通俗易懂讲解MOS管
- 格式:docx
- 大小:592.61 KB
- 文档页数:23
MOS管使用详解MOS管,即金属氧化物半导体场效应晶体管(MOSFET),是一种常见的半导体器件,被广泛应用于电子和电力领域。
它具有快速开关速度、低功耗、低电压操作和压阻性质等独特的特点,适用于大功率电子开关、放大和模拟电路。
MOS管由沟道、源极和漏极组成。
其关键部分是氧化物层,它与金属门电极形成电容,控制沟道的电导性。
当施加正电压到门电极时,形成的电场向下压缩氧化层,使得沟道导电性增加。
通过改变门电极电压可以调节沟道的导电性,实现对信号的放大、开关和反向操作。
MOS管主要有两种类型:增强型MOSFET(enhancement-mode MOSFET)和耗尽型MOSFET(depletion-mode MOSFET)。
增强型MOSFET的沟道在零偏压下不存在,需要通过施加电压才能形成,所以它的开关特性更加理想。
而耗尽型MOSFET的沟道在零偏压下存在,需要施加负电压来消除导通,所以它开关特性相对较差。
MOS管的特点在于其高电压驱动能力和低控制电流。
它有能量转换效率高、噪声低、体积小等优点。
此外,MOS管的开关速度快,因此在高频应用和功率放大器中被广泛使用。
MOS管的应用有很多,其中包括功率放大器、交流转直流电源、逆变器、开关电源等。
在功率放大器中,MOS管可以通过改变门电极电压来控制其输出电流。
在交流转直流电源中,MOS管可以作为整流器和开关器件,在高效率和低功耗方面具有优势。
在逆变器中,MOS管可以将直流电能转换为交流电能,并且能够实现频率和幅度的调整。
在开关电源中,MOS管具有较低的开关损耗和温升,可以提高系统效率和可靠性。
MOS管的性能可以通过工艺技术的改进得到进一步提升。
例如,改变材料的结构和组成,可以改善电子迁移率和热传导性能。
此外,改变氧化层的厚度和材料可以调节电容和开关速度。
同时,MOS管的尺寸的缩小也能够提高其集成度和开关速度。
总结起来,MOS管作为一种重要的半导体器件,具有许多优点和广泛的应用。
简单阐述mos管的工作原理
MOS管全称金属氧化物半导体场效应管,是一种重要的电子器件。
它是由金属、氧化物和半导体三部分组成的。
其工作原理基于半导体中
的电子与空穴的运动以及静电场的控制。
在MOS管中,金属层起到一个电极的作用,同时与氧化层形成一种
取代原生半导体的薄膜。
在半导体中间,通过一个控制电极,可以在
金属和基底之间产生一个静电场,从而控制电子流的大小和流向。
这
个控制电极是由一些掺杂了杂质的区域构成的,这就意味着它的电性
能被改变了。
当控制电极上加上一个电压时,就会形成一个电场,通
过这个电场可以影响基底和有氧化物薄膜的金属电场的大小和位置。
当电场非常高时,将会扭曲氧化物薄膜,从而形成新的小的导电通路。
这个通路能够改变基底上的电子流,并且从输出电极流过。
MOS管的主要工作原理是静电场控制电子的运动。
它的输出电流是可以通过调节控制电极上的电压来控制的。
当电压非常低的时候,MOS
管不会导电,当电压变高时,就会形成低电阻的区域,从而形成一个
输出通路。
在这个范围内,输出电流可以通过控制电极上的电压来限
制并且改变。
所以,MOS管可以用作电子开关或者放大器。
总之,MOS管是一种重要的电子器件,它的工作原理基于半导体中电
子和空穴的运动以及静电场的控制。
在MOS管中,控制电极可以通过改变静电场来控制电子运动和输出。
这种原理可以用于电子开关和放大器等领域。
MOS管介绍解读MOS管是一种双极性场效应晶体管(FET),也称为MOSFET(金属-氧化物-半导体场效应晶体管)。
它是一种由金属层、氧化物层和半导体层构成的晶体管。
MOS管被广泛用于数字电路、模拟电路和功率放大器等应用中,因为它具有很高的开关速度、较低的功耗和较高的承受电压能力。
MOS管的工作原理是通过控制栅极电压来控制电流的流动。
当栅极电压为零时,MOS管处于关闭状态,没有电流流过。
当栅极电压增加到临界值以上时,MOS管进入开启状态,允许电流流过。
MOS管的导电能力主要取决于栅极电压与漏极电压之间的差异。
当栅极电压较高时,MOS管的导电性较好,电流流过的能力较大。
相反,当栅极电压较低时,MOS管的导电性较差,电流流过的能力较小。
MOS管有两种类型,分别是N沟道MOS管和P沟道MOS管。
它们的区别在于所使用的材料类型和电流流动方向。
N沟道MOS管使用N型半导体材料构成,通过负栅极电压来控制正电流的流动。
P沟道MOS管使用P型半导体材料构成,通过正栅极电压来控制负电流的流动。
这两种类型的MOS管可以用于不同的应用中,具体选择取决于电路设计和所需的电流极性。
与其他晶体管相比,MOS管具有许多优势。
首先,MOS管的开关速度较快,可以实现高频率的信号放大和处理。
其次,MOS管的功耗较低,因为它只需要很小的电压来控制电流流动。
此外,MOS管可以承受较高的电压,使其适用于高功率应用。
另外,MOS管具有良好的线性特性和温度稳定性,可以在不同的工作条件下提供稳定的性能。
MOS管还有一些应用注意事项。
首先,由于MOS管是压阻性器件,它的输入特性受到栅极电容的影响。
因此,在高频应用中,需要注意匹配负载和输入电容,以避免信号衰减和失真。
其次,MOS管还有最大额定电压和最大额定电流。
在设计电路时,需要确保不超过这些限制,以防止损坏MOS管。
最后,MOS管的工作温度范围也需要考虑,因为过高或过低的温度可能会影响性能和寿命。
mos管的认识摩尔管,又称场效应晶体管,是一种基础的电子元器件。
它由三个区域构成,即源、漏和栅。
通过调节栅极电压,可以控制源极到漏极的电流。
摩尔管被广泛地应用于模拟电路、数字电路、电源电路等各种场合中。
步骤一:mos管构造mos管由P型或N型硅晶体、氧化物、金属等组成。
它的结构分为两类,即N沟道型(N-MOS)和P沟道型(P-MOS)。
N-MOS的结构为,将两个N型硅材料隔开一层氧化物(SiO2),在其中夹一根M金属线(栅极),并分别与两个端口(边)形成两个不同的区域(浅掺杂N型硅和深掺杂N型硅)。
其中深掺杂N型硅为漏极,浅掺杂N型硅为源极。
栅极和源极之间的部分称为通道区,栅极调节通道区宽度,以控制漏极到源极的电流大小。
P-MOS的结构为,在N-MOS的基础上,将掺硼P型硅材料加入两个不同区域。
从而形成浅掺杂P型硅和深掺杂P型硅。
步骤二:mos管优点mos管具有如下优点:1. 体积小,功耗低:mos管结构简单,器件尺寸缩小,能够降低功耗,同时增加器件集成度。
2. 工作可靠:mos管工作稳定,不易受到外界干扰和噪声的影响,因此其工作可靠性高。
3. 工艺成熟:mos管制造工艺成熟,能够保证器件的品质和精度。
4. 控制电效应优秀:mos管控制电效应好,可灵活调节电阻值,具有良好的线性特性。
步骤三:mos管应用mos管有着广泛的应用,主要应用于以下领域:1. 模拟电路:mos管可作为放大器、滤波器、振荡器等模拟电路中的关键元器件。
2. 数字电路:mos管可作为逻辑门电路中的关键元器件,如与门、或门、非门等逻辑门电路。
3. 电源电路:mos管可作为开关电源、反激式变换器、DC-DC变换器等电源电路的关键元器件。
总之,mos管是一种十分重要的电子元器件,被广泛地应用于各种领域中。
它的简单结构、低功耗、工作可靠等优点,使得它在电子行业中具有非常重要的地位。
MOS管工作原理详细讲解MOS管,即金属-氧化物-半导体场效应晶体管,是一种重要的电子器件,广泛应用于各种电路中。
其工作原理是利用金属-氧化物-半导体的结构来实现电流的控制和放大。
MOS管的结构包括:金属基片、氧化层和半导体层。
金属基片作为整个晶体管的主要载流子通道,氧化层用于隔离金属基片和半导体层,同时承受着场效应电路中的控制电压,半导体层作为控制电压的接收器。
MOS管的工作原理可以分为三个阶段:截止区、增强区和饱和区。
在截止区,当MOS管的栅电压低于阈值电压时,没有足够的电子进入沟道区域,电子通路被截断,无法形成导电通路,MOS管的电阻十分高,相当于一个断路,电流几乎为零。
当栅电压高于阈值电压时,MOS管进入增强区。
在这个区域,随着栅电压的增加,沟道中的自由电子越来越多,电子通路逐渐形成,电阻也开始降低。
当达到一定的栅电压时,电阻达到最小值,此时沟道已经完全形成,MOS管可导通大量电流。
随着栅电压的继续增加,MOS管进入饱和区。
在这个区域,增加栅电压不再能够显著改变沟道中自由电子的浓度,电流基本保持不变,此时MOS管的电阻达到最小值。
可以将饱和区看作是增强区的延伸,两者没有明显的分界线。
通过调节栅电压,可以实现对MOS管的控制。
当栅电压低于阈值电压时,MOS管截止,没有电流通过;当栅电压高于阈值电压时,沟道中的电子浓度与栅电压成正比,电流通过MOS管;当栅电压进一步增大,MOS管进入饱和区,电流几乎不再增加。
MOS管具有许多优点,如高输入电阻、低功耗、噪声小、电压增益高等,因此得到了广泛的应用。
在数字电路中,MOS管被用作开关,可以实现逻辑门的功能;在模拟电路中,MOS管可以作为电流放大器使用;同时,MOS管还可以用于制作存储器、微处理器、操作放大器等各种集成电路。
总之,MOS管的工作原理是通过控制栅电压来改变沟道中自由电子的浓度,从而实现电流的控制和放大。
通过调节栅电压,可以使MOS管处于截止、增强或饱和区,实现不同的电路功能。
MOS管的解析第一部分:介绍MOS管金属-氧化物-半导体场效应晶体管,通常称为MOS管,是一种关键的半导体器件,广泛应用于电子领域。
它在现代电子设备和集成电路中扮演着至关重要的角色。
为了更深入理解MOS管,我们将逐步探讨其结构、工作原理和应用领域。
1.1 结构MOS管通常由金属、氧化物和半导体材料构成。
其基本结构包括两个金属电极,分别被称为源极和漏极,它们与半导体材料之间通过一个绝缘层,即氧化物层,相隔开。
这个结构创造了一个场效应晶体管,通过改变栅极电压,可以控制源极和漏极之间的电流。
1.2 工作原理MOS管的工作原理基于栅极电压的控制。
当栅极施加正电压时,在氧化物层下形成一个电场,将半导体材料中的载流子排斥或吸引到接近漏极或源极的区域。
这种电场效应导致通道的形成或截断,从而控制了电流的流动。
MOS管有两种主要类型:N沟道MOS(NMOS)和P沟道MOS(PMOS),它们分别使用不同的载流子类型。
第二部分:MOS管的应用领域MOS管作为一种强大的电子器件,被广泛用于各种应用领域。
以下是一些主要领域的应用示例:2.1 集成电路MOS管在集成电路(ICs)中扮演着关键的角色。
ICs是现代电子设备的基础,包括计算机、智能手机、芯片卡等。
MOS管的微小尺寸和低功耗特性使其成为高度集成电路的理想选择。
2.2 数模转换MOS管用于模拟信号的数字到模拟转换(ADC)和模拟到数字转换(DAC)。
这些应用包括音频处理、通信系统和传感器技术。
2.3 逻辑电路MOS管用于数字逻辑电路,如门电路、触发器和寄存器。
它们用于执行各种计算和控制任务,是计算机处理和存储信息的核心。
2.4 放大器MOS管也被用作放大器,用于放大电信号,例如音频和射频信号。
这些放大器在音响系统、通信设备和射频通信中发挥着重要作用。
2.5 电源管理MOS管在电源管理电路中用于调整电压和电流,以满足不同设备的电能需求。
这对于延长电池寿命和提高设备效率至关重要。
MOS管基本认识(快速入门)1、三个极的判定:G极(gate)—栅极,不用说比较好认。
S极(source)—源极,不论是P沟道还是N沟道,两根线相交的就是。
D极(drain)—漏极,不论是P沟道还是N沟道,是单独引线的那边。
2. N沟道与P沟道判别:箭头指向G极的是N沟道;箭头背向G极的是P沟道。
3. 寄生二极管方向判定:不论N沟道还是P沟道MOS管,中间衬底箭头方向和寄生二极管的箭头方向总是一致的:要么都由S指向D,要么都有D指向S。
4. MOS开关实现的功能1>信号切换;2>电压通断。
5. MOS管用作开关时在电路中的连接方法关键点:1>确定那一极连接输入端,那一极连接输出端2>控制极电平为?V 时MOS管导通3>控制极电平为?V 时MOS管截止NMOS:D极接输入,S极接输出PMOS:S极接输入,D极接输出反证法加强理解NMOS假如:S接输入,D接输出由于寄生二极管直接导通,因此S极电压可以无条件到D极,MOS管就失去了开关的作用。
PMOS假如:D接输入,S接输出同样失去了开关的作用。
6. MOS管的开关条件N沟道—导通时Ug> Us,Ugs> Ugs(th)时导通P沟道—导通时Ug< Us,Ugs< Ugs(th)时导通总之,导通条件:|Ugs|>|Ugs(th)|7. 相关概念BJT :Bipolar Junction Transistor 双极性晶体管,BJT是电流控制器件;FET :Field Effect Transistor 场效应晶体管,FET是电压控制器件. 按结构场效应管分为:结型场效应(简称JFET)、绝缘栅场效应(简称MOSFET)两大类按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种.按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
总的来说场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应。
mos管或电路MOS管,即金属氧化物半导体场效应晶体管,是一种常用的半导体器件,常用于集成电路中。
MOS管的工作原理是通过调节栅极电压来控制导通沟道的电阻,从而实现信号的放大、开关和放大等功能。
下面将详细介绍MOS管的结构、工作原理和应用。
MOS管的结构包括源极、漏极和栅极三个部分。
源极和漏极之间通过氧化物绝缘层隔开,栅极则通过栅极氧化层与沟道相隔开。
当在栅极上加上正电压时,栅极下方的沟道会形成导通通道,从而使源极和漏极之间产生导通。
当栅极上的电压变化时,沟道的导电性也会相应变化,实现对电流的调节。
MOS管的工作原理是基于场效应的调控。
栅极上的电压改变了栅极下方的场强,从而改变了沟道的导电性。
当栅极电压为正时,沟道导通,电流从源极流向漏极,此时MOS管处于导通状态。
而当栅极电压为零或负时,沟道的导电性减弱或消失,电流无法通过,MOS管处于截止状态。
通过调节栅极电压,可以实现对电流的精确控制,从而实现放大、开关和放大等功能。
MOS管在集成电路中有着广泛的应用。
作为场效应晶体管的一种,MOS管可以用于数字电路、模拟电路和混合电路中。
在数字电路中,MOS管可用作开关,实现逻辑门的功能;在模拟电路中,MOS管可用作放大器,实现信号的放大和处理;在混合电路中,MOS管既可以用于数字信号处理,又可以用于模拟信号处理,实现电路的多功能集成。
总的来说,MOS管作为一种常用的半导体器件,具有结构简单、工作稳定和应用广泛的特点。
通过对栅极电压的调节,可以实现对电流的精确控制,从而实现各种电路功能的实现。
在未来的发展中,MOS管将继续发挥重要作用,推动集成电路的不断进步。
MOS管工作原理讲解MOS管,即金属-氧化物-半导体场效应管,是一种常见的场效应晶体管(FET)。
它由金属源极、漏极和栅极三个主要部分组成。
MOS管的工作原理是通过改变栅极电压来控制漏极电流。
MOS管的核心部分是氧化层,它位于金属栅极和半导体基底之间。
氧化层是一种绝缘体材料,通常使用二氧化硅(SiO2)。
当栅极施加电压时,该电压通过氧化层作用于半导体基底,形成一个电场。
当栅极电压较低时,栅极电场不足以影响基底中的电子状态。
此时,基底中的电子自由地从源极向漏极漂移,形成漏极电流。
这种情况下,MOS管处于开启状态,漏极电流的大小由源极-漏极之间的电压及基底材料的特性决定。
当栅极电压较高时,栅极电场能够将氧化层下面的基底区域形成一个以栅极为中心的高电子浓度区域,称为沟道区。
这个区域的电子会形成一个导电通道,使得源极和漏极之间形成导电路径。
此时,MOS管处于导通状态,漏极电流较大。
因此,MOS管的导通状态是由栅极电压决定的。
较高的栅极电压会形成更强的电场,进一步增强沟道区的导电能力,从而导致更大的漏极电流。
反之,较低的栅极电压会减小沟道区的导电能力,导致漏极电流减小或完全阻断。
MOS管的工作原理还与栅极与基底之间的接触结构和栅极材料的性质相关。
栅极与基底之间的接触结构对栅极电场的传递、氧化层的质量和沟道区的形成都起着重要的作用。
另外,栅极材料的选择也会影响MOS管的性能。
金属栅极常用的材料有铝、铬等,而高性能MOS管常使用聚硅藻酸酯或多晶硅等材料作为栅极。
需要注意的是,MOS管具有极高的输入电阻,即栅极与基底之间的氧化层能够有效隔离电流,从而减小输入电流。
这使得MOS管在集成电路中具有广泛应用。
由于MOS管工作原理的特性,它可以用于模拟和数字电路,包括放大器、开关电路、时钟驱动器等。
综上所述,MOS管通过改变栅极电压来控制漏极电流。
栅极电场能够在氧化层下形成一个导电通道,使得源极和漏极之间形成导电路径,从而实现MOS管的导通。
MOS管工作原理详细讲解MOS管(Metal–Oxide–Semiconductor Field-Effect Transistor,金属-氧化物-半导体场效应晶体管)是一种重要的电子器件,广泛应用于电子领域中。
它采用了金属-氧化物-半导体结构,具有高度的集成度、低功耗和快速开关速度等优点。
下面将详细讲解MOS管的工作原理。
MOS管的结构一般由P型或N型半导体基底、N型或P型沟道、金属栅极和绝缘层构成。
基底扮演着支撑的作用,而绝缘层则用于隔离栅极和沟道之间,通常是用氧化硅(SiO2)材料制备。
当栅极施加正电压时,栅极和沟道之间会形成一个电场。
根据栅极电压的不同,MOS管可以工作在三种模式下:截止区、线性区和饱和区。
1.截止区:在截止区,栅极电压低于沟道引起的阈值电压。
此时,沟道中的电子和空穴不能形成导电通道。
整个沟道的电阻非常大,电流基本上是不流动的。
MOS管处于截止状态,不导电。
2.线性区:当栅极电压高于阈值电压时,沟道中的电子和空穴被弯曲,形成了一个导电通道。
这个导电通道具有可变电阻,称为沟道电阻。
当在沟道两端施加一个电压时,电流会通过沟道流过。
此时,MOS管处于线性状态,电流与电压成正比。
3.饱和区:当栅极电压继续增加,逐渐超过了一定的阈值电压,并且沟道已经完全形成。
这时,栅极电场已经无法影响到沟道中的电子和空穴。
电流的增长不再与栅极电压相关。
MOS管处于饱和状态,电流基本上保持不变,称为饱和电流。
MOS管的控制是通过栅极电压来实现的。
当栅极电压变化时,会引起沟道的电压和电流的变化。
MOS管的沟道电流与栅极电压的平方成正比。
因此,可以通过改变栅极电压来控制电流的大小。
MOS管的开关速度非常快,因为它的结构中不包含PN接头和载流子的注入。
当栅极电压施加或者移除时,沟道不会存在大量的载流子重新注入或排出的时间延迟。
这种快速的开关速度使得MOS管在高频率应用中表现出色。
另外,MOS管还具有低功率消耗的特点。
MOS管的原理及应用1. MOS管的原理MOS(Metal-Oxide-Semiconductor)管是一种采用金属-氧化物-半导体结构的场效应晶体管。
它由源(Source)、漏(Drain)和栅极(Gate)三个主要区域组成。
MOS管的原理是利用栅极施加的电压来控制源漏间的电流。
当栅极电压改变时,MOS管中的电子流动会受到影响,从而改变了源漏间的电阻。
MOS管的原理主要分为两种模式:MOS导通模式和MOS截止模式。
在MOS导通模式下,栅极与源漏间施加正电压,电子被吸引到氧化层下方形成电子气体,从而导电。
而在MOS截止模式下,栅极与源漏间施加反电压,形成电子空隙,阻止电流流动。
2. MOS管的应用MOS管广泛应用于各个领域,包括电子、通信、自动化等。
以下是MOS管在不同应用中的一些典型的应用示例:2.1 电子领域•功率放大器:MOS管可以作为功率放大器使用,用于音频放大、射频放大等电子设备中。
它可以放大电信号,提高电路的输出功率。
•开关电路:MOS管在电路中可以用作开关,可以实现电路的开关控制。
通过控制栅极电压的变化,可以使MOS管在导通和截止状态之间切换,实现电路的开关功能。
2.2 通信领域•射频电路:MOS管在射频电路中常被用作放大器、振荡器等功能元件。
它能够提供高频的放大和振荡功能,用于无线通信设备、卫星通信等领域。
•功率放大器:MOS管在通信领域也广泛应用于功率放大器。
功率放大器可以将低功率信号放大到较高功率,用于无线电台、雷达等设备中。
2.3 自动化领域•电路控制器:MOS管可以用于构建电路控制器,用于控制电路的启动、停止和调节等功能。
例如,MOS管可以用于PWM(Pulse WidthModulation)控制器,实现对电机速度的精确控制。
•开关电源:MOS管在开关电源中起到关键作用,它可以控制电源的开关状态,实现电源的高效、稳定输出。
开关电源广泛应用于各种电子设备,如计算机、通信设备、工控设备等。
MOS管原理应用非常详细MOS管(Metal-Oxide-Semiconductor Transistor)是一种常见的场效应晶体管,它在现代电子设备中被广泛应用。
MOS管的原理和应用非常重要,下面将详细介绍。
首先,我们来了解MOS管的基本原理。
MOS管由源极、栅极和漏极组成,其中栅极之下有一层绝缘层,称为栅介质(通常是氧化硅)。
MOS管是一种可以控制电流流动的电子器件,它的工作原理基于电场效应。
当在栅极上施加电压时,电场会影响通道区域中的电荷分布,从而改变电流的流动情况。
MOS管有两种常见类型:N沟道型(NMOS)和P沟道型(PMOS)。
它们的区别在于控制电流的电压极性,NMOS电流通过正电压的栅极控制,而PMOS则通过负电压的栅极控制。
两者的原理基本相同,只是材料的类型和电压的极性不同。
MOS管的应用非常广泛。
它被用于构建数字集成电路,如微处理器、存储器和逻辑门电路等。
MOS管能够实现高速开关操作,并可以提供稳定可靠的放大功能。
此外,MOS管还可以用于调节电压和电流,被广泛应用于功率放大器、电源调节器、振荡器和滤波器等电路中。
MOS管的原理和应用有三个重要方面需要注意。
首先是栅极控制效应。
栅极电压的变化可以引起电荷区域的改变,从而影响电流的流动。
这个效应使得MOS管可以被用作电压放大器和开关。
其次是负反馈效应。
负反馈是一种控制输入和输出之间关系的技术,可以提高系统的稳定性和线性度。
由于MOS管具有高输入阻抗和低输出阻抗,它可以有效实现负反馈,从而提高信号放大的性能。
最后是温度效应。
MOS管的性能会随温度的变化而发生变化,因此在设计电路时需要考虑温度补偿以保证电路的可靠性和稳定性。
总之,MOS管是一种基于电场效应的电子器件,可以被用于构建数字集成电路以及各种类型的电路。
MOS管的原理和应用非常重要,它可以用来控制电流流动、实现信号放大和负反馈,同时还需要考虑温度补偿以确保电路的稳定性。
理解MOS管的原理和应用对于理解和设计现代电子设备至关重要。
一文详解MOS管,看完后醍醐灌顶!MOS管学名是场效应管,是金属-氧化物-半导体型场效应管,属于绝缘栅型。
本文就结构构造、特点、实用电路等几个方面用工程师的话简单描述。
其结构示意图:解释1:沟道上面图中,下边的p型中间一个窄长条就是沟道,使得左右两块P 型极连在一起,因此mos管导通后是电阻特性,因此它的一个重要参数就是导通电阻,选用mos管必须清楚这个参数是否符合需求。
解释2:n型上图表示的是p型mos管,读者可以依据此图理解n型的,都是反过来即可。
因此,不难理解,n型的如图在栅极加正压会导致导通,而p型的相反。
解释3:增强型相对于耗尽型,增强型是通过“加厚”导电沟道的厚度来导通,如图。
栅极电压越低,则p型源、漏极的正离子就越靠近中间,n衬底的负离子就越远离栅极,栅极电压达到一个值,叫阀值或坎压时,由p型游离出来的正离子连在一起,形成通道,就是图示效果。
因此,容易理解,栅极电压必须低到一定程度才能导通,电压越低,通道越厚,导通电阻越小。
由于电场的强度与距离平方成正比,因此,电场强到一定程度之后,电压下降引起的沟道加厚就不明显了,也是因为n 型负离子的“退让”是越来越难的。
耗尽型的是事先做出一个导通层,用栅极来加厚或者减薄来控制源漏的导通。
但这种管子一般不生产,在市面基本见不到。
所以,大家平时说mos管,就默认是增强型的。
解释4:左右对称图示左右是对称的,难免会有人问怎么区分源极和漏极呢?其实原理上,源极和漏极确实是对称的,是不区分的。
但在实际应用中,厂家一般在源极和漏极之间连接一个二极管,起保护作用,正是这个二极管决定了源极和漏极,这样,封装也就固定了,便于实用。
我的老师年轻时用过不带二极管的mos管。
非常容易被静电击穿,平时要放在铁质罐子里,它的源极和漏极就是随便接。
解释5:金属氧化物膜图中有指示,这个膜是绝缘的,用来电气隔离,使得栅极只能形成电场,不能通过直流电,因此是用电压控制的。
在直流电气上,栅极和源漏极是断路。
MOS管工作原理详解MOS(Metal-Oxide-Semiconductor)管也称为金属-氧化物-半导体管,是一种重要的电子器件,在现代集成电路中广泛应用。
它的工作原理是基于电场效应,通过控制栅极电压来控制导电性能。
下面将详细解释MOS管的工作原理。
在MOS管中,通过控制栅极电压来控制电流的通断。
当栅极电压为零时,氧化物层中的电场较弱,因此自由电子无法足够获得击穿氧化物层所需的能量,电流无法通过。
这种状态称为截止状态。
当栅极加正电压时,形成高电场区域,自由电子足够获得击穿氧化物层的能量,电流可以通过,这种状态称为开启状态。
栅极电压对MOS管的导电性能有很大影响。
当栅极电压较低时,电场较弱,电流很小,MOS管处于截止状态。
当栅极电压达到其中一阈值电压(Threshold Voltage)时,电流迅速增大,MOS管开始工作。
此时,栅极电压与体层电压之差称为栅源电压(Gate-Source Voltage),可以看做是控制信号。
通过改变栅源电压的大小,可以控制MOS管的导通与截止。
在MOS管中,还有一个重要的参数是漏极源极电压(Drain-Source Voltage),简称VDS。
当VDS较小,即漏极电压较小时,MOS管工作在线性区,此时输出电流与输入电压呈线性关系。
当VDS增大到一定值时,MOS管会发生击穿效应,出现势垒穿越现象,电流大幅度增加,此时MOS管工作在饱和区,输出电流与输入电压不再呈线性关系。
MOS管广泛应用于各种电子器件中,如反应堆、CMOS集成电路、逻辑门电路等。
它具有耗电低、噪声低、可靠性高、速度快等优点,适合于集成电路设计。
总之,MOS管的工作原理是基于电场效应,通过控制栅极电压来控制电流通断。
当栅极电压较低时,MOS管处于截止状态;当栅极电压较高时,MOS管处于开启状态。
MOS管在各种电子器件中发挥重要作用,已经成为现代电子技术的关键组成部分。
1. 二极管--PN结PN结二极管是半导体的分析的最小单位。
P型半导体通过掺杂,会带有大量的空穴,可以填充电子。
N型半导体,则带有更多的活跃电子。
我们先了解一下仅含有一个P—N结的二极管的工作过程。
当在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。
这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。
同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。
2. MOSFET工作原理MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
这里我们以增强型MOS为例分析。
场效应管是由源极,漏极,栅极组成,由于衬底的掺杂不同可分为N沟道和P沟道场效应管。
(沟道:顾名思义就是在衬底上挖两个可填充沟道,填充N型或者P型半导体)我们将漏极接到电源正极,源极接到电源负极。
对于场效应管,在栅极没有电压时,源极和漏极之间相当于两个背靠背的二极管,不会有电流流过,此时场效应管处与截止状态。
如上面右图所示,当在栅极加上电压时,当电压小于一个阈值VGS(th)时,栅极和衬底P之间会由于电场的作用,将P型半导体中的空穴推开,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中。
随着栅极电压的增大,栅极附近的电子浓度会增加。
当超过一个阈值VGS(th)时,在源极和漏极之间的N型半导体会形成一个电子沟道。
同时此时由于漏极加有正电压,就可以形成漏极到源极的电流,MOS管导通。
MOS管工作原理,就是这么简单来源:华强电子网作者:华仔浏览:41980时间:2019-05-10 17:251. MOS管工作原理--MOS管简介MOS管,即在集成电路中绝缘性场效应管。
MOS英文全称为Metal-Oxide-Semiconductor即金属-氧化物-半导体,确切的说,这个名字描述了集成电路中MOS管的结构,即:在一定结构的半导体器件上,加上二氧化硅和金属,形成栅极。
MOS管的source和drain是可以对调的,都是在P型backgate中形成的N型区。
在多数情况下,两个区是一样的,即使两端对调也不会影响器件的性能,这样的器件被认为是对称的。
2. MOS管工作原理--Mos管的结构特点MOS管的内部结构如下图所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。
导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET,大大提高了MOSFET器件的耐压和耐电流能力。
其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻,该管导通时在两个高浓度n扩散区间形成n型导电沟道。
n沟道增强型MOS管必须在栅极上施加正向偏压,且只有栅源电压大于阈值电压时才有导电沟道产生的n沟道MOS 管。
n沟道耗尽型MOS管是指在不加栅压(栅源电压为零)时,就有导电沟道产生的n沟道MOS管。
3. MOS管工作原理--MOS管的特性3.1MOS管的输入、输出特性对于共源极接法的电路,源极和衬底之间被二氧化硅绝缘层隔离,所以栅极电流为0。
当VGS3.2MOS管的导通特性MOS管作为开关元件,同样是工作在截止或导通两种状态。
由于MOS管是电压控制元件,所以主要由栅源电压uGS决定其工作状态。
下面以NMOS管为例介绍其特性。
图(a)为由NMOS增强型管构成的开关电路。
NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。
MOS管工作原理详细讲解
MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)是一种常见的场
效应晶体管,其工作原理可以分为三个主要部份:栅极控制、沟道形成和电流传输。
1. 栅极控制:MOS管的栅极是通过栅极电压来控制沟道中的电流流动。
当栅
极电压为零时,沟道中没有电流流动,即处于截止状态。
当栅极电压增加到临界电压(阈值电压)以上时,栅极和沟道之间的氧化物层下形成一个正负电荷分布,这个电荷分布会在栅极电场的作用下改变沟道的导电性质。
栅极电压越高,沟道的导电性越好,电流流动越大。
2. 沟道形成:当栅极电压高于阈值电压时,沟道中会形成一个导电通道,这个
通道是由沟道区的材料(通常是n型或者p型半导体)构成的。
沟道的导电性质由栅极电压决定,当栅极电压高于阈值电压时,沟道的导电性会增强,而当栅极电压低于阈值电压时,沟道的导电性会减弱或者消失。
3. 电流传输:当沟道形成后,源极和漏极之间就可以传输电流了。
当漏极施加
一个较高的电压时,电子会从源极进入沟道并流向漏极,形成漏极电流。
这个电流的大小取决于沟道的导电性质和源漏电压之间的差异。
当源漏电压增加时,电流也会随之增加。
总结起来,MOS管的工作原理是通过栅极电压控制沟道的导电性质,从而控
制源漏之间的电流传输。
栅极电压高于阈值电压时,沟道形成并导电;栅极电压低于阈值电压时,沟道消失并截止电流。
这种栅极控制的特性使得MOS管在集成电
路中广泛应用。
MOS管原理_非常详细MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)是一种非常重要的电子器件,它是现代集成电路中的关键元件之一、MOS管采用了金属-氧化物-半导体结构,利用半导体材料中的电子和空穴的输运特性来控制当前的流动。
下面我们将详细介绍MOS管的工作原理。
MOS管的基本结构由金属的栅极、氧化物层和半导体的沟道构成。
金属栅极被用于施加电场,从而控制沟道中的电荷输运。
沟道由n型或p型半导体构成,半导体的特性决定了MOS管的导电性。
氧化物层作为电介质层,将栅极与沟道隔离,防止电流直接流过。
在MOS管的工作过程中,我们可以分为两个主要阶段:堆积和耗尽状态。
在堆积状态下,当沟道是n型半导体时,金属栅极施加正电荷。
由于金属栅极上的正电荷,沟道中的电子会被排斥,这样就形成了p型的堆积层。
由于堆积层是由正荷电子组成的,所以堆积层呈现n型的导电性质。
在耗尽状态下,金属栅极施加负电荷。
由于金属栅极上的负电荷,沟道中的电子会被吸引,堆积层中的电子会被逐渐排斥,从而导致沟道中的电荷无法传输。
这样,沟道就形成了一个耗尽层。
在耗尽层下方的半导体中,由于缺少了导电的电子,所以出现了一个空穴层,这使得整个区域呈现p型的特性。
通过改变金属栅极施加的电场,我们可以控制沟道中电子和空穴的传输。
当沟道中的电荷处于堆积状态时,电流能够顺利通过MOS管。
而当沟道中的电荷处于耗尽状态时,电流将被阻断。
MOS管的工作原理还涉及一些参数,比如跨导(transconductance)、迁移率(mobility)和截止频率(cut-off frequency)。
跨导指的是栅极电压与漏极电流之间的关系,它决定了MOS管的放大能力。
迁移率是指电子或空穴在半导体中的迁移速率,它反映了MOS管的导电特性。
截止频率是指在高频情况下,MOS管的工作频率上限。
总结一下,MOS管是一种采用金属-氧化物-半导体结构的电子器件,它利用电场控制沟道中的电子和空穴的传输。
对mos管的理解
MOS管,即金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor),是现代电子学中最基本的器件之一。
它的工作原理主要是利用金属门电极和半导体材料之间的金属氧化物绝缘层,通过施加控制电压来控制导体中的电荷运动,从而实现器件的开关控制。
MOS管由源、漏、栅极及绝缘层组成,通过在栅极处施加电压来改变绝缘层上的电子密度,控制漏极上的电流流动情况,从而实现器件的开关控制。
与传统的晶体管相比,MOS管有以下几个优点:
首先,在静态功耗方面,MOS管由于其绝缘层的存在,使得栅极与源漏之间不存在直接导通,因此在器件处于停止工作状态时,耗电量极小。
其次,MOS管的制造工艺相对简单,成本较低,因此得到广泛应用。
同时,相对于其他类型的场效应晶体管,MOS管的电容比较小,响应速度较快,可以应用于高速开关控制和放大器等领域。
然而,MOS管也存在一些缺点。
首先,栅极电压范围受到限制,电压过高或过低都会导致器件失效。
其次,由于绝缘层的存在,MOS管的
漏电流较大,这会使得器件的失真率增大,不利于信号质量的保持。
此外,MOS管在高功率、高频率等特殊条件下也存在一些限制。
综合来看,MOS管是一种基本的场效应晶体管,具有广泛的应用前景。
当前,MOS管已经广泛应用于集成电路、功率放大器、开关电源、数字逻辑电路,甚至于计算机、通讯、航空等高科技领域。
随着科技的
不断进步,MOS管也会不断发展完善,为我们的生产和生活带来更多便利。
通俗易懂讲解MOS管什么是MOS管?MOS管的英文全称叫MOSFET(Metal Oxide Semiconductor Field Effect Transistor),即金属氧化物半导体型场效应管,属于场效应管中的绝缘栅型。
因此,MOS管有时被称为绝缘栅场效应管。
在一般电子电路中,MOS管通常被用于放大电路或开关电路。
1、MOS管的构造在一块掺杂浓度较低的P型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作为漏极D和源极S。
然后在漏极和源极之间的P型半导体表面复盖一层很薄的二氧化硅(Si02)绝缘层膜,在再这个绝缘层膜上装上一个铝电极,作为栅极G。
这就构成了一个N沟道(NPN型)增强型MOS管。
显然它的栅极和其它电极间是绝缘的。
图1-1所示 A 、B分别是它的结构图和代表符号。
同样用上述相同的方法在一块掺杂浓度较低的N型半导体硅衬底上,用半导体光刻、扩散工艺制作两个高掺杂浓度的P+区,及上述相同的栅极制作过程,就制成为一个P沟道(PNP型)增强型MOS 管。
下图所示分别是N沟道和P沟道MOS管道结构图和代表符号。
2、MOS管的工作原理增强型MOS管的漏极D和源极S之间有两个背靠背的PN结。
当栅-源电压VGS=0时,即使加上漏-源电压VDS,总有一个PN结处于反偏状态,漏-源极间没有导电沟道(没有电流流过),所以这时漏极电流ID=0。
此时若在栅-源极间加上正向电压,即VGS>0,则栅极和硅衬底之间的SiO2绝缘层中便产生一个栅极指向P型硅衬底的电场,由于氧化物层是绝缘的,栅极所加电压VGS无法形成电流,氧化物层的两边就形成了一个电容,VGS等效是对这个电容充电,并形成一个电场,随着VGS逐渐升高,受栅极正电压的吸引,在这个电容的另一边就聚集大量的电子并形成了一个从漏极到源极的N型导电沟道,当VGS大于管子的开启电压VT(一般约为 2V)时,N沟道管开始导通,形成漏极电流ID,我们把开始形成沟道时的栅-源极电压称为开启电压,一般用VT表示。
控制栅极电压VGS的大小改变了电场的强弱,就可以达到控制漏极电流ID的大小的目的,这也是MOS管用电场来控制电流的一个重要特点,所以也称之为场效应管。
3、MOS管的特性上述MOS管的工作原理中可以看出,MOS管的栅极G和源极S之间是绝缘的,由于Sio2绝缘层的存在,在栅极G和源极S之间等效是一个电容存在,电压VGS产生电场从而导致源极-漏极电流的产生。
此时的栅极电压VGS决定了漏极电流的大小,控制栅极电压VGS的大小就可以控制漏极电流ID的大小。
这就可以得出如下结论:1) MOS管是一个由改变电压来控制电流的器件,所以是电压器件。
2) MOS管道输入特性为容性特性,所以输入阻抗极高。
4、MOS管的电压极性和符号规则上图是N沟道MOS管的符号,图中D是漏极,S是源极,G是栅极,中间的箭头表示衬底,如果箭头向里表示是N沟道的MOS管,箭头向外表示是P沟道的MOS管。
在实际MOS管生产的过程中衬底在出厂前就和源极连接,所以在符号的规则中;表示衬底的箭头也必须和源极相连接,以区别漏极和源极。
上图是P沟道MOS管的符号。
MOS管应用电压的极性和我们普通的晶体三极管相同,N沟道的类似NPN晶体三极管,漏极D接正极,源极S接负极,栅极G正电压时导电沟道建立,N沟道MOS管开始工作。
同样P道的类似PNP晶体三极管,漏极D接负极,源极S接正极,栅极G负电压时,导电沟道建立,P沟道MOS管开始工作。
5、MOS管和晶体三极管相比的重要特性1) 场效应管的源极S、栅极G、漏极D分别对应于三极管的发射极e、基极b、集电极c,它们的作用相似。
2) 场效应管是电压控制电流器件,由VGS控制ID,普通的晶体三极管是电流控制电流器件,由IB控制IC。
MOS管道放大系数是(跨导gm)当栅极电压改变一伏时能引起漏极电流变化多少安培。
晶体三极管是电流放大系数(贝塔β)当基极电流改变一毫安时能引起集电极电流变化多少。
3) 场效应管栅极和其它电极是绝缘的,不产生电流;而三极管工作时基极电流IB决定集电极电流IC。
因此场效应管的输入电阻比三极管的输入电阻高的多。
4) 场效应管只有多数载流子参与导电;三极管有多数载流子和少数载流子两种载流子参与导电,因少数载流子浓度受温度、辐射等因素影响较大,所以场效应管比三极管的温度稳定性好。
5) 场效应管在源极未与衬底连在一起时,源极和漏极可以互换使用,且特性变化不大,而三极管的集电极与发射极互换使用时,其特性差异很大,b 值将减小很多。
6) 场效应管的噪声系数很小,在低噪声放大电路的输入级及要求信噪比较高的电路中要选用场效应管。
7) 场效应管和普通晶体三极管均可组成各种放大电路和开关电路,但是场效应管制造工艺简单,并且又具有普通晶体三极管不能比拟的优秀特性,在各种电路及应用中正逐步的取代普通晶体三极管,目前的大规模和超大规模集成电路中,已经广泛的采用场效应管。
6、在开关电源电路中,大功率MOS管和大功率晶体三极管相比MOS管的优点1) 输入阻抗高,驱动功率小——由于栅源之间是二氧化硅(SiO2)绝缘层,栅源之间的直流电阻基本上就是SiO2绝缘电阻,一般达100M Ω左右,交流输入阻抗基本上就是输入电容的容抗。
由于输入阻抗高,对激励信号不会产生压降,有电压就可以驱动,所以驱动功率极小(灵敏度高)。
一般的晶体三极管必需有基极电压Vb,再产生基极电流Ib,才能驱动集电极电流的产生。
晶体三极管的驱动是需要功率的(Vb×Ib)。
2) 开关速度快——MOSFET的开关速度和输入的容性特性的有很大关系,由于输入容性特性的存在,使开关的速度变慢,但是在作为开关运用时,可降低驱动电路内阻,加快开关速度(输入采用了后述的“灌流电路”驱动,加快了容性的充放电的时间)。
MOSFET只靠多子导电,不存在少子储存效应,因而关断过程非常迅速,开关时间在10—100ns之间,工作频率可达100kHz以上,普通的晶体三极管由于少数载流子的存储效应,使开关总有滞后现象,影响开关速度的提高(目前采用MOS管的开关电源其工作频率可以轻易的做到100K/S~150K/S,这对于普通的大功率晶体三极管来说是难以想象的)。
3) 无二次击穿——由于普通的功率晶体三极管具有当温度上升就会导致集电极电流上升(正的温度~电流特性)的现象,而集电极电流的上升又会导致温度进一步的上升,温度进一步的上升,更进一步的导致集电极电流的上升这一恶性循环。
而晶体三极管的耐压VCEO 随管温度升高是逐步下降,这就形成了管温继续上升、耐压继续下降最终导致晶体三极管的击穿,这是一种导致电视机开关电源管和行输出管损坏率占95%的破环性的热电击穿现象,也称为二次击穿现象。
MOS管具有和普通晶体三极管相反的温度~电流特性,即当管温度(或环境温度)上升时,沟道电流IDS反而下降。
例如;一只IDS=10A的MOS FET开关管,当VGS控制电压不变时,在250C温度下IDS=3A,当芯片温度升高为1000C时,IDS降低到2A,这种因温度上升而导致沟道电流IDS下降的负温度电流特性,使之不会产生恶性循环而热击穿。
也就是MOS管没有二次击穿现象,可见采用MOS管作为开关管,其开关管的损坏率大幅度的降低,近两年电视机开关电源采用MOS管代替过去的普通晶体三极管后,开关管损坏率大大降低也是一个极好的证明。
4) MOS管导通后其导通特性呈纯阻性——普通晶体三极管在饱和导通是,几乎是直通,有一个极低的压降,称为饱和压降,既然有一个压降,那么也就是;普通晶体三极管在饱和导通后等效是一个阻值极小的电阻,但是这个等效的电阻是一个非线性的电阻(电阻上的电压和流过的电流不能符合欧姆定律),而MOS管作为开关管应用,在饱和导通后也存在一个阻值极小的电阻,但是这个电阻等效一个线性电阻,其电阻的阻值和两端的电压降和流过的电流符合欧姆定律的关系,电流大压降就大,电流小压降就小,导通后既然等效是一个线性元件,线性元件就可以并联应用,当这样两个电阻并联在一起,就有一个自动电流平衡的作用,所以MOS管在一个管子功率不够的时候,可以多管并联应用,且不必另外增加平衡措施(非线性器件是不能直接并联应用的)。
MOS管和普通的晶体三极管相比,有以上四项优点,就足以使MOS 管在开关运用状态下完全取代普通的晶体三极管。
目前的技术MOS管道VDS能做到1000V,只能作为开关电源的开关管应用,随着制造工艺的不断进步,VDS的不断提高,取代显像管电视机的行输出管也是近期能实现的。
什么是灌流电路1、MOS管作为开关管应用的特殊驱动电路MOS管和普通晶体三极管相比,有诸多的优点,但是在作为大功率开关管应用时,由于MOS管具有的容性输入特性,MOS管的输入端,等于是一个小电容器,输入的开关激励信号,实际上是在对这个电容进行反复的充电、放电的过程,在充放电的过程中,使MOS管道导通和关闭产生了滞后,使“开”与“关”的过程变慢,这是开关元件不能允许的(功耗增加,烧坏开关管)。
压波形变成B的畸变波形,导致开关管不能正常开关工作而损坏,解决的方法就是,只要R足够的小,甚至没有阻值,激励信号能提供足够的电流,就能使等效电容迅速的充电、放电,这样MOS开关管就能迅速的“开”、“关”,保证了正常工作。
由于激励信号是有内阻的,信号的激励电流也是有限度,我们在作为开关管的MOS管的输入部分,增加一个减少内阻、增加激励电流的“灌流电路”来解决此问题,如下图所示。
上图中,在作为开关应用的MOS管Q3的栅极S和激励信号之间增加Q1、Q2两只开关管,此两只管均为普通的晶体三极管,两只管接成串联连接,Q1为NPN型Q2为PNP型,基极连接在一起(实际上是一个PNP、NPN互补的射极跟随器),两只管等效是两只在方波激励信号控制下轮流导通的开关,如下图A和B。
当激励方波信号的正半周来到时;晶体三极管Q1(NPN)导通、Q2(PNP)截止,VCC经过Q1导通对MOS开关管Q3的栅极充电,由于Q1是饱和导通,VCC等效是直接加到MOS管Q3的栅极,瞬间充电电流极大,充电时间极短,保证了MOS开关管Q3的迅速的“开”,如图A所示(图A和图B中的电容C为MOS管栅极S的等效电容)。
当激励方波信号的负半周来到时;晶体三极管Q1(NPN)截止、Q2(PNP)导通,MOS开关管Q3的栅极所充的电荷,经过Q2迅速放电,由于Q2是饱和导通,放电时间极短,保证了MOS开关管Q3的迅速的“关”,如上图B所示。
由于MOS管在制造工艺上栅极S的引线的电流容量有一定的限度,所以在Q1在饱和导通时VCC对MOS管栅极S的瞬时充电电流巨大,极易损坏MOS管的输入端,为了保护MOS管的安全,在具体的电路中必须采取措施限制瞬时充电的电流值,在栅极充电的电路中串接一个适当的充电限流电阻R,如下图A所示。