七年级数学解一元一次方程—移项(人教版)(基础)(含答案)
- 格式:doc
- 大小:434.62 KB
- 文档页数:5
3.2解一元一次方程(移项)教材分析:1、本节课是数学人教版七年级上册第三章第二节第二小节的内容。
2、本节课主要内容是解一元一次方程的重要步骤移项。
是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,在解方程、解一元一次不等式、解一元二次不等式中都要用到。
学情分析:针对初一年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。
在课堂教学中,学生主要采取讨论、思考、观察的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
教学策略:1)、自主探索策略:通过分组讨论,学生通过观察、分析发现结论,归纳概括。
(2)、师生交流:通过教师引导,让学生学会学习数学的方法和数学思想。
生生交流:学生分组讨论问题,在讨论的过程中相互交流,发表个人的见解,对问题进行探讨,互相学习。
教学目标:理解移项法,并知道移项法的依据,会用移项法则解方程。
教学重点:运用方程解决实际问题,会用移项法则解方程。
教学难点:找相等关系列方程,正确地移项解一元一次方程复习回顾回忆一下上节课我们学的什么内容呀?合并同类项解一元一次方程。
说到解方程,那么到目前为止你总共学了几种解一元一次方程的方法了?两种(除了合并同类项还有利用等式的性质)解方程并说出解方程的依据(让学生自己在练习本上做再一起对答案)(1)2x-2=4(2)5x-2x=9上面的这两个方程第一个是利用等式的性质来解的;第二个是利用合并同类项的方法来解的一、创设情境,引出问题好现在我们来看一个实际问题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?现在来看一下下面的3个小问题,先独立思考再找学生回答1.如果我设这个班有x名学生,请完成下列填空每人分3本,共分出-3x--本,加上剩余的20本,这批书共—(3x+20)本每人分4本,需要-4x-本,减去缺少的25本,这批书共--(4x-25)--本2.很明显这批书有2种分法,他们之间友存在怎样的关系呢?由于这批书的总数是一个定值所以由这两种分法得出的表示这批书总数的两个代数式是相等的。
课时2用移项法解一元一次方程基础训练知识点1(解一元一次方程----移项)1.下列变形中属于移项的是()A.由5x-2x=2,得3x=2B.由6x-3=x+4,得6x-3=4+xC.由8-x=x-5,得﹣x-x=﹣5-8D.由x+9=3x-1,得3x-1=x+92.把方程4x+4=6-3x进行移项,下列变形正确的是()A.4x-3x=6-4B.4x+3x=6-4C.4x-3x=4-6D.4x+3x=4-63.解方程x-4=x,移项,得__________,合并同类项,得________,系数化为1,得________.4.当x=________时,代数式3x-5与1+2x的值相等.5.解下列方程:(1)5x+2=4x-3;(2)7x-3=4x+6;(3)4y=y+16;(4)x-2=x+5.知识点2(列一元一次方程解决实际问题)6.两个水池共存水40吨.现甲池注进水4吨,乙池放出水8吨,甲池中水的吨数与乙池中水的吨数相等,两个水池原来各有水多少吨?7.[2019黑龙江哈尔滨道外区期末]一个长方形的周长为26厘米.若这个长方形的长减少1厘米,宽增加2厘米,就可成为一个正方形,求这个长方形的长和宽.8.[2019广东东莞期末]2019~2019学年度七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个.求该小组计划做多少个“中国结”?参考答案1.C【解析】选项A,属于合并同类项,不属于移项;选项B,等式右边运用了加法交换律,不属于移项;选项C,将等式左边的8变号移到等式右边,等式右边的x变号移到等式左边,属于移项;选项D,等式两边交换了位置,不属于移项.故选C.2.B【解析】选项A,-3x移项后没有变号,所以A错误;选项C,4和-3x移项后都没变号,6没移项却改变了符号,所以C错误;选项D,4移项后没变号,6没移项却改变了符号,所以D错误.故选B.3.x-x=4 x=4x=124.6【解析】根据题意,得3x-5=1+2x,移项,得3x-2x=1+5,合并同类项,得x=6.5.【解析】(1)移项,得5x-4x=-3-2,合并同类项,得x=-5.(2)移项,得7x-4x=6+3,合并同类项,得3x=9,系数化为1,得x=3.(3)移项,得4y-y=16,合并同类项,等-y=16,系数化为1,得y=-6.(4)移项,得x-x=2+5,合并同类项,得x=7.6.【解析】设甲池原有水x吨,则乙池原有水(40-x)吨.根据题意,得x+4=40-x-8,解这个方程.得x=14,所以40-x=26..答:甲池原有水14吨,乙池原有水26吨.7.【解析】设这个长方形的长是x厘米,则宽是(13-x)厘米.根据题意,得x-1=13-x+2,解得x=8,所以13-x=5.答:这个长方形的长为8厘米、宽为5厘米.8.【解析】设小组成员共有x名,则计划做(6x-7)或(5x+13)个“中国结”. 根据题意,得6x-7=5x+13,解得x=20,所以6x-7=113.答:计划做113个“中国结”.课时2用移项法解一元一次方程提升训练1.[2019江西高安中学课时作业]下列方程中,解是负整数的共有()①﹣x=;②x=﹣14;③3x+4=4x+4;④4x-5=﹣5x-8.A.1个B.2个C.3个D.4个2.[2019四川雅安中学课时作业]若﹣2x2m+1y6与x3m-1y10+4n是同类项,则m,n的值分别为()A.2,﹣1B.﹣2,1C.﹣1,2D.﹣2,﹣13.[2019吉林五中课时作业]某同学在解方程5x-1=□x+3时,把□处的数字看错了,解得x=﹣2,则该同学把□看成了()A.4B.7C.﹣7D.﹣144.[2019安徽合肥四十八中课时作业]已知关于x的方程4x-m=3m+12的解是x=2m,则m的值是________.5.[2019江苏南京市中华中学课时作业]解下列方程:(1)x-8x=3-x;(2)0.5x-0.7=6.5-1.3x.6.[2019河北衡水六中课时作业]若关于x的方程2x-a=0的解比方程4x+5=3x +6的解大1,求a的值.7.[2019河北省实验中学课时作业]已知+m=my-m,(1)当m=4时,求y的值;(2)当y=4时,求m的值.8.[2019陕西师大附中课时作业]一个两位数,个位上的数字是十位上的数字的3倍,如果把个位上的数字与十位上的数字对调,那么得到的新数比原数大54,求原来的两位数.参考答案1.A【解析】①系数化为1,得x=﹣;②系数化为1,得x=-4;③移项,得3x-4x=4-4,合并同类项,得-x=0,系数化为1,得x=0;④移项,得4x+5x=-8+5,合并同类项,得9x=-3,系数化为1,得x=-.所以解为负整数的只有②.故选A.2.A【解析】因为-2x2m+1y6与x3m-1y10+4n同类项,所以2m+1=3m-l,6=10+4n,解得m=2,n=﹣1.故选A.3.B【解析】□用a表示,把x=-2代入方程5x-1=ax+3中,得-10-1=-2a +3,解得a=7,所以该同学把□看成了7.故选B.归纳总结方程的解就是使方程中等号左右两边相等的未知数的值,若题目给出方程的解,则将这个数代入到原方程中就可以得到一个含所求字母的方程.4.3【解析】把x=2m代人方程4x-m=3m+12,得8m—m=3m+12,所以7m=3m+12,移项,得7m-3m=12.合并同类项,得4m=12,系数化为1,得m=3.5.【解析】(1)移项,得x+x-8x=3,合并同类项,得﹣3x=3,系数化为1,得x=-1.(2)移项,得0.5x+1.3x=6.5+0.7,合并同类项,得 1.8x=7.2,系数化为1,得x=4.6.【解析】方程2x-a=0的解是x=,方程4x+5=3x+6的解是x=1.由题意,得=1+1,解得a=4.7.【解析】(1)把m=4代人+m=my-m,得+4=4y-4,该方程是关于y的一元一次方程,移项,得-4y=-4-4,合并同类项,得-y=﹣8,系数化为1,得y=.(2)把y=4代入+m=my-m,得2+m=4m-m,该方程是关于m的一元一次方程移项,得2=4m-m-m,合并同类项,得2=2m,系数化为1,得m=l.8.【解析】设这个两位数的十位上的数字是x,则个位上的数字是3x. 根据题意,得10×3x+x=10x+3x+54,移项、合并同类项,得18x=54,系数化为1,得x=3,10×3+3×3=39.答:原来的两位数是39.。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)解方程:453x x -=.【答案】【解析】试题分析:①移项:把未知项移至等号左边,常数项移至等号右边;②合并同类项;③系数化为1:两边同除以未知数的系数.试题解析:解:453x x =-,移项得:-5x -3x =-4,合并同类项得:-8x =-4, 系数化为1得:x =12. 92.学完一元一次方程解法,数学老师出了一道解方程题目:123123x x +--=.李铭同学的解题步骤如下: 解:去分母,得3(x +1)-2(2-3x)=1;……①去括号,得3x +3-4-6x =1; ……②移项,得3x -6x =1-3+4; ……③合并同类项,得-3x =2; ……④系数化为1,得x =-23. ……⑤ (1)聪明的你知道李铭的解答过程在第_________(填序号)出现了错误,出现上面错误的原因是违背了____.(填序号)①去括号法则;②等式的性质1;③等式的性质2;④加法交换律.(2)请你写出正确的解答过程.【答案】解:(1)①②,③①;(2)x=7.9【解析】试题分析:李铭的解法出错在第①、②步,去分母时1没有乘以6,去括号时有一项没变号,方程去分母,去括号,移项合并,把x系数化为1,即可求出解.试题解析:(1)①②,③①(2)解:去分母,得3(x+1)-2(2-3x)=6;……①去括号,得3x+3-4+6x=6;……②移项,得3x+6x=6-3+4;……③合并同类项,得9x=7;……④.系数化为1,得x=7993.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b 满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;x﹣8的解.(2)点C在数轴上对应的数为x,且x是方程2x+1=12①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)点A表示的数是﹣3,点B表示的数是2;(2)①线段BC的长为8;②点P对应的数是3.5或﹣4.5.【解析】试题分析:(1)根据|a+3|+(b-2)2=0,可以求得a、b的值,从而可以求得点A、B表示的数;x-8可以求得x的值,从而可以得到点C表示的数,(2)①根据2x+1=12从而可以得到线段BC的长;解:(1)∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2(2)①2x+1=x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5.94.解方程(组):(1)3516x -=; (2) 2 234x y x y =⎧⎨-=⎩【答案】(1) 7x =;(2) 8 4x y =⎧⎨=⎩. 【解析】试题分析:(1)移项合并同类项,化系数为1,即可得出答案;(2)用代入法解答即可.试题解析:解:(1)移项得:3x =16+5,合并同类项得:3x =21,系数化为1得:x =7;(2)2234x y x y =⎧⎨-=⎩①② ,把①代入②,得:4y -3y =4,解得:y =4,把y =4代入①得:x =8,①84x y =⎧⎨=⎩. 95.解方程(x-3)(x+1)=x(2x+3)-(x 2+1).【答案】x =-25【解析】试题分析:先去括号,再移项,合并同类项,最后化系数为1,从而得到方程的解.试题解析:去括号,得22233231x x x x x x +--=+--,合并,得222331x x x x --=+-,移项,得222313x x x x ---=-+,合并同类项,得−5x =2,系数化为1,得25x =-. 96.解方程:6+1=45x x -.【答案】=3x -【解析】试题分析:本题考察了一元一次方程的解法,本题需移项,合并同类项,系数化为1几个步骤,移项时不要忘记变号.解:64=51x x ---2=6x -=3x - .∴=3x -是原方程的解.97.解方程(组):(1) 3516x -=; (2)2234x y x y =⎧⎨-=⎩【答案】(1)7x =; (2) 84x y =⎧⎨=⎩. 【解析】试题分析:(1)移项合并同类项,化系数为1即可;(2)直接用代入法解答即可.试题解析:解:(1)3x =16+5,3x =21,x =7;(2)2234x y x y =⎧⎨-=⎩①② ,把①代入②,得:4y -3y =4,解得:y =4,把y =4代入①,得:x =8.①84x y =⎧⎨=⎩. 98.阅读下列材料再解方程:23x +=,我们可以将2x +视为整体,由于绝对值为3的数有两个,所以2=3x +或2=-3x +,解得1x =或5x =-.请按照上面的解法解方程2113x +=. 【答案】0x =或3x =-.【解析】试题分析: 参照题目中所举的范例,可把2113x +=转化成2113x +=或2113x +=-两个方程,解这两个方程即可求得x 的值.试题解析: ∵2113x += , ∴2113x +=或2113x +=-, 解得:0x =或3x =-.99.小明设计了一个问题,分两步完成:(1)已知关于x 的一元一次方程(a ﹣2)x |a|﹣1+8=0,请画出数轴,并在数轴上标注a 与x 2对应的点,分别记作A ,B ;(2)在第1问的条件下,在数轴上另有一点C 对应的数为y ,C 与A 的距离是C 与B 的距离的5倍,且C 在表示5的点的左侧,求y 的值.【答案】(1)详见解析;(2)y =3.【解析】试题分析:(1)根据一元一次方程的定义可得|a|-1=1且a-2≠0,由此即可求得a 值,再解方程求得x 的值,即可得2x 的值,在数轴上表示即可;(2)根据等量关系:C 与A 的距离是C 与B 的距离的5倍,且C 在表示5的点的左侧,列出方程求解即可.试题解析:(1) 由一元一次方程的定义得,|a |-1=1.且a -2≠0,解得a =-2,则关于x 的一元一次方程()1280a a x --+=即为-4x +8=0,解得x =2,则24x =,在数轴上表示如图所示:(2) 依题意有[y -(-2)]=5(4-y ),解得y =3.点睛:本题主要考查了一元一次方程的定义、一元一次方程的解法及应用,解题关键是根据题意观察数轴,找出合适的等量关系列出方程,再求解.100.解下列方程: (1)4﹣35m=﹣m ; (2)56﹣8x=11+x ;(3)43x+1=5+13x ; (4)﹣5x+6+7x=1+2x ﹣3+8x .【答案】(1) m =-10;(2)x=5;(3)x=4;(4)x=1.【解析】试题分析:(1)移项、合并同类项后,系数化为1即可得方程的解;(2)移项、合并同类项后,系数化为1即可得方程的解;(3)移项、合并同类后项即可得方程的解;(4)移项、合并同类项后,系数化为1即可得方程的解.试题解析:(1) 移项,得-35m +m =-4. 合并同类项,得25m =-4. 系数化为1,得m =-10.(2) 移项,得-8x-x=11-56. 合并同类项,得-9x=-45. 系数化为1,得x=5.(3) 移项,得43x-13x=5-1.合并同类项,得x=4.(4) 移项,得-5x+7x-2x-8x=1-3-6. 合并同类项,得-8x=-8.系数化为1,得x=1.。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)按规律排列的一列数:2,-4,8,-16,32,-64,…,其中某四个相邻数的和是-640,这四个数中最大数与最小数的差是多少?【答案】设相邻四个数中的第1个数为x,则后三个数依次为−2x,4x,−8x.由题意得:x−2x+4x−8x=−640,解得:x=128.则−2x=−256,4x=512,−8x=−1024.∴512−(−1024)=1536.即这四个数中最大数与最小数的差是1536.【解析】分析:设相邻四个数中的第1个数为x,则后三个数依次为−2x,4x,−8x.依题意可列方程:x−2x+4x−8x=−640,解此方程,可求出这四个数,再求解.详解:设相邻四个数中的第1个数为x,则后三个数依次为−2x,4x,−8x.由题意得:x−2x+4x−8x=−640,解得:x=128.则−2x=−256,4x =512,−8x =−1024.∴512−(−1024)=1536.即这四个数中最大数与最小数的差是1536.点睛:考查一元一次方程的应用,观察所给数列,发现它们之间的关系是解题的关键.42.解方程:16 3.5 6.57x x x --=【答案】x=76【解析】【分析】先合并同类项,再系数化为1.【详解】16x -3.5x -6.5x=7.解:合并同类项,得6x=7,系数化为1,得x=76【点睛】掌握一元一次方程的一般解法.43.2008年10月24日我国“嫦娥一号”发射成功,中国人实现千年的飞天梦想,卫星在绕地球飞行过程中进行了三次变轨,如图.已知第一次变轨后的飞行周期比第二次变轨后飞行周期少8小时,•而第三次飞行周期又比第二次飞行周期扩大1倍.已知三次飞行周期和为88小时,求第一、二、•三次轨道飞行的周期各是多少小时?【答案】轨道一周期为16小时,轨道二周期为24小时,轨道三周期为48小时【解析】本题主要考查一元一次方程的应用.根据题意可知本题利用“三次飞行周期和为88小时”作为相等关系,设第二周期为x小时,分别把其他2个周期用x 表示出来,列方程可求解.解:设轨道=周期为xh,则得方程x-8+x+2x=88解得x=24所以轨道一周期为16小时,轨道二周期为24小时,轨道三周期为48小时44.解方程(1)x+3x=-12(2)3x+7=32-2x【答案】(1)x=-3;(2)x=5【解析】【分析】(1)先合并同类项,然后方程两边同除未知数的系数解出方程的根;(2)先移项合并同类项,然后方程两边同除未知数的系数解出方程的根.解:(1)移项4x=-12系数化为1x=-3(2)3x+2x=32-75x=25x=5【点睛】掌握解一元一次方程的一般步骤.45.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠上的代数式所表示数的和y .已知当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值总不变.(1)求a 的值;(2)若输入一个整数x ,某些滚珠相撞,输出y 值恰好为1-,求x 的值.【答案】(1)2a =-;(2)2x =.【解析】【分析】(1)由题意得到三个代数式的和值与x 无关得到答案,(2)分类讨论:前两个滚珠相撞,后两个滚珠相撞,列出方程求解并检验得到答案.(1)(21)3213(2)2x ax x ax a x -++=-++=++当三个滚珠同时相撞时,不论输入x 的值为多大,输出y 的值不变, 20a ∴+=得2a =-(2)当21322y x x =-+=+时,令1y =-,则122x -=+,得 1.5x =-(舍去),当3(2)23y x x =+-=-+时,令1y =-,则123x -=-+,得2x =.【点睛】本题考查代数式的值与字母的取值无关,考查解一元一次方程方程,根据题意列出方程是解题关键.46.解方程(本题8分)532x x -=【答案】1x =5x -2x =33x =3X =1【解析】5x -2x =33x =3X =147.解方程:2﹣2(x ﹣1)=3x+4.【答案】x=0【解析】试题分析:方程去括号,移项合并,把x系数化为1,即可求出解.试题解析:去括号得:2﹣2x+2=3x+4,移项合并得:5x=0,解得:x=0.考点:解一元一次方程.48.数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式.然后翻开纸片②是4x2+5x+6,翻开纸片③是-3x2-x-2.解答下列问题:(1)求纸片①上的代数式;(2)若x是方程2x=-x-9的解,求纸片①上代数式的值.【答案】(1)244++;(2)1.x x【解析】【分析】(1)由①=②+③即可求解;(2)由方程2x=-x-9求出x值,再代入纸片①上的代数式求值即可.【详解】解:(1)222-+①②③++,=+=+--=+x x x x x x456(32)44所以纸片①上的代数式为244++;x xx=-,(2)解2x=-x-9得3将3x =-代入244x x ++得2(3)4(3)491241-+⨯-+=-+=,所以纸片①上代数式的值为1.【点睛】本题考查了整式的加减运算及代入求值,同时涉及了解一元一次方程,灵活掌握整式的加减运算是解题的关键.49.(12分)规定一种新运算a ⊙b=a 2 -2b.(1)求(-1)⊙2的值;(2)若2⊙)(x -=6,求x 的值。
人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教学设计一. 教材分析人教版七年级数学上册3.2《解一元一次方程(一)——移项》是学生在掌握了方程的基本概念和一元一次方程的解法的基础上进行学习的内容。
本节内容主要介绍了解一元一次方程中移项的方法,是解决更复杂方程的基础。
教材通过具体的例子引导学生发现移项的规律,并通过练习让学生掌握移项的方法。
二. 学情分析七年级的学生已经具备了一定的代数基础,对一元一次方程的解法有一定的了解。
但是,学生在解决实际问题时,还不能熟练运用移项的方法。
因此,在教学过程中,需要通过具体的例子,让学生观察、思考、总结移项的规律,从而提高学生解决问题的能力。
三. 教学目标1.知识与技能:使学生掌握移项的方法,能够正确解一元一次方程。
2.过程与方法:通过观察、思考、总结移项的规律,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:移项的方法。
2.难点:在解决实际问题时,如何灵活运用移项的方法。
五. 教学方法采用问题驱动法、合作学习法、练习法等,引导学生观察、思考、总结移项的规律,并通过练习让学生巩固所学知识。
六. 教学准备1.准备相关的例题和练习题。
2.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容,引导学生思考如何解决这个问题。
2.呈现(10分钟)展示相关的例题,引导学生观察、思考,总结移项的规律。
3.操练(10分钟)让学生分组合作,解决一些类似的练习题,巩固移项的方法。
4.巩固(5分钟)对学生在练习中遇到的问题进行讲解,帮助学生巩固所学知识。
5.拓展(5分钟)引导学生思考如何在解决更复杂的问题时,灵活运用移项的方法。
6.小结(5分钟)对本节课的内容进行总结,强调移项的方法和注意事项。
7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。
8.板书(5分钟)板书本节课的主要内容和重点知识点。
3.2解一元一次方程(移项)教材分析:1、本节课是数学人教版七年级上册第三章第二节第二小节的内容。
2、本节课主要内容是解一元一次方程的重要步骤移项。
是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,在解方程、解一元一次不等式、解一元二次不等式中都要用到。
学情分析:针对初一年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。
在课堂教学中,学生主要采取讨论、思考、观察的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
教学策略:1)、自主探索策略:通过分组讨论,学生通过观察、分析发现结论,归纳概括。
(2)、师生交流:通过教师引导,让学生学会学习数学的方法和数学思想。
生生交流:学生分组讨论问题,在讨论的过程中相互交流,发表个人的见解,对问题进行探讨,互相学习。
教学目标:理解移项法,并知道移项法的依据,会用移项法则解方程。
教学重点:运用方程解决实际问题,会用移项法则解方程。
教学难点:找相等关系列方程,正确地移项解一元一次方程复习回顾回忆一下上节课我们学的什么内容呀?合并同类项解一元一次方程。
说到解方程,那么到目前为止你总共学了几种解一元一次方程的方法了?两种(除了合并同类项还有利用等式的性质)解方程并说出解方程的依据(让学生自己在练习本上做再一起对答案)(1)2x-2=4(2)5x-2x=9上面的这两个方程第一个是利用等式的性质来解的;第二个是利用合并同类项的方法来解的一、创设情境,引出问题好现在我们来看一个实际问题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?现在来看一下下面的3个小问题,先独立思考再找学生回答1.如果我设这个班有x名学生,请完成下列填空每人分3本,共分出-3x--本,加上剩余的20本,这批书共—(3x+20)本每人分4本,需要-4x-本,减去缺少的25本,这批书共--(4x-25)--本2.很明显这批书有2种分法,他们之间友存在怎样的关系呢?由于这批书的总数是一个定值所以由这两种分法得出的表示这批书总数的两个代数式是相等的。
3.2 解一元一次方程(一)第2课时移项导学案1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.★知识点1:用移项的方法解一元一次方程移项是解一元一次方程步骤中重要的一步,注意两点:形式上是把方程中的某一项改变符号后从方程的某一边移到另一边,本质上是依据等式的性质1,应用时,要让学生理解这样做的依据,从而确信它的正确性,熟练掌握移项的方法和目的.★知识点2:利用方程这个工具解应用问题通过实际问题,重点让学生经历和感受方程较算式的优越性,突出数学模型的广泛性和有效性.★知识点3:题目中含有比的应用题题目中含有比的应用题在设未知数时,一般根据比去设,如果题目已知的比是a:b,一般设为ax和bx两部分,如果比是a:b:c,一般设为ax, bx,cx在计算时较简单.1. 移项:把等式一边的某项移到叫做移项.2. 在列方程解应用题中:表示是一个基本的相等关系.3. 路程= ×,这是行程问题中常用的基本等量关系.4. 两个数a与b(b≠0)相除,叫做a与b的比,记作或者 .其中a叫做比的,b叫做比的 .5. 七年一班有学生42人,如果男、女生人数的比是4:3,求该班的男女生人数.在设未知数时,一般设男生为人,女生为人.1. 变号后;另一边;2. 同一个量的两个不同的式子相等;3. 速度;时间;4. a:b;ab;前项;后项;5. 4x;3x.问题1:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?每人分3本,共分出3x本,加上剩余的20本,这批书共有本;(3x+20)每人分4本,共分出4x本,减去缺少的25本,这批书共有本.(4x-25)从而列方程. 3x+20=4x-25问题2:方程3x+20=4x-25与前面学过的一元一次方程在结构上有什么不同?问题3:怎样才能将它转化为x=a(常数)的形式呢?把等式一边的某项变号后移到另一边,它叫做移项.问题4:移项的依据是什么?问题5:以上解方程中“移项”起了什么作用?1. 下列方程的变形,属于移项的是(D)A. 由-3x=24得x=-8B. 由3x+6-2x=8 得3x-2x+6=8C. 由4x+5=0 得-4x-5=0D. 由2x+1=0得2x=-12. 下列移项正确的是(C)A.由2+x=8,得到x=8+2B.由5x=-8+x,得到5x+x=-8C.由4x=2x+1,得到4x-2x=1D.由5x-3=0,得到5x=-3例1:解方程:(1)3x+7=32-2x;(2)x-3=32x+1.解:(1)移项,得3x+2x=32-7合并同类项,得5x=25系数化为1,得x=5.解:(2)移项,得合并同类项,得系数化为1,得x=-8.解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x.解:(1)移项,得5x-2x=-10+7,合并同类项,得-3x=-3,系数化为1,得x=1.(2)移项,得-0.3x-1.2x=9-3,合并同类项,得-1.5x=6,系数化为1,得x=-4.例2:某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t. 新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?解:若设新工艺的废水排量为2x t,则旧工艺的废水排量为5x t.由题意得5x-200=2x+100,移项,得5x-2x=100+200,合并同类项,得3x=300,系数化为1,得x=100,所以2x=200,5x=500.答:新工艺的废水排量为200 t,旧工艺的废水排量为 500 t.下面是两种移动计费方式:问:一个月内,通话时间是多少分钟时,两种移动计费方式的费用一样?解:设通话时间t分钟,则按方式一要收费(50+0.3t)元,按方式二要收费(10+0.4t). 如果两种移动计费方式的费用一样,则50+0.3t=10+0.4t.移项,得0.3t-0.4t =10-50.合并同类项,得-0.1t =-40.系数化为1,得t =400.答:一个月内通话400分钟时,两种计费方式的费用一样.1. 通过移项将下列方程变形,正确的是( C )A.由5x-7=2,得5x=2-7B.由6x-3=x+4,得3-6x=4+xC.由8-x=x-5,得-x-x=-5-8D.由x+9=3x-1,得3x-x=-1+92. 已知2m-3=3n+1,则2m-3n = 4.3. 如果154m+与14m+互为相反数,则m的为.(112-)4. 当x = -2时,式子2x-1的值比式子5x+6的值小1.5. 解下列一元一次方程:(1)7-2x=3-4x;(2)1.8t=30+0.3t;(3)1132x x+=+;(4)541183333x x+=-.答案:(1)x=-2;(2)t=20;(3)x=-4;(4)x=2.6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?解:设小明x秒后追上小刚,可得方程:4x+10=6x.移项,得4x-6x=-10.合并同类项,得-2x=-10.系数化为1,得x=5.答:小明5秒后追上小刚.1.(2022•百色)方程3x=2x+7的解是()A.x=4B.x=-4C.x=7D.x=-7【解答】解:移项得:3x-2x=7,合并同类项得:x=7.故选:C.2.(2022•海南)若代数式x+1的值为6,则x等于()A.5B.-5C.7D.-7【解答】解:根据题意可得,x+1=6,解得:x=5.故选:A.3.(4分)(2021•重庆A卷15/26)若关于x的方程442xa-+=的解是x=2,则a的值为.【解答】解:把x=2代入方程442xa-+=得:4242a-+=,解得:a=3,故答案为:3.(1)本节课学习了哪些主要内容?(2)移项的依据是什么?移项起到什么作用?移项时应该注意什么问题?(3)解ax+b=cx+d型方程的步骤是什么?(4)用方程来解决实际问题的关键是什么?【参考答案】1. 变号后;另一边;2. 同一个量的两个不同的式子相等;3. 速度;时间;4. a:b;ab;前项;后项;5. 4x;3x.1. D;2. C.例1:解:(1)移项,得3x+2x=32-7合并同类项,得5x=25系数化为1,得x=5.解:(2)移项,得合并同类项,得系数化为1,得x=-8.解:(1)移项,得5x-2x=-10+7,合并同类项,得-3x=-3,系数化为1,得x=1.(2)移项,得-0.3x-1.2x=9-3,合并同类项,得-1.5x=6,系数化为1,得x=-4.例2:解:若设新工艺的废水排量为2x t,则旧工艺的废水排量为5x t.由题意得5x-200=2x+100,移项,得5x-2x=100+200,合并同类项,得3x=300,系数化为1,得x=100,所以2x=200,5x=500.答:新工艺的废水排量为200 t,旧工艺的废水排量为 500 t.解:设通话时间t分钟,则按方式一要收费(50+0.3t)元,按方式二要收费(10+0.4t). 如果两种移动计费方式的费用一样,则50+0.3t=10+0.4t.移项,得0.3t-0.4t =10-50.合并同类项,得-0.1t =-40.系数化为1,得t =400.答:一个月内通话400分钟时,两种计费方式的费用一样.1. C;2. 4;3.1 12 ;4. -2;5.(1)x=-2;(2)t=20;(3)x=-4;(4)x=2.6. 解:设小明x秒后追上小刚,可得方程:4x+10=6x.移项,得4x-6x=-10.合并同类项,得-2x=-10.系数化为1,得x=5.答:小明5秒后追上小刚.1.【解答】解:移项得:3x-2x=7,合并同类项得:x=7.故选:C.2.【解答】解:根据题意可得,x+1=6,解得:x=5.故选:A.3.【解答】解:把x=2代入方程442xa-+=得:4242a-+=,解得:a=3,故答案为:3.。
3.2解一元一次方程--移项合并同类项一、单选题1.一元一次方程21x =的解是( )A .2x =-B .0x =C .12x =- D .12x =2.方程3x =2x +7的解是( ) A .x =4B .x =﹣4C .x =7D .x =﹣73.已知5x =是方程2x −4a =2的解,则a 的值是( ) A .1B .2C .-2D .-14.若m 与13⎛⎫-- ⎪⎝⎭互为相反数,则m 的值为( )A .3-B .13-C .13D .35.代数式3310.3x a b -与323x a b 是同类项,则x 的值是( )A .0B .2C .52D .16.已知关于x 的方程3220x a +-=的解是x a =,则a 的值是( )A .1B .25C .52D .-17.某同学在解关于x 的方程3x -1=mx +3时,把m 看错了,结果解得x =4,该同学把m 看成了( ).A .-2B .2C .43D .728.关于x 的方程3x +5=0与3x =1﹣3m 的解相同,则m 等于( ) A .﹣2B .2C .4-3D .439.对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如: 5*7=5+2×7,则方程3x *12=5-x 的解为( ) A .1B .2C .2.5D .310.我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正三角形数”.设第n 个“平行四边形数”和“正三角形数”分别为a 和b .若42a =,则b 的值为( )A .190B .210C .231D .253二、填空题11.若23391m x -+=是关于x 的一元一次方程,则m 的值为_________.12.把方程2y ﹣6=y +7变形为2y ﹣y =7+6,这种变形叫_____,根据是_____. 13.若2x +与2(3)y -互为相反数,则x y -=________.14.利用方程可以将无限循环小数化成分数,例如:将0.7化成分数,可以先设0.7x =,由0.70.777=⋅⋅⋅⋅⋅⋅可知,107.777x =⋅⋅⋅⋅⋅⋅,所以107x x -=,解方程得79x =,于是得70.79=.仿此方法,0.730.7373=⋅⋅⋅⋅⋅⋅用分数表示为__________. 三、解答题 15.解方程 (1)617x +=(2)3845x x -=-16.小明在解一道有理数混合运算时,一个有理数m 被污染了. 计算:()3312m ÷+⨯-.(1)若2m =,计算:()33212÷+⨯-;(2)若()33132m ÷+⨯-=,求m 的值;(3)若要使()3312m ÷+⨯-的结果为最小正整数,求m 值.17.已知两个整式2A x x =+,B =■x +1,其中系数■被污染. (1)若■是2,化简A -B ;(2)若x =1时,A -B 的值为2.说明原题中■是几?18.对于有理数a 、b 定义一种新运算“⊗”,规定a ⊗b =|a |+|b |﹣|a ﹣b |.(1)计算2⊗3的值;(2)当a 、b 在数轴上的位置如图所示时,化简a ⊗b ; (3)已知a <0,a ⊗a =12+a ,求a 的值.19.已知关于x 的方程()()233210k x k x m ---++=是一元一次方程.(1)求k 的值.(2)若已知方程与方程3243x x -=-的解互为相反数,求m 的值. (3)若已知方程与关于x 的方程7352x x m -=-+的解相同,求m 的值.答案1.D 2.C 3.B 4.B 5.D 6.B 7.B 8.B9.A10.C11.212.移项等式基本性质1 13.-514.73 9915.(1)x=1(2)x=-316.(1)0;(2)1m=-;(3)1m=.17.(1)21x x--(2)-118.(1)4;(2)0;(3)a的值为-4.19.(1)3-;(2)2.5;(3)2.5.。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)先看例子,再解类似的题目.例:解方程:||14x -=.解法一:当0x 时,原方程化为14x -=.解方程,得5x =.当0x <时,原方程化为14x --=.解方程,得5x =-.所以原方程的解是5x =或5x =-.解法二:移项,得||41x =+.合并同类项,得||5x =.由绝对值的意义,得5x =或5x =-.所以原方程的解是5x =或5x =-.问题:用你发现的规律解方程:2||35x -=.【答案】4x =或4x =-【解析】【分析】解法一:讨论x ≥0与x <0时,两种情况即可求出解;解法二:方程变形后,利用绝对值的代数意义化简,即可求出解.【详解】解法一:当x ⩾0时,原方程化为2x −3=5,解得:x=4;当x<0时,原方程化为−2x −3=5,解得:x=-4;解法二:方程变形为2|x|=8,即|x|=4,解得:x=±4.则方程的解为4或−4.【点睛】本题考查解含绝对值符号的一元一次方程,熟练掌握计算法则是解题关键82.已知5x =是关于x 的方程820kx k -=+的解,求k 的值.【答案】7【解析】【分析】把5x =代入方程,可得5820k k -=+,解得方差即可得出k 的值【详解】将5x =代入820kx k -=+,得5820k k -=+4k=28k=7【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.83.解下列方程:(1)21x x -+=-;(2)5326x x -=+.【答案】(1)32x =(2)3x = 【解析】【分析】(1) 先移项,再合并同类项,把x 的系数化为1即可;(2) 先移项,再合并同类项,把x 的系数化为1即可;【详解】(1) 原式=-21x x -=--,-23x =-,32x =(2) 原式=5263x x -=+,3x=9,x=3【点睛】本题考查解一元一次方程-移项,熟练掌握计算法则是解题关键.84.下面是两位同学的作业.请你用曲线把出错误的步骤画出来,并把正确的写在右边.(1)解方程: 215x x -=-+.解:215x x -=+,6x =.(2)解方程:715y y =+. 解: 71y y =+,71y y -=,61y =,16y =. 【答案】(1)见解析;(2)见解析.【解析】【分析】根据解一元一次方程的步骤:移项,合并同类项,系数化为1,进行解方程即可求解.【详解】解:⑴215x x -=+ 改正:215x x +=+ 2x =(2) 71y y =+ 改正:755y y =+ 52y =【点睛】本题主要考查解一元一次方程的步骤,解决本题的关键是要熟练掌握解一元一次方程的步骤.85.已知12x =是关于x 的方程1382m x x +=+的解,求关于x 的方程223m x m x +=-的解.【答案】答案见解析【解析】【分析】 先将12x =代入1382m x x +=+得到m=-1。
解一元一次方程—去括号(人教版)(基础)一、单选题(共9道,每道11分)1.一元一次方程的解为( )A.9B.C. D.21答案:A解题思路:故选A.试题难度:三颗星知识点:解一元一次方程—去括号2.一元一次方程的解为( )A. B.C. D.答案:B解题思路:故选B.试题难度:三颗星知识点:解一元一次方程—去括号3.对于任意两个有理数a,b,规定,若,则x的值为( )A.1B.-1C.2D.-2答案:D解题思路:根据题意可得,3(2x+3)-(3x-1)=46x+9-3x+1=46x-3x=4-9-13x=-6x=-2故选D试题难度:三颗星知识点:解一元一次方程—去括号4.已知今年小郑母女二人的年龄之和为42岁,三年前母亲的年龄是小郑年龄的8倍,则5年后母亲的年龄为( )A.40岁B.35岁C.30岁D.45岁答案:A解题思路:设今年母亲的年龄为x岁,则小郑的年龄为(42-x)岁,根据题意列表梳理信息如下:根据三年前母亲的年龄是小郑年龄的8倍,可列方程x-3=8(42-x-3),解得x=35.因此5年后母亲的年龄为40岁.故选A.试题难度:三颗星知识点:一元一次方程的应用5.9年前(相对于今年)父亲年龄是儿子的12倍,今年父亲年龄是儿子的3倍.那么9年前儿子的年龄是( )岁.A.0B.11C.2D.4答案:C解题思路:设9年前儿子的年龄是x岁,可列表格为:根据今年父亲年龄是儿子的3倍,得12x+9=3(x+9)解得x=2故选C.试题难度:三颗星知识点:一元一次方程的应用6.为创建园林城市,某城市将对城区主干道进行绿化,计划把一段公路的一侧全部栽上梧桐树,并且每两棵树的间隔相等.如果每隔6米栽一棵,则树苗缺22棵;如果每隔7米栽一棵,则树苗正好用完.设原有树苗x棵,则依题意可列方程为( )A. B.C. D.答案:A解题思路:根据题意列表如下:根据主干道长度不变,可列方程为.故选A.试题难度:三颗星知识点:一元一次方程的应用7.(上接第6题)那么原有树苗( )棵.A.133B.139C.126D.132答案:A解题思路:由第6题得去括号得6x+132-6=7x-7合并同类项得6x+126=7x-7移项得6x-7x=-7-126系数化为1得x=133故选A试题难度:三颗星知识点:一元一次方程的应用8.某车间有28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,螺栓和螺母个数比为1:2时刚好配套.求有多少名工人生产螺栓时,螺栓和螺母刚好配套?设有名工人生产螺栓,根据题意列表如下,补全表中的信息,则可列方程为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一元一次方程的应用9.(上接第8题)那么有( )名工人生产螺栓时,螺栓和螺母刚好配套?A.16.8B.12C. D.21答案:B解题思路:由题8题得等式左右两边同时除6得4x=3(28-x)去括号得4x=84-3x移项得4x+3x=84合并同类项得7x=84系数化为1得x=12故选B试题难度:三颗星知识点:一元一次方程的应用。
人教版七年级数学上册:3.2《解一元一次方程(一)——移项》说课稿一. 教材分析《解一元一次方程(一)——移项》是人教版七年级数学上册第三章第二节的内容。
本节内容是在学生已经掌握了方程的定义和一元一次方程的解法的基础上进行授课的。
通过本节课的学习,使学生掌握一元一次方程的移项法则,进一步理解和掌握方程的解法,培养学生解决实际问题的能力。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于方程的概念和解法已经有了一定的理解。
但是,学生在解方程的过程中,对于移项的操作还不够熟练,对于移项的法则的理解还不够深入。
因此,在教学过程中,需要教师耐心引导,让学生充分理解和掌握移项的法则,提高解方程的技能。
三. 说教学目标1.知识与技能目标:使学生理解和掌握一元一次方程的移项法则,能够熟练地进行移项操作。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:一元一次方程的移项法则。
2.教学难点:移项的法则的应用,特别是对于含字母的方程的移项。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生自主探究和合作交流。
2.教学手段:利用多媒体课件,进行动画演示,帮助学生直观地理解移项的过程。
六. 说教学过程1.导入新课:通过复习一元一次方程的解法,引导学生进入新课。
2.自主探究:让学生自主探究一元一次方程的移项法则,教师进行适当的引导和点拨。
3.合作交流:学生分组进行合作交流,分享各自的解题心得和方法。
4.动画演示:利用多媒体课件,进行动画演示,帮助学生直观地理解移项的过程。
5.巩固练习:布置一些练习题,让学生进行巩固练习。
6.总结反思:让学生总结本节课的收获,教师进行总结和点评。
七. 说板书设计板书设计如下:一元一次方程的移项法则八. 说教学评价教学评价主要通过学生的课堂表现、练习题的完成情况和学生的学习反馈来进行。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)如果单项式2a mx y 与235a nx y --是关于x ,y 的单项式,且它们是同类项:(1)求()2002722a -的值;(2)若2amx y 235a nxy --=0,且xy ≠0,求200325m n ⎛⎫- ⎪⎝⎭的值.【答案】(1)1;(2)-1 【解析】 【分析】(1)先根据它们是同类项,列式23a a -=,求得a 的值,再代入求值即可; (2)由0xy ≠,得250m n +=,即25m n =-,再代入求值即可.【详解】∵单项式2a mx y 与235a nx y --是关于x ,y 的单项式,且它们是同类项, ∴23a a -=,解得3a =, (1)()2002722a -()20022122=-1=;(2)∵2a mx y 235a nx y --=0,且3a =,∴32mx y 35nx y -=0,即()3250m n x y -=,∵0xy ≠,∴250m n -=,即25m n =,∴200325m n ⎛⎫- ⎪⎝⎭200355n n ⎛⎫=- ⎪⎝⎭1=-.【点睛】本题考查了解一元一次方程以及同类项的概念,解题的关键是掌握解一元一次方程和同类项的概念.52.如图,点A 和点B 在数轴上对应的数分别为a 和b ,且()2680a b ++-=.(1)求线段AB 的长;(2)点C 在数轴上所对应的数为x ,且x 是方程24425x x --=+的解,点D 在线段AB 上,并且BD AD -BC =,请求出点D 在数轴上所对应的数;(3)在(2)的条件下,线段AD 和BC 分别以6个单位长度/秒和5个单位长度/秒的速度同时向右运动,运动时间为t 秒,M 为线段AD 的中点,N 为线段BC 的中点,若12MN =,求t 的值.【答案】(1) =4AB 1;(2)点D 在数轴上所对应的数为2-;(3)当t=3秒或 =27t 秒时线段=12MN . 【解析】 【分析】(1)根据平方的非负性,绝对值的非负性求出a=-6,b=8,得到OA=6,OB=8,即可求出AB ;(2)解方程求出x=14,得到点C 在数轴上所对应的数为14,设点D 在数轴上所对应的数为y ,根据BD AD -BC =,列式求出y ;(3)根据中点得到运动前M N ,两点在数轴上所对应的数分别为-4,11,运动t 秒后M N ,两点在数轴上所对应的数分别为-4+6t,11+5t ,再分M 、N 相遇前,相遇后两种情况分别列方程求出t.【详解】(1)解:∵2(6)0,80a b +≥-≥,且2(6)80a b ++-=, ∴2(6)0,80a b +=-=,∴a+6=0,b-8=0, ∴a=-6,b=8, ∴OA=6,OB=8, ∴AB=OA+OB=6+8=14, (2)解方程24425x x --=+,得 14x =,∴点C 在数轴上所对应的数为14,设点D 在数轴上所对应的数为y 点D 在线段AB 上,且BD AD BC -=,()66,8,1486AD y y BD y BC ∴--=+===-=-, ()866y y ∴--(+)=, 解这个方程,得2y =-,∴点D 在数轴上所对应的数为2-.(3)解:由(2)得A D B C ,,,四点在数轴上所对应的数分别为: 62814--,,,.∴运动前M N ,两点在数轴上所对应的数分别为-4,11,则运动 t 秒后M N ,两点在数轴上所对应的数分别为-4+6t,11+5t ,12MN =∴①线段AD 没有追上线段BC 时有:(11+5t)-(-4+6t)=12解得:3t = ;①线段AD 追上线段BC 后有:(-4+6t)-(11+5t)=12, 解得:27t =,∴综合上述:当t=3秒或27t =秒时线段12MN =.【点睛】此题考查线段的和差计算,平方及绝对值的非负性,数轴上两点之间的距离,数轴上动点问题,利用一元一次方程解决图形问题,注意分类讨论的解题思想.53.已知2|2|(53)0n m ++-=,求关于x 的方程1043mx x n +=+的解。
人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) 阅读下面的解题过程:解方程:52x =.解:(1)当50x ≥时,原方程可化为一元一次方程52x =,解得25x =; (2)当50x <时,原方程可化为一元一次方程52x -=,解得25x =-. 请同学们仿照上面例题的解法,解方程:(1)21x -=(2)31210x --=.【答案】(1)x=1和x=3;(2)x=5和x=-3.【解析】试题分析:(1)分别根据x -2≥0和x -2<0两种情况将绝对值去掉,转化成一元一次方程,从而分别求出方程的解;(2)分别根据x -1≥0和x -1<0两种情况将绝对值去掉,转化成一元一次方程,从而分别求出方程的解.试题解析:(1)①当x -2≥0时,原方程可化为一元一次方程x -2=1 解得:x=3②当x -2<0时,原方程可化为一元一次方2-x=1解得:x=1综上所述,原方程的解为:x=1和x=3(2)①当x -1≥0时,原方程可化为3(x -1)-2=10解得:x=5②当x -1<0时,原方程可化为3(1-x )-2=10解得:x=-3综上所述,原方程的解为:x=5和x=-3考点:(1)解一元一次方程;(2)分类讨论思想42.解方程:(本题每小题5分,共20分)(1)15435+=-x x(2)()432x x -=-(3)32213+-=-x x (4)3714153x x --=- 【答案】(1)x=18;(2)x=1;(3)x=1;(4)x=19【解析】试题分析:(1)首先进行移项合并同类项,从而得出方程的解;(2)首先根据去括号的法则进行去括号,然后进行移项合并同类项,从而得出方程的解;(3)首先进行移项合并同类项,从而得出方程的解;(4)首先根据等式的性质进行去分母,然后根据去括号的法则进行去括号,进行移项合并同类项,从而得出方程的解.试题解析:(1)移项得:5x -4x=15+3 解得:x=18、去括号得:4-x=6-3x 移项得:-x+3x=6-4 合并同类项得:2x=2 解得:x=1、移项得:3x+2x =3+12 合并同类项得:72x=72解得:x=1 、去分母得:3(3-7x )=5(1-4x )-15 去括号得:9-21x=5-20x -15移项得:-21x+20x=5-15-9 合并同类项得:-x=-19 解得:x=19考点:解一元一次方程.43.解方程(1)285--=-x x(2))2(39)3(2+-=--x x(3)312121+=--x x (4)4.0123.01.02.0-=--x x 【答案】(1)1;(2)59;(3)11-;(4)111【解析】 试题分析:(1)移项合并同类项,然后系数化为1即可;(2)先去括号,然后移项合并同类项,然后系数化为1即可;(3)先去分母,再去括号,然后移项合并同类项,然后系数化为1即可;(4)先去分母,再去括号,然后移项合并同类项,然后系数化为1即可.试题解析:(1)285--=-x x ,5x+x=8-2,6x=6,x=1;(2))2(39)3(2+-=--x x ,2x-6-9=-3x-6,2x+3x=9+6-6,5x=9,x=59;(3)312121+=--x x ,3(x-1)-6=2(2x+1),3x-3-6=4x+2,3x-4x=2+3+6,-x=11,x=-11;(4)4.0123.01.02.0-=--x x ,0.4(0.2x-0.1)-2×0.12=0.3(x-1),0.08x-0.04-0.24=0.3x-0.3,0.08x-0.3x=0.04+0.24-0.3,-0.22x=-0.2,x=111.考点:解一元一次方程.44.解方程【答案】x=5试题分析:首先进行移项,然进行合并同类项计算,最后将x的系数化为1得出方程的解.试题解析:移项,得:3x+2x=31-6合并同类项,得:5x=25将系数化为1得:x=5考点:解一元一次方程45.(2015秋•高密市校级月考)当x取什么值时,代数式与的差等于5.【答案】x=﹣8.【解析】试题分析:根据题意列出关于x的方程,求出x的值即可.解:由题意得,﹣=5,去分母得,5(x+3)﹣2(x﹣7)=50,去括号得,5x+15﹣2x+14=5,移项得,5x﹣2x=5﹣15﹣14,合并同类项得,3x=﹣24,系数化为1得,x=﹣8.46.(2015秋•兴化市校级月考)解方程(1)6x﹣4=3x+2(2)=1+.【答案】(1)x=2;(2)x=1.试题分析:(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)方程移项合并得:3x=6,解得:x=2;(2)去分母得:2x+4=6+3x﹣3,移项合并得:x=1.47.(2015秋•兴化市校级月考)当m为何值时,关于x的方程4x+2m=3x ﹣5的解和方程6x﹣8=10的解相同?【答案】m=﹣4【解析】试题分析:根据方程的解相同,可得关于m的方程,根据解方程,可得答案.解:解4x+2m=3x﹣5,得x=﹣5﹣2m.解6x﹣8=10,得x=3.关于x的方程4x+2m=3x﹣5的解和方程6x﹣8=10的解相同,得﹣5﹣2m=3.解得m=﹣4,当m=﹣4时,关于x的方程4x+2m=3x﹣5的解和方程6x﹣8=10的解相同.48.(2015秋•海安县期中)解方程:(1)4x ﹣3(20﹣x )+4=0(2)1﹣.【答案】(1)x=8;(2)x=13.【解析】试题分析:(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 解:(1)去括号得:4x ﹣60+3x+4=0,移项合并得:7x=56,解得:x=8;(2)去分母得:12﹣4x+10=9﹣3x ,移项合并得:x=13.49.x ﹣4=2﹣5x【答案】x=1【解析】试题分析:首先进行移项合并同类项,然后将系数化为1,解出方程. 试题解析:移项合并得:6x=6, 解得:x=1;考点:解一元一次方程50.解方程:x ﹣12x =2233x 解:去分母,得6x ﹣3x+1=4﹣2x+4…①即﹣3x+1=﹣2x+8…②移项,得﹣3x+2x=8﹣1…③合并同类项,得﹣x=7…④∴x=﹣7…⑤上述解方程的过程中,是否有错误?答:;如果有错误,则错在步.如果上述解方程有错误,请你给出正确的解题过程.【答案】有;①;x=-35【解析】试题分析:首先在方程的左右两边同时乘以分母的最小公倍数,然后再进行去括号,去括号时括号里面的每一项都要乘,千万不能漏乘.试题解析:有,①;正确的解题过程如下:6x﹣3(x﹣1)=4﹣2(x+2)6x﹣3x+3=4﹣2x﹣45x=﹣3x=﹣35考点:解一元一次方程。
人教版七年级数学上册移项解一元一次方程x 一.选择题1.方程2-3x=4-2x的解是[]A.x=1 B.x=-2 C.x=2 D.x=-12.一元一次方程4x=5x-2的解是[]A.x=2 B.x=-2 C.x=29D.x=−293.代数式a-2与1-2a的值相等,则a等于[]A.0 B.1 C.2 D.34.方程x-5=3x+7移项后正确的是[]A.x+3x=7+5 B.x-3x=-5+7 C.x-3x=7-5 D.x-3x=7+55.一元一次方程3x+4=5x-2的解是[]A.x=-3 B.x=-1 C.x=4 D.x=36.方程6x-8=8x-4的解是[]A.2 B.-2 C.6 D.-6二.填空题7.当m= 时,式子3+m与式子-2m+1的值相等.[来源:学科网ZXXK]8.下面的框图表示了解这个方程的流程:其中,“移项”这一步骤的依据是.9.关于x的方程是3x-7=11+x的解是.10.当x= 时,代数式2x-2与1-x的值相等.三.解答题11.解方程:[1]2x+3=5x-18;[2]2x-1=5x+7;[3]3x-2=5x+6.[来源:学,科,网Z,X,X,K][4]8x=2x-7. [5]6x-10=12x+9 12.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?答案:[来源:学|科|网]1.B 解析:移项得:-3x+2x=4-2,合并得:-x=2,系数化为1得:x =-2.2.A 解析:将4x=5x-2移项,得:4x-5x=-2,合并同类项,得:-x=-2,系数化为1,得:x=2.3.B 解析:根据题意得:a-2=1-2a ,移项合并得:3a=3,解得:a=1.4.D 解析:方程x-5=3x+7,移项得:x-3x=7+5.5.D 解析:方程移项合并得:2x=6,解得:x=3.[来源:学科网ZXXK] 6.B 解析:移项,得6x-8x=-4+8,合并同类项,得-2x=4,系数化为1得:x=-2.7.-23 解析:根据题意得:3+m=-2m+1,移项﹨合并同类项得:3m=-2,解得:m=-23 .[来源:学&科&网]8.等式的性质19.x=9解析:方程3x-7=11+x ,移项合并得:2x=18,解得:x=9.10.1解析:根据题意得:2x-2=1-x ,移项合并得:3x=3,解得:x=111.解:[1]移项合并得:3x=21,解得:x=7;[2]移项合并得:3x=-8,解得:x=-83 ; [3]移项,得3x-5x=6+2,合并,得-2x=8,化系数为1,得x=-4.[4]移项合并同类项得:6x=-7,系数化1得:x=-76 .[5]移项,得6x-12x=10+9, 合并,得-6x=19,化系数为1,得x=-196; 12.解:设通讯员需x 小时可以追上学生队伍.由题意得:5×1860+5x =14x , 解这个方程得:x =16, 答:通讯员需16小时可以追上学生队伍.。
解一元一次方程—移项(人教版)(基础)
一、单选题(共9道,每道11分)
1.下列解方程的过程中,移项错误的是( )
A.方程变形为
B.方程变形为
C.方程变形为
D.方程变形为
答案:A
解题思路:
A选项方程变形为,A错误
故选A
试题难度:三颗星知识点:解一元一次方程—移项
2.若单项式与是同类项,则x的值为( )
A. B.
C.2
D.3
答案:C
解题思路:
所含字母相同,并且相同字母的指数也相同的项叫做同类项.
根据同类项的定义,若与是同类项,
则2x+1=5,
移项得,2x=5-1
即2x=4
解得,x=2.
故选C.
试题难度:三颗星知识点:解一元一次方程—移项
3.一元一次方程的解为( )
A. B.
C. D.
答案:D
解题思路:
故选D.
试题难度:三颗星知识点:解一元一次方程—移项
4.一元一次方程的解为( )
A. B.
C. D.
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:解一元一次方程—移项
5.一元一次方程的解为( )
A. B.
C. D.
答案:A
解题思路:
故选A.
试题难度:三颗星知识点:解一元一次方程—移项
6.一桶油连桶的质量为8千克,油用去一半后,连桶的质量为4.5千克,则桶内原有油多少千克?设桶内原有油x千克,则下列所列方程正确的是( )
A. B.
C. D.
答案:D
解题思路:
设桶内原有油x千克,那么油用去一半后,剩余的油连桶的质量为千克.
因为油用去一半后,连桶的质量为4.5千克,所以方程可列为.
故选D.
试题难度:三颗星知识点:一元一次方程的应用
7.(上接第6题)那么桶内原有油( )千克.
A.7
B.4
C.1.75
D.25
答案:A
解题思路:
由第6题得
移项得
系数化为1得x=7
故选A
试题难度:三颗星知识点:一元一次方程的应用
8.我今年12岁,我的年龄比爸爸的年龄的小2岁,爸爸今年多少岁?设爸爸今年x岁,则下列所列方程正确的是( )
A. B.
C. D.
答案:C
解题思路:
根据题意,列表如下:
结合已知,我今年12岁,所以方程可列为.
故选C.
试题难度:三颗星知识点:一元一次方程的应用
9.(上接第8题)那么爸爸今年( )岁.
A.38
B.42
C.30
D.
答案:B
解题思路:
由题8题得
移项得
系数化为1得x=42
故选B.
试题难度:三颗星知识点:一元一次方程的应用。