线性多步法
- 格式:docx
- 大小:12.59 KB
- 文档页数:2
多步法应用于常微分方程的数值解。
从概念上讲,数值方法从初始点开始,然后在时间上向前迈出一小步,以找到下一个求解点。
该过程的下一步是绘制解决方案。
一步法(例如Euler方法)仅引用前一点及其导数来确定当前值。
诸如Runge Kutta之类的方法采取一些中间步骤(例如,半个步骤)来获得高阶方法,但是在进行第二步之前会丢弃所有先前的信息。
多步尝试通过保留和使用先前步骤中的信息而不是丢弃信息来提高效率。
因此,多步法涉及前几个要点和导数。
在多步的情况下,使用先前点和导数的线性组合。
简单的介绍多步法应用于常微分方程的数值解。
从概念上讲,数值方法从初始点开始,然后在时间上向前迈出一小步,以找到下一个求解点。
该过程的下一步是绘制解决方案。
一步法(例如Euler方法)仅引用前一点及其导数来确定当前值。
诸如Runge Kutta之类的方法采取一些中间步骤(例如,半个步骤)来获得高阶方法,但是在进行第二步之前会丢弃所有先前的信息。
多步尝试通过保留和使用先前步骤中的信息而不是丢弃信息来提高效率。
因此,多步法涉及前几个要点和导数。
在多步的情况下,使用先前点和导数的线性组合。
[1-3]具体定义常微分方程的数值方法近似地解决了形式初值问题结果是离散时间的Ti的Y(T)的近似值其中h是时间步长,而I是整数。
Multistep使用上一步中的信息来计算下一个值。
特别地,多步法使用Yi和f(Ti,Yi)来计算所需当前步长的Y值。
因此,多步方法是以下形式的方法:确定系数AI和Bi。
该方法的设计者选择系数平衡了对实际解决方案的需求,以便获得一种易于使用的方法。
通常,许多系数为零以简化该方法。
显式和隐式方法可以区分。
如果Bi = 0,则该方法称为“显式”,因为它可以直接计算yn + s。
如果Bi≠0,则该方法称为“隐式”,因为YN + s的值取决于f(TN + s,yn + s),并且必须为yn + s。
迭代方法(例如牛顿法)通常用于求解隐式公式。
常微分方程数值解的多步法。
从概念上讲,一种数值方法是从一个初始点开始的,然后在时间上向前迈出一小步,以找到下一个求解点。
以下过程绘制解决方案。
单步方法(例如欧拉方法)仅参考前一点及其导数来确定当前值。
诸如Runge-Kutta之类的方法采取了一些中间步骤(例如,半步骤)来获得高阶方法,但是在进行第二步之前会丢弃所有先前的信息。
多步方法试图通过保留和使用先前步骤的信息而不是丢弃信息来提高效率。
因此,多步法是指前几个点和导数值。
在多步法的情况下,使用先前点和导数值的线性组合。
常微分方程数值解的多步法。
从概念上讲,一种数值方法是从一个初始点开始的,然后在时间上向前迈出一小步,以找到下一个求解点。
以下过程绘制解决方案。
单步方法(例如欧拉方法)仅参考前一点及其导数来确定当前值。
诸如Runge-Kutta之类的方法采取了一些中间步骤(例如,半步骤)来获得高阶方法,但是在进行第二步之前会丢弃所有先前的信息。
多步方法试图通过保留和使用先前步骤的信息而不是丢弃信息来提高效率。
因此,多步法是指前几个点和导数值。
在多步法的情况下,使用先前点和导数值的线性组合。
具体定义常微分方程的数值方法近似地解决了形式初值的问题结果是离散时间ti处y(t)的近似值:其中h是时间步长,而i是整数。
多步方法使用上一个S步骤的信息来计算下一个值。
特别地,多步方法使用yi和f(ti,yi)来计算当前步骤所需的y值。
因此,多步方法是一种具有以下形式的方法:确定系数ai和bi的方法。
该方法的设计者选择系数来平衡对实际解决方案的需求,从而获得一种易于使用的方法。
通常,许多系数为零以简化方法。
可以区分显式和隐式方法。
如果bi = 0,则此方法称为“显式”,因为此公式可以直接计算yn + s。
如果bi≠0,则此方法称为“隐式”,因为yn + s的值取决于f(tn + s,yn + s),并且必须为yn + s。
迭代方法(例如牛顿法)通常用于求解隐式公式。
线性多步法:
线性多步法(linear multistep method)是1993年发布的数学名词。
线性:
线性特性是卷积运算的性质之一,即设a,b为任意常数,则对于函数f(z,y),h(x,y)和g(x,y),
{af(x,Y)+bh(z,y)}*g(z,y)=af(x,y)*g(x,y)+bh(x,y)*g(z,y)。
同样有:
f(x,y)*{ah(x,y)+bg(x,y)=af(x,y)*h(x,y)+bf(x,y)*g(x,y)。
定义:
卷积(Convolution)既是一个由含参变量的无穷积分定义的函数,又代表一种运算。
其运算性质在线性系统理论、光学成像理论和傅里叶变换及其应用中经常用到。
卷积的运算性质有线性特性,复函数的卷积,可分离变量,卷积符合交换律,卷积符合结合律,坐标缩放性质,卷积位移不变性,函数f(x,y)与函数的卷积。
其中线性特性可描述为:
设a,b为任意常数,则对于函数f(z,y),h(x,y)和g(x,y),{af(x,Y)+bh(z,y)}*g(z,y)=af(x,y)*g(x,y)+bh(x,y)*g(z,y)。
同样有:
f(x,y)*{ah(x,y)+bg(x,y)=af(x,y)*h(x,y)+bf(x,y)*g(x,y)。
多步法:
多步法用于普通微分方程的数值解。
从概念上讲,一个数值方法从一个初始点开始,然后在时间上向前迈出一小步,找到下一个解点。
该过程以后的步骤来绘制解决方案。
单步方法(如欧拉方法)只指一个前一点及其导数来确定当前值。
诸如Runge-Kutta的方法采取一些中间步骤(例如,半步)来获得更高阶的方法,但是在进行第二步之前丢弃所有先前的信息。
多步法尝试通过保留和使用先前步骤的信息而不是丢弃它来提高效率。
因此,多步法是指前几个点和导数值。
在多步法的情况下,使用先前点和导数值的线性组合。