第三章XX(场效应管)讲解
- 格式:ppt
- 大小:1.03 MB
- 文档页数:46
场效应管的结构及工作原理(教案)第一章:引言1.1 课程背景本课程旨在帮助学生了解和掌握场效应管(FET)的结构及工作原理。
场效应管作为一种重要的半导体器件,在电子技术领域有着广泛的应用。
1.2 学习目标了解场效应管的基本结构理解场效应管的工作原理第二章:场效应管的基本结构2.1 简介介绍场效应管的定义和基本结构。
2.2 MOSFET(金属-氧化物-半导体场效应管)结构描述MOSFET的三个主要部分:源极、漏极和栅极解释MOSFET的两种类型:N型和P型2.3 JFET(结型场效应管)结构介绍JFET的基本结构和工作原理比较JFET和MOSFET的异同第三章:场效应管的工作原理3.1 简介解释场效应管的工作原理。
3.2 静电场控制描述静电场如何控制通道中的电荷载流子解释电荷载流子的运动和电流的形成3.3 电压和电流的关系分析电压和电流之间的关系讨论场效应管的不同工作区域:亚阈值区、饱和区和击穿区第四章:场效应管的特性4.1 简介介绍场效应管的主要特性。
4.2 转移特性解释转移特性曲线的含义分析转移特性曲线的形状和特点4.3 输出特性描述输出特性曲线的含义讨论输出特性曲线的形状和特点第五章:应用5.1 简介介绍场效应管在不同领域的应用。
5.2 放大器应用分析场效应管放大器的工作原理讨论放大器的设计和应用5.3 开关应用解释场效应管在开关电路中的应用分析开关电路的设计和应用第六章:场效应管的偏置电路6.1 简介介绍场效应管偏置电路的作用和重要性。
6.2 偏置电路的设计解释偏置电路的作用分析偏置电路的设计原则和方法6.3 偏置电路的类型介绍几种常见的偏置电路类型分析各种偏置电路的优缺点第七章:场效应管的驱动电路7.1 简介介绍场效应管驱动电路的作用和重要性。
7.2 驱动电路的设计解释驱动电路的作用分析驱动电路的设计原则和方法7.3 驱动电路的类型介绍几种常见的驱动电路类型分析各种驱动电路的优缺点第八章:场效应管的参数测量与测试8.1 简介介绍场效应管参数测量与测试的目的和方法。
场效应管+讲解
场效应管
场效应管(Field Effect Transistor, FET)是一种电子电路器件,是由电流流过一个小面积的外部接触层与绝缘底座的晶体管件,具有电子和离子的交互作用而构成的。
它们的特点是有一个小的控制电压来控制一个大的电流,这是晶体管所不具有的特性,所以场效应管可以用来做信号放大器。
场效应管的工作原理是,当对晶体管的接口处施加一个正偏压后,会在晶体管中构成一个叫做“场效应”的变量,电子以及空穴便会在晶体管中流动,当此电压大小发生改变时,在晶体管中的电子流动也会发生改变,这时的电流可以从晶体管的某处取出,因而晶体管构成了一个电路,这就是场效应管。
由于场效应管的特性,它被广泛用于电子电路,尤其是电路的控制与信号放大等方面,在无线电领域中,场效应管也有广泛的应用。
在目前的电子电路中,MOSFET(摩尔管)和JFET(自给效应管)是最常用的两种场效应管,前者的构造比较复杂,通常使用在模拟信号放大方面,而后者的构造相对比较简单,使用在数字信号放大方面。
- 1 -。
第三章 场效应管及其放大电路1. JEFT 有两种类型,分别是N 沟道结型场效应管和P 沟道结型场效应管2. 在JFET 中:(1) 沟道夹断:假设0=DS v ,如图所示。
由于 0=DS v ,漏极和源极间短路,使整个沟道内没有压降,即整个沟道内的电位与源极的相同。
令反偏的栅-源电压GS v 由零向负值增大,使PN 结处于反偏状态,此时,耗尽层将变宽;由于在结型场效应管制作中,P 区的浓度远大于N 区的浓度,所以,耗尽层主要在N 沟道内变宽,随着耗尽层宽度加大,沟道变窄,沟道内的电阻增大。
继续反响加大GS v ,耗尽层将在沟道内合拢,此时,沟道电阻將变的无穷大,这种现象成为沟道夹断(2)在DS v 较小时,DS v 的加大虽然会增大沟道内的电阻,但这种影响不是很明显,沟道仍处于比较宽的状态,即沟道的电阻在DS v 比较小的时候基本不变,此时加大DS v ,会使D i 迅速增加,D i 与DS v 近似为线性关系。
加大DS v ,沟道内的耗尽层会逐渐变宽,沟道电阻增加,D i 随DS v 的上升,速度会变缓。
当||P DSV v =时,楔形沟道会在A 点处合拢,这种现象称为预夹断。
3. 解:(1)(a )为N 沟道场效应管 (b )为P 沟道场效应管(2)(a )V V P4-= (b )V V P 4= (3)(a )A I DSS 5= (b )A I DSS 5-=(4)电压DS v 与电流D i 具有相同的极性且与GS v 极性相反,因而,电压DS v 的极性可根据D i 或GS v 的极性判断4.解:当JFET 工作在饱和区时,有关系式:2)1(PGS DSS D V V I i -= 5. 解:在P 沟道JFET 中,要求栅-源电压GS v 极性为正,漏源电压DS v 的极性为负,夹断电源P V 的极性为正6. 解:MOS 型场效应管的详细分类7. 解:耗尽型是指,当0=GS v 时,即形成沟道,加上正确的GS v 时,能使对数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。
场效应管详解一、场效应管的基本概念场效应管(Field-Effect Transistor,简称FET)是一种三极管,由栅极、漏极和源极三个电极组成。
栅极与漏极之间通过电场控制漏极和源极之间的电流。
二、场效应管的工作原理场效应管的工作原理基于电场控制电流的效应。
当栅极施加一定电压时,在栅极和漏极之间形成了一个电场,这个电场控制着漏极和源极之间的电流。
通过调节栅极电压,可以改变漏极和源极之间的电流,实现对电流的控制。
三、场效应管的分类根据不同的控制机构,场效应管可以分为三种类型:MOSFET(金属-氧化物-半导体场效应管)、JFET(结型场效应管)和IGBT(绝缘栅双极型晶体管)。
MOSFET是最常见的一种场效应管。
四、场效应管的特点和优势1. 高输入阻抗:场效应管的栅极是绝缘层,因此栅极和源极之间的电流极小,使得场效应管具有很高的输入阻抗。
2. 低噪声:由于高输入阻抗的特性,场效应管的噪声很低。
3. 低功耗:场效应管的控制电流很小,从而使得其功耗较低。
4. 快速开关速度:场效应管的开关速度较快,适合高频应用。
五、场效应管的应用领域场效应管广泛应用于各种电子设备中,包括放大器、开关电路、调节电路、振荡器等。
在电子行业中,场效应管已经成为一种重要的电子元件。
六、场效应管的优化和发展随着科技的不断进步,场效应管也在不断优化和发展。
目前,一些新型的场效应管已经出现,如高电压场效应管、功率场效应管等,以满足不同领域对场效应管的需求。
场效应管作为一种重要的电子元件,具有较高的输入阻抗、低噪声、低功耗和快速开关速度等特点,广泛应用于各种电子设备中。
随着科技的不断发展,场效应管的优化和发展也在不断进行,使其能更好地满足不同领域的需求。
场效应管的研究和应用将继续推动电子技术的发展,为人们的生活带来更多便利和创新。
场效应管的结构及工作原理(教案)第一章:引言1.1 课程概述本课程旨在帮助学生了解和掌握场效应管(FET)的结构及工作原理。
通过本课程的学习,学生将能够理解FET的基本概念、种类、应用及其在电子技术领域的重要性。
1.2 教学目标1. 了解场效应管的定义和发展历程。
2. 掌握场效应管的基本结构和分类。
3. 理解场效应管的工作原理及其在不同应用领域的优势。
第二章:场效应管的基本结构2.1 结型场效应管(JFET)2.1.1 JFET的定义2.1.2 JFET的结构特点2.1.3 JFET的导电机制2.2 金属-氧化物-半导体场效应管(MOSFET)2.2.1 MOSFET的定义2.2.2 MOSFET的结构特点2.2.3 MOSFET的导电机制2.3 绝缘栅双极型晶体管(IGBT)2.3.1 IGBT的定义2.3.2 IGBT的结构特点2.3.3 IGBT的导电机制第三章:场效应管的工作原理3.1 结型场效应管(JFET)的工作原理3.1.1 增强型JFET的工作原理3.1.2 耗尽型JFET的工作原理3.2 金属-氧化物-半导体场效应管(MOSFET)的工作原理3.2.1 增强型MOSFET的工作原理3.2.2 耗尽型MOSFET的工作原理3.3 绝缘栅双极型晶体管(IGBT)的工作原理3.3.1 IGBT的工作原理第四章:场效应管的性能参数4.1 结型场效应管(JFET)的性能参数4.1.1 输入阻抗4.1.2 输出阻抗4.1.3 跨导4.1.4 开关速度4.2 金属-氧化物-半导体场效应管(MOSFET)的性能参数4.2.1 输入阻抗4.2.2 输出阻抗4.2.3 跨导4.2.4 开关速度4.3 绝缘栅双极型晶体管(IGBT)的性能参数4.3.1 输入阻抗4.3.2 输出阻抗4.3.3 跨导4.3.4 开关速度第五章:场效应管的应用领域5.1 结型场效应管(JFET)的应用领域5.1.1 放大器5.1.2 开关电路5.1.3 电压控制器件5.2 金属-氧化物-半导体场效应管(MOSFET)的应用领域5.2.1 放大器5.2.2 开关电路5.2.3 电压控制器件5.3 绝缘栅双极型晶体管(IGBT)的应用领域5.3.1 电力电子5.3.2 变频调速5.3.3 电力系统第六章:场效应管的测量与测试6.1 测量仪器与设备6.1.1 直流参数测试仪6.1.2 交流参数测试仪6.1.3 噪声测试仪6.2 场效应管的测量项目6.2.1 栅极电位与漏极电流的关系测量6.2.2 输入阻抗测量6.2.3 输出阻抗测量6.2.4 开关时间测量6.3 测试结果分析与应用6.3.1 测试结果的判断与分析6.3.2 测试结果在实际应用中的应用第七章:场效应管的驱动与保护7.1 驱动电路的设计7.1.1 驱动电路的基本要求7.1.2 驱动电路的设计方法7.1.3 驱动电路的实际应用案例7.2 场效应管的保护电路7.2.1 过压保护电路7.2.2 过流保护电路7.2.3 短路保护电路7.3 驱动与保护电路的实际应用7.3.1 驱动与保护电路在放大器中的应用7.3.2 驱动与保护电路在开关电路中的应用第八章:场效应管的故障诊断与维修8.1 故障诊断方法8.1.1 观察法8.1.2 测量法8.1.3 替换法8.2 常见故障与维修方法8.2.1 栅极输入故障8.2.2 漏极输出故障8.2.3 内部短路故障8.3 故障维修实例8.3.1 放大器故障维修实例8.3.2 开关电路故障维修实例第九章:场效应管在现代电子技术中的应用9.1 数字电路中的应用9.1.1 逻辑门电路9.1.2 微处理器电路9.1.3 存储器电路9.2 模拟电路中的应用9.2.1 放大器电路9.2.2 滤波器电路9.2.3 稳压电路9.3 电力电子中的应用9.3.1 变频调速电路9.3.2 电力控制系统9.3.3 电力变换器电路第十章:总结与展望10.1 课程总结本课程对场效应管的结构、工作原理及其应用进行了详细的介绍,使学生掌握了场效应管的基本知识,为further study in the field of electronic technology 打下了坚实的基础。
最经典MOS管电路工作原理及详解没有之一最经典MOS管电路工作原理及详解第一章引言MOS管(金属氧化物半导体场效应管)是一种重要的主动元件,广泛应用于各种电路中。
本文将详细介绍MOS管的工作原理及其相关知识。
第二章 MOS管的基本结构MOS管由金属氧化物半导体(MOS)结构构成,主要由金属电极(Gate)、绝缘层(Oxide)和半导体材料(Semiconductor)组成。
其中,绝缘层通常采用氧化硅(SiO2)第三章 MOS管的工作原理1.导通状态当Gate电极施加正向偏置电压时,会在绝缘层下形成一个电荷压积区,使半导体材料导电区域(Channel)形成N型导电层。
此时,MOS管处于导通状态。
2.截止状态当Gate电极施加负向偏置电压时,电荷压积区减小,导电区域几乎消失,MOS管处于截止状态。
第四章 MOS管的基本参数1.阈值电压(Vth):________在Gate电极施加一定电压时,MOS管刚刚处于导通状态和截止状态之间的电压。
2.转导:________当MOS管导通时,Gate与Source电压之间的变化引起Drn电流的变化。
3.输出电阻:________反映MOS管输入和输出特性之间的关系。
输出电阻越小,MOS管的放大能力越强。
第五章常见MOS管电路1.CMOS电路:________由N型MOS管和P型MOS管组成的互补结构,广泛应用于数字电路中。
2.放大电路:________利用MOS管的放大特性,设计各种放大电路,如共源极放大电路、共漏极放大电路等。
3.开关电路:________利用MOS管的导通截止特性,设计开关电路,如开关电源、交流开关等。
第六章附件本文档涉及的附件包括MOS管的示意图、工作曲线图等,可在附件文件中查看详细内容。
第七章法律名词及注释1.MOS管:________金属氧化物半导体场效应管,是一种主动元件。
2.Gate:________MOS管的控制电极,用于控制MOS管的导通截止状态。