机械控制理论基础
- 格式:docx
- 大小:15.87 KB
- 文档页数:2
机械工程控制基础一、控制基础概述控制是指对一种现象或过程进行指定的调节或管理。
在机械工程中,控制是指通过对机械系统中的运动、力学等参数进行监测和调节,以满足特定的工作要求。
机械工程中的控制可以分为开环控制和闭环控制两种。
开环控制是指在控制过程中没有对系统输出进行反馈存储的控制方法,也就是说,输出信号与输入信号之间不存在反馈关系。
这种控制方法不适合对系统精度和稳定性要求较高的场合。
而闭环控制则是在系统输出信号与输入信号之间进行反馈控制,以提高系统的精度和稳定性,使系统能够更好地满足要求。
## 二、控制基础理论控制基础理论主要包括控制对象、控制流程、控制算法、控制器等方面。
其中控制对象是进行控制的主要对象,其性能决定了整个控制系统的性能。
控制流程是指对控制对象进行控制的具体过程。
控制算法是指根据控制流程,运用特定的算法对控制对象进行实时调节,以达到控制要求的方法。
另外,控制器是指控制系统的核心部件,其主要功能是对输入信号进行处理和调节,以使输出信号满足要求。
在机械工程中,常见的控制器有比例控制器、积分控制器和微分控制器等。
三、控制技术的应用控制技术在机械工程中的应用较为广泛,主要应用于机床、起重设备、自动化生产线、机器人等领域。
在机床中,常用的控制技术有数控技术和伺服控制技术。
在起重设备中,常用的控制技术有电控制技术和液压伺服控制技术。
在自动化生产线中,常用的控制技术有PLC控制技术和DCS控制技术。
而在机器人领域,控制技术则是重中之重,常用的技术有轨迹规划控制技术和变形控制技术等。
四、控制工程的发展趋势随着科学技术的不断发展,机械工程控制技术也取得了长足的进步。
现在,智能化、高精度、高速度和高可靠性已成为机械工程控制技术的主要发展方向。
同时,控制工程技术还应紧密地与信息技术、计算机技术、通信技术等相关领域结合,以推动控制工程技术的不断发展。
在未来,随着机器人技术的进一步发展,机器人控制技术也将更加成熟。
《机械控制理论基础》——实验报告班级:学号:姓名:目录实验内容实验一一阶环节的阶跃响应及时间参数的影响P3 实验二二阶环节的阶跃响应及时间参数的影响P9 实验三典型环节的频率特性实验P15 实验四机电控制系统的校正P20 实验心得…………………………………………P23实验一 一阶环节的阶跃响应及时间参数的影响● 实验目的通过实验加深理解如何将一个复杂的机电系统传递函数看做由一些典型环节组合而成,并且使用运算放大器来实现各典型环节,用模拟电路来替代机电系统,理解时间响应、阶跃响应函数的概念以及时间响应的组成,掌握时域分析基本方法 。
● 实验原理使用教学模拟机上的运算放大器,分别搭接一阶环节,改变时间常数T ,记录下两次不同时间常数T 的阶跃响应曲线,进行比较(可参考下图:典型一阶系统的单位阶跃响应曲线)。
典型一阶环节的传递函数:G (S )=K (1+1/TS ) 其中: RC T = 12/R R K =典型一阶环节的单位阶跃响应曲线:● 实验方法与步骤1)启动计算机,在桌面双击“Cybernation_A.exe ”图标运行软件,阅览使用指南。
2)检查USB 线是否连接好,电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。
检查无误后接通电源。
3)在实验项目下拉框中选中本次实验,点击按钮,参数设置要与实验系统参数一致,设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可继续进行实验。
● 实验内容1、选择一阶惯性环节进行实验操作由于一阶惯性环节更具有典型性,进行实验时效果更加明显。
惯性环节的传递函数及其模拟电路与实验曲线如图1-1: G (S )= - K/TS+1RC T = 12/R R K =2、(1)按照电子电路原理图,进行电路搭建,并进行调试,得到默认实验曲线图1-2图1-2(2)设定参数:方波响应曲线(K=1 ;T=0.1s )、(K=2;T=1s ),R1=100k Ω 3、改变系统参数T 、K (至少二次),观察系统时间响应曲线的变化。
02240机械工程控制基础第一章绪论1.1控制理论的发展简史(了解)1.2机械工程控制论的研究对象1)机械工程控制理论主要是研究机械工程技术为对象的控制论问题。
2)当系统已经确定,且输出已知而输入未知时,要求确定系统的输入以使输出并根据输出来分析和研究该控制系统的性能,此类问题称为系统分析°3)最优控制制:当系统已经确定,且输出已知而输入已施加但未知时,要求识别系统的输入以使输出尽可能满足给定的最佳要求。
4)滤波与预测问题当系统已经确定,且输出已知,输入已施加当未知时,要求识别系统的输入(控制)或输入中的有关信5)当输入与输出已知而系统结构参数未知时,要求确定系统的结构与参数,即建立系统的数学模型,此类问题及系统辨识。
6)当输入与输出已知而系统尚未构建时,要求设计系统使系统在该输入条件下尽可能符合给定的最佳要求,此类问题即最优设计。
1.3控制系统的系统的基本概念1)信息传递是指信息在系统及过程中以某种关系动态地传递的过程。
2)系统是指完成一定任务的一些部件的组合。
3)制制系统是指系统的可变输出能按照要求的参考输入或控制输入进行调节的系统。
4)系统分类:按照控制系统的微分方程进行分类分为线性系统、非线性系统。
按照微分方程系数是否随时间变化分为定常系统和时变系统。
按照控制系统传递信号的性质分类分为连续、离散系统。
按照系统中是否存在反馈将系统分为开环控制、闭环控制系统。
5)对控制系统的基本要求有稳定性、快速性、准确性第二章拉普拉斯变换的数学方法2.3典型时间函数的拉式变换(必须牢记)1)单位阶跃函数为,2)单位脉冲函数为,单位脉冲函数具有以下性质3)单位斜坡函数为,L(t)?第三章系统的数学模型....3.1概述1)数学模型概念在控制系统中为研究系统的动态特性而建立的一种模型。
2)建立数学模型的方法有分析法和实验法。
3)线性系统最重要的特性是叠加原理,具体内容是系统在几个外加作用下所产生的响应等于各个外加作用单独作用下的响应之和。
“机械控制工程理论基础”课程教学大纲英文名称:Elements of Mechanical Control Theory课程编号:MACH3435学时:56(理论学时:40 实验学时:16 课外学时:20)学分:3适用对象:机械类、动力类本科生先修课程:高等数学,理论力学,电工电子技术使用教材及参考书:[1] 董霞、陈康宁、李天石.机械控制理论基础.西安交通大学出版社,2005.ISBN 7-5605-2041-3.[2] 董景新等.控制工程基础(第二版).清华大学出版社,2003.ISBN: 9787302063872[3] [美] Katsuhiko Ogata著,卢伯英、于海勋译.现代控制工程(第三版).电子工业出版社,2000.ISBN 7-5053-5395-0/TN.1247.一、课程性质和目的性质:专业基础目的:1.培养学生从动态和系统的角度建立机械系统数学模型的能力;2.培养学生对机械控制系统进行动态分析的能力;3.培养学生对机械控制系统的设计能力和综合能力;4.培养学生使用计算机仿真能力;5.培养学生系统分析能力和综合能力。
二、课程内容简介机械控制理论是研究“控制论”在“机械工程”中应用的科学,本课程主要介绍机械控制工程的基本概念、机电系统数学模型的建立、机电控制系统的时域分析和频域分析、机电控制系统的稳定性分析和机电控制系统的设计和校正。
通过课程教学和实验,培养学生对机电控制系统进行动态分析的能力和综合能力。
三、教学基本要求1.了解机电系统的数学模型并掌握基本的建模方法;2.掌握机电控制系统时域分析方法;3. 掌握机电控制系统的频域分析方法;4. 掌握机电控制系统稳定性分析方法;5. 初步掌握机械控制系统设计和校正方法。
四、教学内容及安排第一章:绪论1.理解“机械工程控制”的基本含义,本课程的特点,以及学习本课程的目的与任务;2.初步建立系统、反馈、控制、闭环系统等的基本概念。
机械工程控制基础机械工程控制基础是指机械工程中涉及到的控制理论和方法。
下面是机械工程控制基础的详细解释:1. 控制系统:控制系统是指由传感器、执行器和控制器组成的系统,用于监测和调节机械系统的运行状态。
控制系统可以分为开环控制系统和闭环控制系统两种类型。
2. 传感器:传感器是用来感知机械系统状态或环境参数的装置,常见的传感器有温度传感器、压力传感器、加速度传感器等。
传感器将物理量转化为电信号,用于控制系统的输入。
3. 执行器:执行器是控制系统中的输出装置,用于根据控制信号执行相应的动作。
常见的执行器包括电动机、液压缸、气动阀等。
4. 控制器:控制器是控制系统中的核心部分,用于根据传感器的反馈信号和设定值进行计算和决策,并生成控制信号送往执行器。
常见的控制器有比例控制器、积分控制器、微分控制器等。
5. 反馈控制:反馈控制是指控制系统中利用传感器的反馈信号进行控制的方法。
通过比较反馈信号和设定值,控制器可以调节执行器的输出,使系统保持稳定。
6. 控制策略:控制策略是指控制系统中的算法和方法,用于决定控制器如何根据传感器信号进行计算和决策。
常见的控制策略有比例控制、积分控制、微分控制、模糊控制、PID控制等。
7. 控制系统的稳定性:控制系统的稳定性是指控制系统在一定条件下能否保持稳定的性质。
稳定的控制系统能够快速、准确地响应输入信号,并保持系统的平衡。
8. 控制系统的性能指标:控制系统的性能指标是衡量控制系统性能好坏的指标,常见的性能指标有超调量、调节时间、稳态误差等。
9. 控制系统的建模与仿真:控制系统的建模与仿真是指利用数学模型和计算机仿真技术来研究和分析控制系统的行为。
通过建立系统的数学模型,可以预测和优化控制系统的性能。
总之,机械工程控制基础涵盖了控制系统的基本原理、传感器和执行器的工作原理、控制器的设计和调节方法,以及控制系统的稳定性和性能评估等内容。
这些基础知识对于机械工程师设计和优化机械系统的控制系统具有重要的指导作用。
机械工程控制基础教案第一章:绪论1.1 课程介绍1.2 控制理论的基本概念1.3 控制系统的基本类型1.4 控制系统的性能指标第二章:线性系统的时域分析法2.1 系统的数学模型2.2 系统的时域响应2.3 系统的稳定性分析2.4 系统的稳态误差分析2.5 系统的动态性能分析第三章:线性系统的频域分析法3.1 频率响应的基本概念3.2 频率响应的性质3.3 系统的频率响应分析3.4 系统的稳定性分析3.5 系统的稳态误差分析第四章:线性系统的校正方法4.1 系统的校正概述4.2 串联校正设计方法4.3 并联校正设计方法4.4 反馈校正设计方法4.5 系统的动态性能改善第五章:非线性控制系统分析5.1 非线性控制系统的基本概念5.2 非线性系统的数学模型5.3 非线性系统的稳定性分析5.4 非线性系统的稳态误差分析5.5 非线性系统的动态性能分析第六章:机电控制系统的设计与实现6.1 机电控制系统的基本组成6.2 控制系统的设计步骤6.3 控制器的设计方法6.4 控制系统的仿真与实验6.5 控制系统的设计案例分析第七章:PLC控制系统设计7.1 PLC控制系统的基本原理7.2 PLC的硬件组成与功能7.3 PLC控制程序的设计方法7.4 PLC控制系统的设计实例7.5 PLC控制系统的调试与维护第八章:控制系统8.1 控制系统的基本概念8.2 的运动学与动力学8.3 控制系统的组成与原理8.4 控制算法与应用8.5 控制系统的案例分析第九章:现代控制理论简介9.1 现代控制理论的发展概况9.2 状态空间分析法9.3 系统的能控性与能观性9.4 系统镇定与最优控制9.5 现代控制理论在工程中的应用第十章:控制系统在机械工程中的应用10.1 控制系统在机械工程中的重要性10.2 控制系统在自动化设备中的应用10.3 控制系统在中的应用10.4 控制系统在数控机床中的应用10.5 控制系统在其他机械工程领域的应用重点和难点解析一、系统的数学模型难点解析:对复杂机械系统的动态方程建立及求解,状态变量的选取原则,以及如何将实际系统抽象为数学模型。
《关于机械控制理论基础感想》姓名:邵强龙学号:0910111071当我拿到书看到里面有数学和像电工电子一样的图的时候,我就知道这门课不好学,因为这我都不太懂,但是当我听了老师的第一节课的时候,我反而喜欢这门了,因为我听懂了。
但是后来随着教学的进度,和公式的复杂以及理论的深奥,加上自己的不复习我就停在刚开始的那种进度了,后来老师又出国交流学术了,所以这门课理论几乎学得不太懂,但是大概知道些,和它相关的知识及其应用发展趋势等等这学期我们很高兴的接触了机械控制理论基础这门课。
从去年开始,我们逐步学习到了我们的专业课,并对这些课有了一定的认识。
机械控制理论是一门理论性很强的专业基础课。
是实现传统机械工程学科向以机、电、液相结合为特色的现代化机械工程学科跨越的主干支撑课程之一。
控制控制理论基础是控制论与机械工程技术之间的边缘学科,侧重介绍机械工程的控制原理,同时密切结合工程实际,是一门技术基础课程。
本课内容抽象,概念性强而且涉及知识面广。
学习本门课要有良好的数学、力学、电学和计算机基础方面的专业知识。
本课程主要讲述经典控制论范畴的基本知识,包括以下几个方面的内容;1数学工具方米爱你包括拉普拉斯变换的数学方法。
刺痛见面方面包括系统的数学模型。
系统分析方面;包括系统的是与分析;平率特性和系统的稳定性。
系统的校正和设计方面包括系统的校正和设计。
离散分析方面包括离散分析基础全文共8章,第一章绪论,是对这门学科做摘要介绍,第二章拉普拉斯变换的数学方法,是本书必须的数学基础,第三章系统的数学模型,介绍运用学、电学基础对系统建模的方法以及传递函数、方块图、信号流图等重要概念,第四章至第六章分别为系统的瞬间响应与误差分析、频率特性和稳定性,它们是在已知系统模型的前提下分别从不同角度对系统进行分析,第七章机械工程控制烯烃的矫正、、校正与设计,介绍各种校正方式和方法,使系统满足性能指标的要求,第8章离散系统分析连续信号转换为离散信号的基础知识,以及分析离散系统的初步方法。
机械工程控制基础知识点●控制论的中心思想:它抓住一切通讯和控制系统所共有的特点,站在一个更概括的理论高度揭示了它们的共同本质,即通过信息的传递、加工处理和反馈来进行控制。
机械工程控制论:是研究机械工程技术为对象的控制论问题。
(研究系统及其输入输出三者的动态关系)。
机械控制工程主要研究并解决的问题:(1)当系统已定,并且输入知道时,求出系统的输出(响应),并通过输出来研究系统本身的有关问题,即系统分析。
(2)当系统已定,且系统的输出也已给定,要确定系统的输入应使输出尽可能符合给定的最佳要求,即系统的最佳控制。
(3)当输入已知,且输出也是给定时,确定系统应使得输出金肯符合给定的最佳要求,此即●最优设计。
(4)当系统的输入与输出均已知时,求出系统的结构与参数,即建立系统的数学模型,此即系统识别或系统辨识。
(5)当系统已定,输出已知时,以识别输入或输入中得有关信息,此即滤液与预测。
●信息:一切能表达一定含义的信号、密码、情报和消息。
信息传递/转换:是指信息在系统及过程中以某种关系动态地传递。
信息的反馈:是把一个系统的输出信号不断直接地或经过中间变换后全部或部分地返回,再输入到系统中去。
如果反馈回去的讯号(或作用)与原系统的输入讯号(或作用)的方向相反(或相位相差180度)则称之为“负反馈”;如果方向或相位相同,则称之为“正反馈”。
●系统:是指完成一定任务的一些部件的组合。
控制系统:是指系统的输出,能按照要求的参考输入或控制输入进行调节的。
开环系统:系统的输出量对系统无控制作用,或者说系统中无反馈回路的。
闭环系统:系统的输出量对系统有控制作用,或者说,系统中存在反馈的回路。
开环系统与闭环系统的区别:开环系统构造简单,不存在不稳定问题、输出量不用测量,开环系统对系统悟空制作用;闭环系统有反馈、控制精度高、结构复杂、设计时需要校核稳定性,对系统有控制作用。
线性系统:系统的数学模型表达式是线性的系统。
线性的定常系统:用线性常微分方程描述的系统。
机械工程控制基础学习辅导与题解(修订版)第1章绪论内容提要1.1 机械工程控制论的研究对象与任务1.1.1 系统及广义系统系统是由相互联系、相互作用的若干部分构成,且具有一定运动规律的一个有机整体。
系统各元素之间存在着非常紧密的联系,而且,系统与外界也存在一定的联系。
系统及其与外界的关系如图1.1-1所示,其中.输入是指外界对系统的作用,输出是指系统对外界的作用。
系统可大可小可繁可简,甚至可“实”可“虚”,完全由研究的需要而定,因而将它们统称为为广义系统。
图1.l-l 系统及其与外界的联系1.1.2 机械工程控制论的研究对象机械工程控制论实质上足研究机械工程技术中广义系统的动力学问题。
具体地说,它研究机械工程广义系统在一定的外界条件(即输入或激励、干扰)作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性(即由系统的结构与参数所决定的特性)所决定的整个动态历程,研究这一系统与其输入、输出三者之间的动态关系。
1.1.3 机械工程控制论的研究任务从系统、输入、输出三者之间的关系出发,根据已知条件与求解问题的不同,机械工程控制论的任务可以分为以下五方面:(1)已知系统和输入,求系统的输出,即系统分析问题;(2)已知系统和系统的理想输出,设计输入,即最优控制问题;(3)已知输入和理想输出,设计系统,即最优设计问题;(4)已知输出,确定系统,以识别输入或输入中的有关信息.此即滤波与预测问题;(5)已知系统的输^和输出,求系统的结构与参数即系统辨识问题。
1.2 系统及其模型1.2.1 系统的特性(1)系统的性能不仅与构成系统的元素有关,而且还与系统的结构有关;(2)系统具有层次性;(3)系统的内容比组成系统各元素的内容要丰富得多;(4)系统是运动的,具有~定的动态特性。
1.2.2 机械系统以实现一定的机械运动、输出一定的机械能,以及承受一定的机械载荷为目的的系统称为机械系统。
对于机械系统,其输入和输出分别称为“激励”和“响应”。
机械控制理论基础
机械控制理论基础
一、参考书目
“机械控制理论基础”参考教材为陈康宁主编《机械控制理论基础》,西安交通大学出版社。
二、考试科目大纲
本科目的主要考核内容为:经典控制理论的基本概念、定义、方法以及应用于解决机械工程问题的基本原理与知识。
考核采用闭卷考试方式,考试题型有填空、选择、判断正误、辨析、简答、论述、计算分析、绘图等。
考试大纲与命题范围如下:
第一章:机械控制工程的基本定义
1.“机械工程控制”的含义
2.系统、反馈、控制、闭环系统等的基本概念
第二章:拉普拉斯变换的数学方法
1.拉普拉斯变换的基本性质和拉氏反变换的基本方法
2.典型时间函数的拉氏变换以及它们的特点和相互关系
第三章:系统的数学模型
1.线性与非线性、定常与时变等不同系统之主要区别
2.运用力学、电学基础知识对系统建模的方法
3.传递函数、方块图、信号流图、状态方程等概念
第四章:控制系统的时域分析
1.时间响应、脉冲响应函数的概念以及时间响应的组成
2.一阶、二阶系统的瞬态响应特性,以及瞬态响应的性能指标
3.二阶系统的不同阻尼特性(欠阻尼、过阻尼等)
4.系统的误差与稳态误差的概念,各型系统的位置、速度和加速度误差系数以及系
统类型、开环增益与系统稳态误差的关系
第五章:系统的频率特性
1.频率特性的基本概念以及频率特性与系统传递函数、脉冲响应
函数之间的关系
2.对数坐标图(伯德图)的概念以及各个典型环节的对数坐标图,绘制系统伯德图的
一般步骤及其特点,以及由伯德图估计最小相位系统传递函数的方法
3.极坐标图(乃奎斯特图)的概念以及各典型环节的极坐标图;绘制系统极坐标图的
一般步骤及其特点
4.频域中的性能指标及其与时域性能指标的关系
5.最小相位系统与非最小相位系统的概念
6.频域法系统辨识的基本原理以及实验方法、实验曲线拟和的基本原理
7.闭环频率响应的意义
第六章:系统的稳定性
1.系统稳定性的基本概念及稳定性判断的基本准则
2.劳斯-胡尔维茨判据判别稳定性的基本方法以及某些特殊情况的处理方法
3.奈奎斯特判据的基本原理,乃奎斯特图的作法以及如何由它来判别稳定性
4.相位裕量和幅值裕量、系统的相对稳定性等概念,“条件稳定系统”的概念
5.根轨迹法的基本概念
第七章:控制系统的校正与设计
1.系统的性能指标及进行补偿和校正的一般概念
2.用频率法设计控制系统的方法,串联校正的各种方式和方法
3.控制系统的反馈校正和顺馈校正的基本概念与方法。