠⎣⎦,动量不守恒; c )对于中心场体系,()()22222ˆˆˆ222p L H V r r V m mr r r mr∂∂⎛⎞=+=−++⎜⎟∂∂⎝⎠2r ,轨道角动量算符2ˆL ,均不显含时间,且,有轨道角动量及其任意分量守恒; ˆi L t 2ˆˆˆˆ,,i L H L H ⎡⎤⎡⎤=⎣⎦⎢⎥⎣⎦0=d )若ˆH 不显含时间,,有能量守恒。
t ˆˆ,H H ⎡⎤=⎣⎦0故一个力学量是否为守恒量,由体系的性质,即ˆH的性质来决定。
守恒量的性质:a )在任意态的平均值与时间无关(定义);b )在任意态的取值几率与时间无关 证明:,,ˆˆ,0F H ⎡⎤=⎣⎦ˆF ˆH 有共同完备本征矢n , ˆn F n F n =,ˆnH n E n = 对于任一态 ()()n nt C t ψ=∑n , ()()n C t n t ψ=,ˆF 取值为的几率为 n F 2()nC t 。
因为1ˆ()()()()()n n n nE E d C t n t n H t n t C t dt t i i i ψψψ∂====∂, 故 ()(0)n i E t n n C t C e−=,2()(0)n n C t C =2与时间无关。
3.1 (做题人:韩丽芳校对人:胡相英)(好)幺正算符也有本征矢量。
证明幺正算符的本征值都是绝对值是1的复数;幺正算符的两个本征矢量,若所属本征值不同亦必正交。
证明:设算符U为幺正算符,ψ为其任意本征矢量,u为对应的本征值。
即ψψuU=则ψψψψψψψψuuUUUU*+===因0≠ψψ,所以1=*uu即1=u即证得幺正算符的本征值都是绝对值是1的复数。
设算符U为幺正算符的两个本征值为1u、2u,对应的矢量分别为1ψ、2ψ,且21uu≠。
则111ψψuU=11111ψψuU=-222ψψuU=22211ψψuU=-因为幺正算符1-+=UU则有21212121ψψψψψψuuUU*+==2121211ψψψψuuUU*+==所以1212121=⎪⎪⎭⎫⎝⎛-**ψψuuuu因为012121≠-**uuuu,故021=ψψ,即1ψ和2ψ正交。
即证得幺正算符的两个本征矢量,若所属本征值不同亦必正交。
3.2 投影于某一子空间的投影算符P,既然是厄米算符,它的本征值是什么?有无简并?本证子空间是什么?(好)解:投影于某一子空间的投影算符∑==mi iP 1,设全空间是n 维的,且n m <。
则本征值方程ψλψψ==∑=mi iP 1⑴其中λ为本征值, ψ为相应的本征态。
则ψλψλψ22==P P ⑵ 由幺正算符等幂性P P =2得ψψP P=2⑶由⑴、⑵和⑶式得λλ=2,所以1=λ或0=λ。
即求得投影算符的本征值是1或0。
当1=λ时,本征失量是i ,其中m i ,2,1=。
所以是简并的,本征子空间S 是由这m 个基矢构成的矢量空间。
当0=λ时,本征矢量是与i 正交的矢量。
所以也是简并的,本征子空间是S 空间的补空间。
#练习3.3 证明若算符的本征值谱中有零本征值,则这个算符肯定没有逆。
证明:假设算符A 有逆,则在值域中取一任意|φ>,则定义域有|ψ>存在 即ψφφ-==AA 1已知A的全部本征值和相应的本征矢量:i i i a A ψφ= i=1,2,3…,∴()ψψφ--==A a AA算符A 存在零本征值,即00=⇒=φa a∴对于任意本征矢量()ψφa A -≠与()ψφ-=A a 矛盾∴假设不成立,即算符的本征值谱中有零本征值,这个算符肯定没有逆。
第五章 量子力学的表象与表示§5.1 幺正变换和反幺正变换1, 幺正算符定义对任意两个波函数)(r v ϕ、)(r vψ,定义内积r d r r vv v )()(),(ψϕψϕ∗∫=(5.1)按第一章中所说,(5.1)式的含义是:当微观粒子处在状态()r vψ时,找到粒子处在状态()r vϕ的几率幅。
依据内积概念,可以定义幺正算符如下:“对任意两个波函数ϕ、ψ,如果算符$U恒使下式成立 ),()ˆ,ˆ(ψϕψϕ=U U(5.2) 而且有逆算符1ˆ−U存在,使得I U U U U ==−−11ˆˆˆˆ1,称这个算符U ˆ为幺正算符。
”任一算符Aˆ的厄米算符+A ˆ定义为:+A ˆ在任意ϕ、ψ中的矩阵元恒由下式左边决定),ˆ()ˆ,(ψϕψϕ+=A A(5.3) 由此,幺正算符Uˆ有另一个等价的定义: “算符Uˆ为幺正算符的充要条件是 I U U U U==++ˆˆˆˆ (5.4a) 或者说1ˆˆ−+=U U 。
” (5.4b)证明:若),()ˆ,ˆ(ψϕψϕ=U U成立,则按+U ˆ定义, ),ˆˆ()ˆ,ˆ(),(ψϕψϕψϕU U U U+== 由于ϕ、ψ任意,所以I U U=+ˆˆ 又因为Uˆ有唯一的逆算符1ˆ−U 存在,假定取ψψϕϕ11ˆ,ˆ−−=′=′U U ,则有 ()),ˆ)ˆ((ˆ,ˆ),()ˆ,ˆ(),(1111ψϕψϕψϕψϕψϕ−+−−−==′′=′′=U U U U U U所以I U U=−+−11ˆ)ˆ( 由于11)ˆ()ˆ(−++−=U U,上式即 I U U=+ˆˆ 这就从第一种定义导出了第二种定义。
类似,也能从第二种定义导出第一种定义。
从而,幺正算符的这两种定义是等价的。
1这里强调了$U−1既是对$U右乘的逆又是对$U 左乘的逆。
和有限维空间情况不同,无限维空间情况下,任一算符$U有逆算符的三种情况:1)有一个左逆算符和无穷多个右逆算符;2)有一个右逆算符和无穷多个左逆算符;3)有一个左逆算符和一个右逆算符,并且它俩相等,唯有此时可简单地写为$U−1。
《高等量子力学》教学大纲一、课程信息课程名称:高等量子力学课程类别:素质选修课/专业基础课课程性质:选修/必修计划学时:64计划学分,4先修课程:无选用教材:适用专业:课程负责人:二、课程简介本课程系统和详细地讲述了量子力学的基本概念、原理、处理问题的方法和些重要理论问题。
课程共分8章,内容不仅包括传统的量子力学基本概念和一般理论、二次量子化方法、辐射场的量子化及其与物质的相互作用、形式制才理论、相对论量子力学,还包括丘些年发展起来的量子力学测量问题、开放量子系统动力学和开放系统退相干。
三、课程教学要求注:“课程教学要求”栏中内容为针对该课程适用专业的专业毕业要求与相关教学要求的具体描述。
“关联程度”栏中字母表示二者关联程度。
关联程度按高关联、中关联、低关联三档分别表示为“H”或"1”。
“课程教学要求”及“关联程度”中的空白栏表示该课程与所对应的专业毕业要求条目不相关。
四、课程教学内容五、考核要求及成绩评定六、学生学习建议(-)学习方法建议1.依据专业教学标准,结合岗位技能职业标准,通过案例展开学习,将每个项目分成多个任务,系统化地学习。
2.通过每个项目最后搭配的习题,巩固知识点。
3.了解行业企业技术标准,注重学习新技术、新工艺和新方法,根据教材中穿插设置的智能终端产品应用相关实例,对己有技术持续进行更新。
4.通过开展课堂讨论、实践活动,增强的团队协作能力,学会如何与他人合作、沟通、协调等等。
(-)学生课外阅读参考资料《高等量子力学》,闰学群主编,2023年,电子工业出版社教材。
七、课程改革与建设通过引导式教学,设计包括引导问题、优化决策、具体实施、课后拓展等内容,培养学生的团结协作能力和勤于思考的习惯,避免重讲轻练、重知识轻能力的弊端。
与纠缠方面相关的内容,量子测量理论、量子开放系统理论等,以往国内少数高等量子力学教材对此只是粗浅地一捷,大部分内容甚至从未涉及。
因此,本课程内容主要是针对传统的高等量子力学做符合近些年量子力学研究前沿需求的调整和补充。
高等量子力学算符1!aAn n n e a A n ∞==∑算符有逆的条件 1、 在A ψϕ=中,对于每一个ϕ,总有ψ存在2、 若12A A ψψ=,则必有12ψψ=多重对易:()[]2,,,A B A A B ⎡⎤⎡⎤=⎣⎦⎣⎦()01,!i A Ai e BeA B i ∞-=⎡⎤=⎣⎦∑在条件[][],,,0C A B A C B ⎡⎤===⎣⎦时,有如下的结论:/2A B A B C e e e e +-= 厄米算符:†H H =,充要条件为:对于所有定义域中的矢量满足H R ψψ∈幺正算符:†††11,U U UU U U -=== 定理:若{iν为一组基矢,则{}iU ν也为一组基矢证明:1、证明正交归一。
i j i j ij U U ννννδ==2、证明完全性。
任取两个矢量,ψϕ,则有††††ii i i iiiU U U U U U ψννϕψννϕψϕψϕ===∑∑∑态矢和算符的幺正变化:1','U A UAU ψψ-==。
本征值定理一:在有限维空间中,厄米算符的全部本征矢量构成正交完全集。
定理二:当且仅当两个厄米算符互相对易时,它们有一组共同的本征矢量完全集。
表象变换{iν和{αε为不同表象下的基。
则算符的表象变换表示如下:1=ij i j i ji jA A A U A U ααββαβααββαβεεεννννενν-==∑∑重要结论:1、x p ix x ψψ∂=-∂,2、p x ip pψψ∂=∂ 直和与直积直和:11122122111213212223313233000000000000A A A A A L L L L L L L L L L ⎛⎫ ⎪ ⎪ ⎪⊕= ⎪ ⎪ ⎪⎝⎭直积:11122122A LA L A L A L A L ⎛⎫⊗= ⎪⎝⎭角动量关于角动量的各种对易关系2,,,,0i j ijkk k i j ijkkki j ijkkki L L i L L X i X L P iP L L εεε⎡⎤=⎣⎦⎡⎤=⎣⎦⎡⎤=⎣⎦⎡⎤=⎣⎦∑∑∑位置表象和动量表象ipxx p=则动量波函数和位置波函数之间的变化如下:()()i pxp p p x x dx x e dx ψψψψ+∞+∞--∞-∞===⎰角动量表象2,0J J⎡⎤=⎣⎦取两个算符x yJ J iJ±=±,得到[]2,0,,zJ J J J J±±±⎡⎤==±⎣⎦经计算得到角动量本征方程()21zJ jm j j jmJ jm m jm=+=其中0,1/2,1,3/2,2...,1, (1)j m j j j j==--+-而对于升降算符,有关系)(),1J jm j m±=±自旋表象())()21,1zS sm s s smS sm m smS sm s m±=+==±且有()()11,22x yS S S S S Si+-+-=+=-泡利矩阵01010,,10001222x y ziS S Si-⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭一维谐振子222122P H m X m ω=+取升降算符))†A m X iP A m X iP ωω=+=-则可得到坐标和动量算符以及哈密顿算符用升降算符表示的形式))†††12X A A P AA H A A ω=+=-⎛⎫=+ ⎪⎝⎭重要的对易关系如下[]†††,,,1H A AH A A A A ωω=-⎡⎤=⎣⎦⎡⎤=⎣⎦ 本征方程为†A A n n n =,能量本征值为12n E n ω⎛⎫=+⎪⎝⎭。
高等量子力学总结 理论物理 张四平 学号:220120922061第一章 希尔伯特空间1、矢量空间,同类的许多数学对象(实数,复数,数组)在满足一定的要求下构成的系统. 三种运算:加法,数乘,内积。
例:θ+ψ=ψ+θ;ψ+θ=0 即:ψ=-θ(存在逆元)(ψa )b=ψ(ab )ψ(a+b )=ψa+ψb(ψ,θ)=(θ,ψ)*(ψ,θa )=(ψ,θ)a矢量的空间性质:零矢量唯一;逆元唯一;ψ(-1)=-ψ;(θ+ψx )=θx+ψx ;2、正交矢量:(ψ,θ)=0; 模方:|ψ||ψ|=(ψ,ψ);schwarts 不等式:|(ψ,ψ)|≤|ψ||ψ|;三角不等式:|ψ+θ|≤|ψ|+|θ|;3、基矢n 维空间中有限个矢量集合;一个线性无关的矢量的集合(完全集);正交归一的完全集; 对于同一矢量,左右因子不同,dirac 符号:<ψ|θ>=(ψ,θ)右矢量满足:|ψ>+|θ>=|θ>+|ψ>;|ψ>+|0>=|ψ>;|ψ>*1=|ψ>;(|ψ>+|θ>)*a=|ψ>a+|θ>a<ψ|θ>≥0;4、算符:|ψ>=A|ψ>; A (|ψ>+|θ>)=A|ψ>+A|θ>;线性算符的性质:定义域是个右矢空间,值域也是个右矢空间;定义域是有限维,值域也是 小于等于这个维数;零算符:0|ψ>=|0>;单位算符:I |ψ>=|ψ>;算符:A|ψ>=|θ>;逆算符:A -1|θ>=|ψ>;<θ|=<A ψ|=<ψ|A+(A+为A 的伴算符);若A 有逆,则(A+)-1 =(A -1)+;5、等距算符:定义:U+U=I ;性质:U+U=I ;<U θ|U ψ>=<θ|ψ> ;|U ψ|=|ψ|;6、幺正算符:定义:U+U=UU+=I 或U+=U-1;投影算符:|ψ><ψ|(厄米算符);7、本证矢和本证值:A|ψi>=a|ψi> (i=1,...s ){|ψi>}(本证子空间,s 重简并);厄米算 符A 的本证矢量:不简并的正交,S 重简并的本证矢量构成一个s 维的子空间,与其他的本证 矢量正交;完全性;正交性;定理:有限维空间中,厄米算符的全部本证矢量构成一个完全集;定理:当且仅当两个厄米算符对易时,他们有一组共同的本证矢量完全集;8、表象理论:基矢:厄米算符完备组K={P ,H ,...,}.基矢选他们共同的本证矢,K|i>=ki|i>;相似变换:存在幺正矩阵U :B=U -1AU ,A ,B 相似.trA=trB ,detB=detU+detA ,detA=detB ;任何厄米矩阵都可以通过相似变换变成对角矩阵;L 表象:{|εi>} ∑|εi><εi|=1K 表象:{|να>} ∑|να><να|=1|να>= ∑|εi>Ui α|εi>= ∑|να>U αi-1 Ψα = ∑U αi -1ψiΨi = ∑Ui α ψαA αβ=∑∑U αi -1AijUj βAij=∑∑Ui αA αβU βj -1第二章 量子力学基本原理1、基本原理:原理1:描写微观系统状态的数学量是希尔伯特空间中的矢量,相差一个复数因子的两个矢 量描写同一状态.原理2:1.描写微观系统物理量的是希尔伯特空间中的厄米算符.2.物理量所能取得值是相应 的本征值.3.物理量A 在状态|ψ>中取各值ai 的概率,与态矢量|ψ>安A 的归一化本证矢量 {|ai>}的展开式|ai>的系数复平方成正比.原理3.微观系统中的每个粒子的直角坐标下的位置算符Xi (i=1.2.3)与相应正则动量有下 列对易关系:[Xi,Xj]=0 [Pi,Pj]=0[Xi,Pj]=i(h/2π)ζij而不同粒子间的所有算符均相互对易.原理4.微观状态|ψ(t)>随时间变化的规律是薛定谔方程.原理5.描写全同粒子系统的态矢量,对于任意一对粒子的对调,是对称的,或是反对称的, 服从前者的粒子是波色子,服从后者的粒子是费米子.2、哈密顿算符不显含时间t 是能量算符.|ψ(t)>=|ψ>f(t).H|ψi>=Ei|ψi>定态薛定谔方程能量值确定.态矢量为:|ψi(t)>=|i>exp (-iEit/h ).含时间的H 对应薛定谔方程的解为:|ψ(t)>=∑|i> Ci exp (-iEit/h ).为各定态矢量的叠加 .若已知初态|ψ0>=∑|i> Ci则 |ψ(t)>=∑|i><i|ψ0>exp (-iE0t/h ).第三章 量子力学的基本概念和方法1、一个电子具有自旋角动量S ,s 沿着空间中某一固定方向,只有两个可能的投影值:Sz=+ /2 或Sz=- /2;电子磁矩:u=-g (e/2mc )s电子在外磁场中B 中又相互作用能量:H=-u*B2、自旋的矩阵表示:Sz=+ /2 -> α=⎥⎦⎤⎢⎣⎡01 Sz=- /2 -> β=⎥⎦⎤⎢⎣⎡10 电子的自旋态:|ψ(t)>|ψ(t)>=C1(t)α+C2(t)β<ψ(t)|=C1*(t)α-1+C2*(t)β-1电子的自旋态只能有两个(朝上或朝下).3、相继stern-Gerlach 实验说明:一般的说,测量必定要改变微观客体状态,当加第二个装置 Gx 测量Sx 时,原来关于Sz 的信息消失,一个电子的自旋要么按Sx 分解,要么按Sz 分解,电子不能同时具有Sz 和Sx.4、pauli 矩阵算符ζx 和ζy 之间不对易,S=( /2)ζζx = ⎥⎦⎤⎢⎣⎡0110 ζy = ⎥⎦⎤⎢⎣⎡-00i i ζz = ⎥⎦⎤⎢⎣⎡-1001 对易关系:ζ*ζ=ζ 或 S*S=S Sz=mz极化矢量:<ζ>=P=<ψ(t)|ζ|ψ(t)>P^2=Px^2+Py^2+Pz^2=1;<ζp >=Px<ζx>+Py<ζy>+Pz<ζz>;P 标志了自旋S 的指向;电子自旋的量子本质表现与P 矢量始终存在着起伏,用均方偏差度量:<(Δζj )^2> = <(ζj-ζi )^2> = 1-<ζj >^25、分离谱:A|α> =a|α>; <α|α’>=δαα’; ∑|α><α|=1;连续谱:ξ|ξ’>=ξ’|ξ’> ; <ξ|ξ’> = δ(ξ’-ξ’’); ⎰d ξ’|ξ’><ξ’| = 1;6、sxhrodinger 图景:态矢 |ψ(t)>含t ,基矢|x>不含t ;Heisenberg 图景:态矢 |ψ(t)>不含t ,基矢|x>含t ;一般:H=p^2/2m+V;<x|V|x ’> = V (x )<x|x ’> = V(x)δ(x-x ’);<x|p^2/2m|x ’> = ⎰dp<x|p>(p^2/2m)<p|x ’>态矢:跟表象无关,跟图景有关;包函数:与表象有关,与图景无关(此为态矢在基矢上的投影);7、基态|0>:基态波函数:ψ0(x ) = <x|0>;第一激发态|1> = a+|0>: ψ1(x ) = <x ’|1>;第n 激发态: ψn (x ) = <x ’|n>;8、<(ΔA^2)><(ΔB^2)> ≥ 1/4|<[A,B]>|^2 ;对于任意的态矢:|α>=ΔA|>|β>=ΔB|>;<(ΔA^2)><(ΔB^2)> ≥ |(ΔA ,ΔB )|^2;9、谐振子不确定关系:基态:<(Δx^2)><(Δp^2)> = ^2/4;激发态: <(Δx^2)><(Δp^2)> =(n+1/2)^2 ^2;10、相干态:也是谐振子的量子态与经典粒子运动最为接近.相干态不是N 的本正态,但有确定的粒子数;不同本证值的相干态一般不正交;虽不正交,但有完备性;全部的相干态,过完备性;11、压缩态:算符:S(r)为幺正算符;在正则变换下:保持了对易关系:[b,b+]=[a,a+]=1;真空态:|0,r>= S(r)|0>;一般压缩态:|z,r>= D (z )S (r )|0>;12、经典力学到量子力学:薛定谔表述形成(波动力学),重视描述粒子的波粒二象性运动的波函数,服从薛定谔方程;heisenberg 矩阵力学,重视可观测量,算符;dirac 和feyman 路径积分,着眼于经典作用量和量子力学中相位之间的关系,重视传播函数 或传播子的作用.基本思想:一个粒子在某一时刻的运动情况决定于他们的过去或一切历史;在复z 平面上,半经为1/2的圆,面积为1*pi/4,相干态;在复z 平面上的椭圆,面积1*pi/4 测量精度在I 上提高了,在另一个方向降低了,压缩态;第四章 对称性和角动量1、力学量成算符:{A,B}--->1/i [A,B];[F ,H]--->F 为守恒量;F 的一个守恒性必与体系的不可观测量的对称性变换直接联系;定态间的跃迁定则;分离对 称性;每个定态波函数必有严格的对称性;无限自由度的量子场论:H 中某一连续对称性在 真空有破坏,真空存在简并,但实际上对称也存在,表现为一个无质量的标量粒子; 2、F (r ,p )的平均值:<F> = <ψ(r)|F |ψ(r)>;3、态的无限小转动:自旋为零:|ψ’(r)> = |ψ(R -1r)>=ψ(x+y δθ,y-x δθ,z )R(n,δθ) = 1-i δθ*L*n/ ; L 是标量场无穷小生成元;自旋为1/2的粒子波函数:波函数为二分量的旋量:1/2)(x (x1/2)(r)(r)(r)-ϕ+ϕ=⎪⎪⎭⎫ ⎝⎛ϕϕ=φ2121; Φ’(r)=(1-i δθ( /2ζz+Lz ))Φ(r)/转动算符:(1-i δθ( /2ζz+Lz ))/ ;任意轴:R (n ,δθ)= 1-(i δθ/ )n (( /2)δ+I );粒子的总角动量:J= /2δ+L ,J 是旋量场的无限小生成元;4、角动量算符的一般性质:j^2=jx^2+jy^2+jz^2;[j^2,ji] = 0;[jz,j]=i j;[j+,j-] = 2 jz;5、标量算符:F=RFR -1 -- 转动不变;6、若态|ψ>在Rz 的作用下不变,则Rz|ψ> = exp (-i δ)|ψ>;假定体系在变换Q 下具有对称性,|ψ>=Q|ψ>,则保持几率不变,运动规律不变; 总之:量子力学中一个不可观测量的对称性变换往往联系于一个可观测量的守恒性;7、将体系沿x 轴平移一无限小距离,体系具有平移不变性:[Px (ε),H] = 0;ψ’(x) = Dx (ε)ψ(x)=ψ(x-ε);体系沿时间平移一无限小量η:|ψ’(t)> = D (η)|ψ(x)>=|ψ(t+η)>;ψ(x,t)=ψ(x)exp(-iEt);8、本证态:ψ(-x ) = ψ(x ) 偶宇称态ψ(-x ) = -ψ(x ) 奇宇称态宇称本征值:pi=(-1)l变换方式:主动式:坐标系不动,算符动;被动式,算符不动,坐标系反向;P*X ---> 标量P*S ---> 赝标量9、支配运动的H 在空间反演中是标量,可能含有的项是:P^2,L*S,P*X ;不可有的项:P*S(赝标量);宇称守恒在强相互作用下,电磁相互作用中有充分的实验支持;则在弱相互作用下有赝标量项,宇称不再守恒;原子核自旋S 在低温下沿外磁场固定方向排列,测量这种“极化核”β衰变时放出电子对S 方向存在一定角分布;10、实算符,时间反演不变:THT -1=T -1 TXT -1=X ;虚算符:TPT -1= - P TJT -1= - J ;第五章 量子力学中的相位1、经典物理中:H ,A, θ(四维矢量),代替E,B (二阶反对称张量);量子物理中:A, θ,代替E,B 为本质上的需求;规范变换: A ’=A + ▽Λ(x );若要要求薛定谔方程在此变换下不变,否则物理规律就变了,就要求波函数做相应变化: Ψ’(x )= Ψ(x )exp[Λ(x )iq/ c ];薛定谔方程在定域规范变化下的不变性,是一种对称性,根据波函数的几率解释,这一变换 不影响可观测量;2、A--B 效应--->A 比B 更基本;因为表达了量子力学的相位差;确切的说不是相位, 而是相位因子: )dx A cie (⎰-μμ exp ; 才为描述电磁场最恰当的量,在物理上既不丢失信息,也不会附加非物理(不确定)信息, 称此因子为规范场的不可积相位因子. 在磁场中:总的波函数:)'x )d 'x (A exp()'x ()'x (c ie (0)1→→→→→⎰+ϕ=ϕ ,相位差改变了φc e , 称:φ=ce AB S (AB 相); 在电场中:总的波函数:t)(x,)dt't)),x (A -)t x,(A (cic -exp(t),x (t),x ((0)20102(0)1ϕ⎰+ϕ=ϕ→→→→ , φ=ce AB S --- 规范不变 AB 相不依赖于速度等力学量,属于几何相,也是拓扑相;3、在超导体圆柱磁通量是量子化的,且磁通量的值为e 2c ,后来,N.Byers 和杨指出这是超导 体内形成copper 对的结果;copper 对波函数是单值的,有: n 2s d s ⋅π=⋅∇⎰→Γ,即相角沿Γ走一圈回到原处,值只能变化n 2π.4、Berry 相:量子力学的量可分为两类:随时间变化的快变量;随时间变化的慢变量; 方法:现将慢变量固定,解决快变量,然后让慢变量变化,得到正确的解; e )(i (t)t 0n (t)R n,|))dt'(t'i -(ν→>⎰ε=ϕexp t 其中,e i (t)ν为Berry 相因子;。