求无理函数最值的四个策略
- 格式:doc
- 大小:138.91 KB
- 文档页数:2
求最值方法 -- 高考数学复习一问一答 -------- 最值问题方法总论1高中数学求最值有哪些方法?答:有 9 种方法: 1)配方法 2)鉴别式法; 3)不等式法; 4)换元法; 5)函数单一性法; 6)三角函数性质法; 7)导数法; 8)数形联合发;9)向量法2如何将恒成立问题转变为最值问题?答:1) a f ( x)恒成立,则a f (x)max 2)a f ( x)恒成立,则 a f (x)min一元整式函数最值1、二次函数张口方向、对称轴、所给区间均确立,如何求最值 ?答:1)确立对称轴与x轴交点的横坐标能否在所给区间。
2)假如在所给区间,一个最值在极点处获得,另一个最值在与极点横坐标较远的端点处获得。
3)若不在所给区间,利用函数的单一性确立其最值。
2、二次函数所给区间确立,对称轴地点变化,如何求最值 ?答: 1)挪动对称轴,将对称轴平移到定区间的左边、右边及区间内议论, 2)在区间内,只考虑对称轴与区间端点的距离即可。
3、二次函数所给区间变化,对称轴地点确立,如何求最值 ?答:分类议论,分为四种状况: 1)对称轴在闭区间左边;2)对称轴在闭区间右边3)对称轴在闭区间内且在中点的左边; 4)对称轴在闭区间内且在中点的右边(或过中点);4、二次函数所给区间、对称轴地点都不确立,如何求最值 ?答:将此中一个看作是“定”的,另一个看作是“动”的,而后如上分四种状况进行议论。
5、什么状况下运用基本不等式求最值?答:当两个变量的和或积为定值时运用,有时需要变形。
即两个正数的积为定值时,它们的和有最小值,两个正数的和为定值时,它们的积有最大值。
6、对于多项式乘积的最值问题,如何求解答:能够考虑睁开后,利用基本不等式求解7、如何求复合型函数的最值答:若函数f ( x), g( x) 在 [ mn.] 上单调性相同,则h( x) f (x)g(x) 在 [m.n] 上与 f ( x), g( x) 有同样的单一性,可利用单一性求h( x) 在[ mn.] 上的最值。
高次、无理、指数、对数不等式的解法及应用分析解不等式是中学数学解决问题的重要工具,在研究函数的性质、确立问题成立的条件等方面都有广泛的应用。
本阶段的重点是不等式的“等价转化”,将高次不等式低次化,无理不等式有理化、超越不等式代数化,最终回归到一元一次不等式(组)或一元二次不等式(组)来解。
难点是解含参数的不等式,对于如何选择参数分类的标准、如何把握分类的时机是有难度和深度的。
一、高次不等式1.概念:形如不等式(x-x1)(x-x2)……(x-x n)>0(其中x1, x2, ……,x n是互不相等的实常数)叫做一元n次不等式(n∈N)。
2.解题思路:作出相应函数的图象草图。
具体步骤如下:(a)明确标出曲线与x轴的交点,(b)分析在每一个开区间上函数的那段曲线是在x轴的上方还是下方(除此之外,对草图不必做更细致的要求)。
然后根据图象草图,写出满足不等式的解集。
3.例题:例1.解不等式:(1) (x-2)(x+2)(x-1)(x+1)>0;(2)(x2-5x-6)(1-x)>0。
解:(1)做出函数y=(x-2)(x+2)(x-1)(x+1)的图象的草图(图1)。
所以不等式的解集为(-∞,-2)(-1,1)(2,+∞)。
(2)先把原不等式化成与它等价的:(x+1)(x-6)(x-1)<0。
作出函数y=(x+1)(x-6)(x-1)的草图(图2),所以解集为(-∞,-1)(1,6)。
注意:(1)解题中首先观察关于x的最高次项的系数是否为正数,如果为正数,函数y在最右边的开区间上的函数值总为正数,因此曲线总在x轴的上方,这样作草图就可以一蹴而就了,如果不是正数,那么首先化为正数;(2)解高次不等式的步骤可以概括为:找零点、分区间、画草图、写解集。
例2.解不等式(x+2)(x+1)2(x-1)3(x-3)>0。
分析:此例中y=(x+2)(x+1)2(x-1)3(x-3)出现了重因式,当x值从大于-1变化到小于-1时(不含-1),y值符号没有发生变化,而x值从大于1到小于1时(不含1),y值符号发生了变化,如图3,故解集为(-2,-1)(-1,1)(3,+∞)。
无理函数最值探求的几种策略无理函数的最值是中学数学教学的一个难点,其形式多样,解法繁杂,学生在解题中感到很困惑,本文就一类形如的无理函数最值的解法作一次探求,寻求解决问题求解的多种策略,以便熟练和灵活地运用一些方法去解决问题,以达到举一反三的效果。
例题:求函数的最值一、巧用三角代换求函数最值根据三角函数的特征和性质,在无理函数中巧妙的进行三角换元,使无理问题三角化,从而达到快速求解无理函数最值的目的,显然设元的技巧很关键。
1、解:的定义域,,故可设则。
二、熟用平方判别式求函数最值无理函数的最大特征是含有根号,而平方是去根号的重要手段之一,将无理函数转化为关于的二次方程的函数,利用判别式求函数的最值是常见的方法,但要注意函数定义域对函数最值的制约作用。
解:函数的定义域,显然两边平方得移项再平方整理可得由得又,另外由及,。
三、善用导数求函数最值导数是高中数学新教材中增加的内容,用导数研究函数的性质尤其是函数最值问题上成为高中数学解题一道靓丽的风景线,要重视导数在解决一些比较复杂函数最值上的作用,善于运用它,体念它独特的解题魅力,能使问题得到简洁、完美的解决。
解:对原函数求导可得:令得又由此可得,四、妙用构造向量求函数最值向量具有代数和几何的双重特性,用向量方法解决代数问题的关键是善于观察问题的外貌结构,挖掘代数结构的向量模型,巧妙构造向量,把原有的问题转化为向量问题求解。
它是一种重要的数学思维方法,是数形结合思想的一个有效载体。
解:原函数变形为可设则得令与的夹角为,,则,如图1,向量的终点在以原点为圆心,为半径的的圆周上,则两向量夹角,当,即,即时,当,即即时,,本文对一类形如的无理函数的最值作了一次多角度,多层次的分析和探求,如果对它加以深入探究当然有更多类型的无理函数的最值值得我们去思考和研究。
通过从特殊到一般的数学思维,寻求到解决问题的不同策略,对培养学生的创造性思维能力,完善学生的认知结构,提高学生的数学素养定有积极的作用。
浅析无理型函数值域的几种常规求法一、观察法:通过对函数定义域及其解析式的分析,从而确定函数值域。
例1.求函数y =3+42+x 值域。
解:∵42+x ≥2,∴函数值域为[5,+)∞。
二、单调性法:如果函数在某个区间上具有单调性,那么在该区间两端点函数取得最值。
例2.求函数y =x -x 21-的值域。
解:函数的定义域为]21,(-∞,函数y=x 和函数y =-x 21-在]21,(-∞上均为单调递增函数,故y ≤212121⨯--=21, 因此,函数y =x -x 21-的值域是]21,(-∞。
三、换元法:通过代数换元法或者三角函数换元法,把无理函数转化为代数函数来求函数值域的方法。
例3.求函数y =x+x 21-的值域 。
解:定义域为x ∈]21,(-∞,令t =x 21- (t ≥0),则x =212t -于是y =-21(t -1)2+1,由t ≥0知函数的值域为]21,(-∞。
本题是通过换元将问题转化为求二次函数值域,但是换元后要注意新元的范围。
对于形如“y mx n ax b =++±”的函数, 此法适用于根号内外自变量的次数相同的无理函数,一般令t ax b =+,将原函数转化为t 的二次函数,当然也适用于“y mx n ax b =++22±”的函数。
例4. 求函数y x x =-+-23134的值域。
解:令t x =-134,则t ≥0且x t =-14132(),则y t t =-++12722=--1212()t +4。
当t =1,即x =3时,y max =4,当t →+∞时,y →-∞。
故函数值域为(]-∞,4。
另外对于根号下的是2次的,我们同样可以处理:例5.求函数y =x+21x -的值域。
解:∵1-x 2≥0,∴-1≤x ≤1,∴设x =cos θ,θ∈[0,π] 则y =cos θ+sin θ=2sin (θ+4π), ∵θ∈[0,π],∴θ+4π∈[4π,45π],∴sin (θ+4π)∈[-22,1],∴2sin (θ+4π)∈[-1,2],∴函数y =x+21x -的值域为[-1,2]。
巧用三角代换求无理函数的最值上海市第五十四中学(邮编200030)裴华明求无理函数的最值问题,是中学数学中常见的问题之一,若用常规方法求解,对于有些题目来说就显得较为繁杂,计算量也较大,但若根据问题的特点巧妙的用三角代换来求解,则可把求无理函数的最值问题转化为求三角函数的最值问题,使问题得已简化,达到事半功倍的效果。
下面就介绍几类可用三角代换法来求无理函数最值的题型,仅供参考。
一、当函数的定义域为 x0, a a 0 时,可设x a sin2,0,2例 1、求函数y 1 x x 的最大值和最小值。
解:∵函数的定义域为则原函数可化为x 0,1 ,∴可设x sin 2,0,2 y sin cos 2 sin4又∵ 0则34424∴2sin1即 1y2 24故当0 或2时,ym i n1当时,ymax24例 2、求函数y3x x1的最值。
解:∵函数的定义域为x0,3,∴设 x3sin 2,0,2则原函数可化为y 3 cos 3 sin1 6 sin14∵ 02则444∴2sin2即31y 3 1 242故当4即0 时,y m a x 3 14当4即2时,ymin314二、 当 函 数 的 定 义 域 为 xa,a a 0 时 , 则 可 设 x a sin ,2 ,2例 3、 求函数 yx 24 x 2 的最大值和最小值。
解:∵函数的定义域为 x2,2 ,∴可设 x 2 sin,2 ,2 则原函数可化为 y2 sin2 2 cos2 2 sin4 2∵则322444∴2 sin1 即4 y 22 224故当 42 即时,ymax2 224当4 即2 时,ymin44三、 当 函 数 的 定 义 域 为 xa, b , 可 设 xa b a cos 2,0,或者设 xa b bacos ,0,222例 4、 求函数 yx 2 21 3x 的最值。
解:∵函数的定义域为 x 2,7 ,∴可设 x2 7 2 cos 22 5 cos 2,0,2则原函数可化为y5 cos15 sin2 5 sin6∵ 02 则3 66∴3sin1即15 y5226故当6 即0 时,ymax56当即 时,ymin15632例 5、 求函数 y8 2x x 23x 的最大值或最小值。
无理函数最值问题的求解策略首先,对于形如 $f(x)=\sqrt{ax^2+bx+c}$ 的无理函数,其中$a,b,c$ 是已知常数,我们可以通过求导的方法来求解最值问题。
首先求导得到 $f'(x)= \frac{1}{2\sqrt{ax^2+bx+c}}\cdot (2ax+b)$,然后令$f'(x)=0$,解得关于 $x$ 的方程为 $2ax+b=0$。
解得 $x=-\frac{b}{2a}$。
将这个解代入原方程 $f(x)$ 中,求得最值。
其次,对于形如 $f(x)=\sqrt[n]{a(x-b)^m}$ 的无理函数,其中$a,b,m,n$ 是已知常数,同样可以通过求导的方法求解最值问题。
首先求导得到 $f'(x)= \frac{m}{n\cdot (x-b)} \cdot \sqrt[n]{a(x-b)^{m-n}}$,然后令 $f'(x)=0$,解得关于 $x$ 的方程为 $(x-b)^{m-n}=0$。
解得 $x=b$。
将这个解代入原方程 $f(x)$ 中,求得最值。
此外,对于无理函数最大值问题,我们还可以通过等式的性质来解决。
对于 $f(x)=\sqrt{ax^2+bx+c}$,易知当 $ax^2+bx+c$ 达到最小值时,$f(x)$ 达到最大值。
因此,我们可以通过对 $ax^2+bx+c$ 进行求二次函数顶点的方法来求解最大值。
对于 $f(x)=\sqrt[n]{a(x-b)^m}$,同样可以通过 $a(x-b)^m$ 达到最小值时,$f(x)$ 达到最大值的方法来求解。
另外,如果无理函数的解析解较复杂或无法找到合适的方法求解最大值或最小值,我们可以尝试使用数值方法进行求解。
常用的数值方法有二分法、牛顿法和割线法等。
这些方法通过迭代逼近的方式来求解函数的最值。
我们可以将无理函数转化为有理函数的形式,然后再利用数值方法求解最大值或最小值。
最后,对于特殊的无理函数,我们还可以采用其他方法来求解最值问题。
无理函数的值域求法求无理函数值域的方法较多,涉及化归转化、函数与方程、数形结合等数学思想方法,对培养学生思维的灵活性、创造性大有裨益. 主要方法有:配方法、换元法、利用函数的单调性、均值不等式、转化为方程有解、数形结合法、构造模型法等.一、应用配方法求值域例1.4y =求函数.解:240(1)44022442,4].y x =≤--+≤∴≤∴≤-≤∴原函数的值域为[评注:配方法适用于解析式中含有二次函数的求值域问题.二、应用换元法将无理函数转化为二次函数或三角函数例2.求函数x x y 21-+=的值域.分析:, 则x 相当于二次项.只需对 x 21-换元,即可将问题转化为二次函数的值域问题. 解:令t x =-21,则212t x -=(0≥t ) ,1)1(212122+--=+-=t t t y ,0≥t 1≤∴y ,即值域为(]1,∞-.评注:形如d cx b ax y +±+= 的函数均可用此法求值域.例3.求函数x x y -+=1的值域.解:函数的定义域为[]1,0,令θ2sin =x ,⎥⎦⎤⎢⎣⎡∈2,0πθ, 则θθcos cos 12==-x,sin cos )4y πθθθ∴=+=+ 又⎥⎦⎤⎢⎣⎡∈+43,44πππθsin()4πθ⎤∴+∈⎥⎣⎦,即函数的值域为.⎡⎣ 评注:三角换元时常需选择角的范围. 选择角的范围时不仅要确保换元前后的等价性,还要有利于后续的化简.例4.求y =[4,2]-在上的值域.解:令u =,v =则 226u v += (0u ≥,0v ≥)设u θ,v θ=02πθ⎛⎫≤≤ ⎪⎝⎭则()))3f πθϑθθθθ==+由02πθ≤≤,得5336πππθ≤+≤ 知1sin()123πθ≤+≤故所求值域为三、利用函数的单调性例5.[0,1],x y ∈=已知求函数.解:122y x y ==,调递减min max [0,1]1(0)202(1)1,2].y x y x y x ∴=∈∴===-==∴内单调递增,当时当时原函数的值域为 例6.求函数x x x f -=1)((14x <≤)的值域. 解:函数x y xy -==和1都在区间(]4,1 上单调递减, ∴函数x xx f -=1)(在区间(]4,1上是减函数. 于是)1()()4(f x f f ≤<,即值域为⎥⎦⎤ ⎝⎛-,47. 四、应用均值不等式例7.|y x =求函数.解:22222max 11(12211.2x x y x x x x y +-==∴=-==当且仅当,即∵y ≥0 ]1,0[函数的值域是∴ 例8.求函数y =. 解:令t =则0,t ≥2.1t y t =+ 当t=0时,y=0;当t>0时,2110.112t y t t t<==≤++ ∴原函数的值域为10,.2⎡⎤⎢⎥⎣⎦五、转化为方程有解例9.求函数y=x-122+x 的值域.解法一:原函数可化为x-y=122+x ,即x>y 且(x-y)2=2x 2+1,亦即x>y 且x 2+2xy+1-y 2=0,原题即求关于x 的方程x 2+2xy+1-y 2=0在(y,+∝)有解的条件.记f(x)=x 2+2xy+1-y 2=0,显然有f(y)=2y 2+1>0。
函数求极值的方法总结一、利用二次方程的判别式求极值在求某一类分式函数的极值时,若其分子或分母是关于x的二次式,可将其变为关于x的一元二次方程,依据x在实数范围内有解,由判别式求的。
例1、求函数y=求函数极值的若干方法的极值。
解:将原函变形为关于x的二次方程(y1)x 求函数极值的若干方法 2yx3y=0∵x∈R,且x≠3,x≠1,∴上方程在实数范围内肯定有解。
△= (2y) 求函数极值的若干方法4 (3y)(y1)= 4y(4y3)≥0解之得y≤0 或y≥ 求函数极值的若干方法这里虽然y无最大〔小〕值,但对应于y=0和y= 求函数极值的若干方法的x分别为x=0和x=3,所以当x=0时,y有极大值0,当x=3时,y有微小值求函数极值的若干方法。
例2、求函数y= 求函数极值的若干方法的值域。
解:将原函数变形得:y+yx 求函数极值的若干方法 =2x∵x∈R,∴△= 44y 求函数极值的若干方法≥0,解之得:1≤y≤1∴函数y= 求函数极值的若干方法值域为[1,1]由上面两例可以看出,用二次方程的判别式求函数的极值时,事实上就是将y看作x的系数,利用函数的定义域非空,即方程有解,将问题转化为解一元二次不等式。
但要留意的是:在变型过程中,可能会将x的取值范围扩大,但所求函数的极值肯定在不等式的解集内,此时,要留意检验,即招2出y取极值时的x是否有意义,若无意义必需舍去,再重新考虑其极值。
二、利用倒数关系求极值对于有些分式函数,当其分子不含变量时,可由分母的极值来求整个函数的极值。
例3、求函数y=2 求函数极值的若干方法的最小值。
解:∵x 求函数极值的若干方法 2x+6 = (x1) 求函数极值的若干方法 +5>0∴函数的定义域为一切实数,又由 x 求函数极值的若干方法2x+6=(x1) 求函数极值的若干方法 +5 知当x=1时,求函数极值的若干方法取最小值求函数极值的若干方法 ,∴ 求函数极值的若干方法取最大值求函数极值的若干方法 ,此时 y=2 求函数极值的若干方法取最小值 2 求函数极值的若干方法 ,即当x=1时,有y的最小值是 2 求函数极值的若干方法。
浅谈无理函数不定积分的求解方法摘要:我们将自变量包含在根式之下的函数称为无理函数。
这样的特点使得无理函数不定积分,在通常情况下求解较为复杂。
对于一个无理函数来说,大多数情况下,较常见的情况是同一个无理函数有多个求不定积分的方法,如何从多种不定积分求解方法中选出最优的解法,就是一个我们需要考虑的问题了。
本文旨在将以往的无理函数不定积分求解方法进行综述,探讨各个方法在求解上的应用与具体使用过程。
同时,总结了对一些常见的无理函数不定积分类型的常用解法。
为无理函数不定积分的求解提供一种思路。
关键字:无理函数不定积分计算方法Abstract: We usually call the function which have one or more arguments under the radical as irrational function. The feature of irrational function makes the irrational function integral become tough problem for we to solve. For an irrational function, in most cases, the more common situation is the same irrational function with multiple indefinite integral method. So, how to select an optimal solution from a variety of indefinite integral method, is a problem that we need to consider.This article aims to past the irrational function of indefinite integral solution method to carry on the summary, discusses the application of various methods on solving the use with specific process. At the same time, summarizes the irrational function of some common indefinite integral types of commonly used method. In order to provide a way to solve the irrational function indefinite integral problems.key words:irrational function indefinite integral method1. 无理函数不定积分的求解方法通常情况下,我们对无理函数不定积分的求解通常都会先对无理函数部分做前置处 理工作。
无理函数的值域问题求无理函数的值域问题是初等数学的难点,因该类问题内涵丰富,灵活多变,涉及多个知识点,技巧性、综合性较强,解法灵活多样,因此成为数学竞赛的热点.本文通过对各种解法进行对比研究,试图寻找解决各种类型问题的最佳方法.1.单调性质法[例1]:(2010年全国高中数学联赛试题)函数f(x)=5-x -x 324-的值域是 .[解析]:[评注]:一个函数我们直接或作一些变形就能判断函数的单调性,用单调求值域是一种比较快捷的方法.无理函数f (x)=b ax ++d cx +(a 与c 同号)型,或f (x)=b ax +-d cx +(a 与c 异号)型,或f (x)=b ax +-d cx +(a 与c 相等)型等,可判断函数单调性,均可用此法.用单调性质法求无理函数的值域时,必须注意到函数隐含的正负性特征和定义域.[类题]:1.(2011年全国高中数学联赛湖南初赛试题)函数y=1+x -x 525-的值域是 .2.(1995年第六届“希望杯”全国数学邀请赛(高一)试题)函数y=2+x -2-x ( ) (A)是非单调函数,没有反函数 (B)有反函数,且反函数是增函数 (C)有反函数,且反函数是减函数 (D)有反函数,且反函数是非单调函数3.(原创题)求函数y=27+x +x -13-x 的最大值和最小值.4.(原创题)求函数y=27+x +x -14-x -13的最大值和最小值.2.平方分析法[例2]:(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .[解析]:[评注]:求无理函数值域的难点是解析式中含有的根式,而平方法是去掉根式的根本方法.无理函数f (x)=b ax ++ax d -(a>0,b>0,d>0)型,或f (x)=ax+b ±q px x a ++22型等,可使用平方法分析求解.用平方法求无理函数的值域时,必须注意到平方前函数中隐含的非负性特征和定义域.[类题]:1.(1994年全国高中数学联赛上海初赛试题)函数y=x -1994+1993-x 的值域是_____.2.(2003年第十四届“希望杯”全国数学邀请赛(高二)试题)函数y=232+-x x +232x x -+的最大值是 ,最小值是 .3.(2005年全国高中数学联赛吉林初赛试题)若x 2+y 2=169,则函数f(x,y)=3381024+-x y +3381024++x y 的最大值是 .4.(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .3.代数换元法[例3]:(2006年江苏高考试题)设a 为实数,设函数f(x)=a21x -+x +1+x -1的最大值为g(a).(Ⅰ)设t=x +1+x -1,求t 的取值范围,并把f(x)表示为t 的函数m(t); (Ⅱ)求g(a); (Ⅲ)试求满足g(a)=g(a1)的所有实数a. [解析]:[评注]:此法适用于函数f(x)=ax+b+md cx +,一般令t=d cx +,将原函数转化为t 的二次函数,当然也适用于函数f(x)=ax 2+b+m d cx +2、f(x)=ax 2+bx+k+m d cx +、f(x)=qpx cbx ax +++等.用代数换元法求无理函数的值域时,必须注意到换元后的新变元的取值范围.[类题]:1.(1997年第八届“希望杯”全国数学邀请赛(高一))函数y=x-x -1的值域为 . 2,(2011年全国高中数学联赛山西初赛试题)函数y=2x-5+x 311-的最大值是 . 3.(原创题)函数f(x)=x 2+21x -的值域为 .4.(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . 4.三角换元法(Ⅰ)[例4]:(2010年全国高中数学联赛安徽初赛试题)函数f(x)=2x-24x x -的值域是_________.[解析]:[评注]:若|x|≤R,则可作代换x=Rcos α,且α∈[0,π].此法适用于无理函数f(x)中的无理式是22)(a x R --的形式.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.如作代换x=Rsin α,则α∈[-2π,2π],使得换元恰取值好为原函数的定义域.[类题]:1.(2010年全国高中数学联赛江西初赛试题)函数f(x)=212+-x x 的值域是 . 2.(典型题)函数y=x 21x -+x 2的值域是 .3.(1986年全国高中数学联赛上海初赛试题)已知函数y=)56)(96(22-+-+-x x x x ,那么它的值域是__________.4.⑴(2011年全国高中数学联赛内蒙古初赛试题)函数f(x)=9102-+-x x +184502-+-x x 的最大值为 . ⑵(2004年第十五届“希望杯”全国数学邀请赛(高一))已知函数f(x)=232-+-x x +652-+-x x ,则函数f(x)的最大值与最小值之差是________.5.三角换元法(Ⅱ)[例5]:(2006年全国高中数学联赛江西初赛试题)函数f(x)=3-x +x 312-的值域为 .[解析]:[评注]:若x ∈[a,b],则可作代换x=(b-a)sin 2α+a,且α∈[0,2π],或x=2a b -cos α+2b a +,且α∈[0,π].此法适用于无理函数f(x)中的无理式的定义域为[a,b]的函数.如无理函数f (x)=b ax ++d cx +(a 与c 异号)型,或f (x)=ax 2+bx+c+ m t qx px ++2(a<0,q 2-4pr>0)型.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(2008年重庆高考试题)(2009年全国高中数学联赛河南初赛试题)已知函数y=x -1+3+x 的最大值为M,最小值为m,则Mm的值为 .2.(2010年全国高中数学联赛湖南初赛试题)设函数f(x)=x -4+2+x 的最大值为M,最小值为m,则M 与m 的乘积为 .3.(2006年全国高中数学联赛福建初赛试题)函数y=43+x +x 34-的最大值与最小值之和为 .4.(典型题)函数y=x+2+23102-+-x x 的值域是________.6.三角换元法(Ⅲ)[例6]:(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . [解析]:[评注]:若无理函数f(x)中的无理式是c b x a ++2)((a>0,c>0)的形式,可作代换x+b=actan α,且α∈(-2π,2π),则c b x a ++2)(=αcos c.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(原创题)函数f(x)=212+-x x 的值域为 .2.(200年全国高考试题改编题)若函数f(x)=12+x -ax(a>0)在[0,+∞)上单调递减,则实数a 的取值范围是 .3.(原创题)函数f(x)=5422+-x x -x 的值域为 .4.(2002年全国高中数学联赛上海初赛试题)已知函数f(x)=x21(1-x+2221x x +-),x ∈[2,4],则该函数的值域是_____. 7.距离分析法[例7]:(2008年全国高中数学联赛江西初赛试题)设x ∈R,则函数f(x)=12+x +16)12(2+-x 的最小值为 .[解析]:[评注]:对于有些无理函数的值域问题,巧妙地应用平面上两点间的距离公式,可以起到化难为易,化繁为简的作用,同时借助几何直观,使问题得到顺利解答.[类题]:1.(2006年全国高中数学联赛四川初赛试题)函数f(x)=222++x x +222+-x x 的最小值是 . ⑵(2011年台湾高校(对澳门地区)试题)设f(x)=522+-x x +1342+-x x ,则f(x)的最小值为 . ⑶(2011年第二十二届“希望杯”全国数学邀请赛(高一)试题)522+-x x +2582+-x x 的最小值为______. ⑷(2010年第二十一届“希望杯”全国数学邀请赛(高二))函数f(x)=50102+-x x +252+x 的值域是 .2.(2011年全国高中数学联赛安徽初赛试题)设a 是正数,若f(x)=22106a ax x +-+2252a ax x ++(x ∈R)的最小值为10, 则a= .3.⑴(2004年第十五届“希望杯”全国数学邀请赛(高二))函数y=222++x x -332+-x x 达到最大值时,x 的值是 .⑵(2007年第十八届“希望杯”全国数学邀请赛(高二))当x ∈R 时,函数y=1022++x x -102+-x x ( ) (A)没有最大值和最小值 (B)有最大值,没有最小值 (C)没有最大值,有最小值 (D)有最大值和最小值 4.⑴(1992年全国高中数学联赛试题)函数f(x)=136324+--x x x -124+-x x 的最大值是 .⑵(2011年全国高中数学联赛河南初赛试题)函数f(x)=106324+-+x x x -52324++-x x x 的最大值是 .8.曲线分析法[例8]:(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .[解析]:[评注]:利用函数解析式的几何意义,把求函数值域的问题转化为距离或截距的范围问题.数形结合是解决求值域和最值问题的重要方法,运用图形的直观性,通过数形结合使抽象问题直观化,复杂问题简单化,综合问题浅显化,充分训练发散思维.[类题]:1.(2005年第十六届“希望杯”全国数学邀请赛(高二)试题)函数y=2-x +x -5的最大值是 ,最小值是 .2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值是 .3.(典型题)函数y=4x+223x x -+的值域为 .4.(数学奥林匹克高中训练题(73))函数y=212x x -+-2215x x --的值域为 .9.向量分析法[例9]:(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值. [解析]:[评注]:根据向量的数量积的定义ab =|a ||b |cos<a,b>⇒(ab )2=|a |2|b |2cos 2<a,b>⇒(ab )2≤|a |2|b |2,等号当且仅当a ∥b 时成立.如求函数f(x)=m x a -+n b x -的最值,可令a =(m,n),b =(x a -,b x -),由(x a -)2+(b x -)2=a-b,f 2(x) =(ab )2=|a |2|b |2cos 2<a,b>⇒<a,b>∈[0,θ],tan θ=n/m,或cot θ=n/m ⇒cos<a,b>∈[t,1],其中t=min{22nm n +,22nm m +}⇒f 2(x)∈[(m 2+n 2)t,(m 2+n 2)(a-b)].[类题]:1.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值为 .2.(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219. 10.不等式法[例10]:(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219.[解析]: [类题]:1.(数学奥林匹克高中训练题(147))设0≤x ≤8则函数f(x)=1)8)(8(2+-+x x x x 的值域为 .2.(《中等数学》2006年笫6期.数学奥林匹克高中训练题(1))设x ∈R +,则函数y=211x++2xx+1的最大值为 . 3.(数学奥林匹克高中训练题(126))函数f(x)=x(x +1+x -1)的值域为 . 4.(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.无理函数的值域问题求无理函数的值域问题是初等数学的难点,因该类问题内涵丰富,灵活多变,涉及多个知识点,技巧性、综合性较强,解法灵活多样,因此成为数学竞赛的热点.本文通过对各种解法进行对比研究,试图寻找解决各种类型问题的最佳方法.Ⅰ.解法分析1.单调性质法[例1]:(2010年全国高中数学联赛试题)函数f(x)=5-x -x 324-的值域是 .[解析]:函数f(x)的定义域为[5,8],且函数y=5-x 在定义域[5,8]内单调递减,y=x 324-在定义域[5,8]内单调递增⇒f(x)在定义域[5,8]内单调递增⇒f(x)的值域是[f(5),f(8)]=[-3,3].[评注]:一个函数我们直接或作一些变形就能判断函数的单调性,用单调求值域是一种比较快捷的方法.无理函数f (x)=b ax ++d cx +(a 与c 同号)型,或f (x)=b ax +-d cx +(a 与c 异号)型,或f (x)=b ax +-d cx +(a 与c 相等)型等,可判断函数单调性,均可用此法.用单调性质法求无理函数的值域时,必须注意到函数隐含的正负性特征和定义域.[类题]:1.(2011年全国高中数学联赛湖南初赛试题)函数y=1+x -x 525-的值域是 .2.(1995年第六届“希望杯”全国数学邀请赛(高一)试题)函数y=2+x -2-x ( ) (A)是非单调函数,没有反函数 (B)有反函数,且反函数是增函数 (C)有反函数,且反函数是减函数 (D)有反函数,且反函数是非单调函数 解:y=2+x -2-x =224-++x x 在[-2,2]上单调递减⇒有反函数,且反函数是减函数.3.(原创题)求函数y=27+x +x -13-x 的最大值和最小值. 解:函数的定义域为[0,13],y=27+x -x =xx ++2727在[0,13]上单调递减⇒函数y=27+x +x -13-x 在[0,13]上单调递减⇒x=13时,y min =210-13,x=0时,y max =33+13. 4.(原创题)求函数y=27+x +x -14-x -13的最大值和最小值. 解:函数的定义域为[-27,,13],y=x -14-x -13=xx -+-14131在[-27,13]上单调递增⇒y=27+x +x -14-x -13在[-27,13]上单调递增⇒2.平方分析法[例2]:(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .[解析]:令y=3-x +x -6,3≤x ≤6,则y 2=3+2)6)(3(x x --(或用二次函数)≤3+[(x-3)+(6-x)]=6,实数k 的最大值是6.[评注]:求无理函数值域的难点是解析式中含有的根式,而平方法是去掉根式的根本方法.无理函数f (x)=b ax ++ax d -(a>0,b>0,d>0)型,或f (x)=ax+b ±q px x a ++22型等,可使用平方法分析求解.用平方法求无理函数的值域时,必须注意到平方前函数中隐含的非负性特征和定义域.[类题]:1.(1994年全国高中数学联赛上海初赛试题)函数y=x -1994+1993-x 的值域是_____.2.(2003年第十四届“希望杯”全国数学邀请赛(高二)试题)函数y=232+-x x +232x x -+的最大值是 ,最小值是 .解:令x 2-3x=t,y=2+t +t -2.3.(2005年全国高中数学联赛吉林初赛试题)若x 2+y 2=169,则函数f(x,y)=3381024+-x y +3381024++x y 的最大值是 .解:f 2(x,y)=48y+676+222)10()33824(x y -+=48y+676+22222210169338338242)1024(⨯-+⨯⨯++y y ,y=13,x=0时,f(x)max=1026.4.(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .解:y=x+232+-x x ⇒y-x=232+-x x ≥0⇒(y-x)2=x 2-3x+2⇒(2y-3)x=y 2-2⇒y ≠23,x=3222--y y ⇒y ≥3222--y y ⇒1≤y <23,或y ≥2. 3.代数换元法[例3]:(2006年江苏高考试题)设a 为实数,设函数f(x)=a21x -+x +1+x -1的最大值为g(a).(Ⅰ)设t=x +1+x -1,求t 的取值范围,并把f(x)表示为t 的函数m(t); (Ⅱ)求g(a); (Ⅲ)试求满足g(a)=g(a1)的所有实数a. [解析]:(Ⅰ)t 2=2+221x -∈[2,4]⇒t ∈[2,2],f(x)=m(t)=21at 2-a+t; (Ⅱ)①当a=0时,m(t)=t ⇒g(a)=m(2)=2;②当a>0时,函数m(t)过定点(2,2),对称轴t=-a1⇒g(a)=m(2)=a+2;③当a<0时,函数m(t)过定点(2,2),对称轴t=-a1. 综上[评注]:此法适用于函数f(x)=ax+b+md cx +,一般令t=d cx +,将原函数转化为t 的二次函数,当然也适用于函数f(x)=ax 2+b+m d cx +2、f(x)=ax 2+bx+k+m d cx +、f(x)=qpx cbx ax +++等.用代数换元法求无理函数的值域时,必须注意到换元后的新变元的取值范围.[类题]:1.(1997年第八届“希望杯”全国数学邀请赛(高一))函数y=x-x -1的值域为 . 解:令x -1=t,则t ≥0,且x=1-t 2,则y=1-t 2-t ≤1.2,(2011年全国高中数学联赛山西初赛试题)函数y=2x-5+x 311-的最大值是 . 解:令x 311-=t,则t ≥0,且x=31(11-t 2),则3y=-2t 2+3t+7≤865⇒y 的最大值是2465. 3.(原创题)函数f(x)=x 2+21x -的值域为 .解:令21x -=t,则t ∈[0,1],且x 2=1-t 2,y=1-t 2+t.4.(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . 解:令x-1=t,则f(x)=tt 1)1(2++.当t>0时,f(x)=2221t t ++>1;当t<0时,f(x)=-2221t t ++=-21)211(22++t ≤-22. 4.三角换元法(Ⅰ)[例4]:(2010年全国高中数学联赛安徽初赛试题)函数f(x)=2x-24x x -的值域是_________.[解析]:f(x)=2x-24x x -=2x-2)2(4--x ,设x-2=2cos α,α∈[0,π],则y=4cos α-2sin α+4=25cos(α+φ)+4,其中cos φ=52,φ为锐角,所以当α=0时,y max =8,当α+φ=π时,y min =4-25.[评注]:若|x|≤R,则可作代换x=Rcos α,且α∈[0,π].此法适用于无理函数f(x)中的无理式是22)(a x R --的形式.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.如作代换x=Rsin α,则α∈[-2π,2π],使得换元恰取值好为原函数的定义域.[类题]:1.(2010年全国高中数学联赛江西初赛试题)函数f(x)=212+-x x 的值域是 . 解:设x=cos α,且α∈[0,π].则y=2cos sin +αα,作P(cos α,sin α),A(-2,0),k AP =2cos sin +αα∈[0,33].2.(典型题)函数y=x 21x -+x 2的值域是 .解:设x=sin α(|α|≤2π),则y=sin αcos α+sin 2α=21+22sin(2α-4π),故所求函数值域为[21-22,21+22]. 3.(1986年全国高中数学联赛上海初赛试题)已知函数y=)56)(96(22-+-+-x x x x ,那么它的值域是__________. 解:f(x)的定义域为[1,5],令x-3=2cos α,α∈[0,π],y=])3(4[)3(22---x x =αα22cos sin 16=2|sin2α|∈[0,2]. 4.⑴(2011年全国高中数学联赛内蒙古初赛试题)函数f(x)=9102-+-x x +184502-+-x x 的最大值为 . 解:f(x)=22)5(4--x -22)25(21--x ,令x-5=4cos α,x-25=21cos β,α,β∈[0,π],4cos α-21cos β=20,f(x)=4sin α+21sin β,f 2(x)+202=(4sin α+21sin β)2+(4cos α-21cos β)2=16+441-168cos(α+β)⇒f 2(x)=57-168cos(α+β)⇒cos(α+β)=-1时,f(x)max =16857+=15.⑵(2004年第十五届“希望杯”全国数学邀请赛(高一))已知函数f(x)=232-+-x x +652-+-x x ,则函数f(x)的最大值与最小值之差是________. 解:f(x)=2)23(41--x +2)25(41--x ,令x-23=21cos α,x-25=21cos β,α,β∈[0,π],cos α-cos β=2⇒f(x)=21(sinα+sin β)⇒4+4f 2(x)=2-2cos(α+β)≤4⇒f(x)=0.5.三角换元法(Ⅱ)[例5]:(2006年全国高中数学联赛江西初赛试题)函数f(x)=3-x +x 312-的值域为 .[解析]:f(x)的定义域为[3,4],令x=(4-3)sin 2θ,θ∈[0,2π],则f(x)=sin θ+3cos θ=2sin(θ+3π),3π≤θ+3π≤65π⇒21≤sin(θ+3π)≤1⇒f(x)=3-x +x 312-的值域为[1,2].[评注]:若x ∈[a,b],则可作代换x=(b-a)sin 2α+a,且α∈[0,2π],或x=2a b -cos α+2b a +,且α∈[0,π].此法适用于无理函数f(x)中的无理式的定义域为[a,b]的函数.如无理函数f (x)=b ax ++d cx +(a 与c 异号)型,或f (x)=ax 2+bx+c+ m t qx px ++2(a<0,q 2-4pr>0)型.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(2008年重庆高考试题)(2009年全国高中数学联赛河南初赛试题)已知函数y=x -1+3+x 的最大值为M,最小值为m,则Mm的值为 . 2.(2010年全国高中数学联赛湖南初赛试题)设函数f(x)=x -4+2+x 的最大值为M,最小值为m,则M 与m 的乘积为 .3.(2006年全国高中数学联赛福建初赛试题)函数y=43+x +x 34-的最大值与最小值之和为 .4.(典型题)函数y=x+2+23102-+-x x 的值域是________.解:由-x 2+10x-23≥0⇒5-2≤x ≤5+2,令x=2cos α+5,α∈[0,π],则y=2cos α+7+2sin α=2sin(α+4π)+7,由 α∈[0,π]⇒α+4π∈[4π,45π]⇒sin(α+4π)∈[-22,1]⇒y ∈[7-2,9]. 6.三角换元法(Ⅲ)[例6]:(2011年全国高中数学联赛试题)函数f(x)=112-+x x 的值域为 . [解析]:令x=tan α,α∈(-2π,2π),α≠4π,f(x)=ααcos sin 1-=)4sin(21πα-,α-4π∈(-43π,4π)⇒sin(α-4π)∈[-1,0)∪(0,22)⇒f(x)∈(-∞,-22]∪(1,+∞).[评注]:若无理函数f(x)中的无理式是c b x a ++2)((a>0,c>0)的形式,可作代换x+b=actan α,且α∈(-2π,2π),则c b x a ++2)(=αcos c.用三角换元法求无理函数的值域时,必须给定换元中角α的取值范围.使得换元恰取值好为原函数的定义域.[类题]:1.(原创题)函数f(x)=212+-x x 的值域为 .解:令x=2tan α,α∈(-2π,2π),则f(x)=22(sin α-cos α)=sin(α-4π)∈[-1,22). 2.(200年全国高考试题改编题)若函数f(x)=12+x -ax(a>0)在[0,+∞)上单调递减,则实数a 的取值范围是 .解:令x=tan α,α∈(-2π,2π),则f(x)=αcos 1-atan α=ααcos sin 1a -=a ααcos sin 1-a ,取单位圆上的点P(cos α,sin α),A(0,a 1),-k PA =ααcos sin 1-a ,f(x)递减⇔k PA 递增⇔a 1≤1⇔a ≥1. 3.(原创题)函数f(x)=5422+-x x -x 的值域为 . 解:f(x)=3)1(22+-x -12+x ,令x-1=26tan α,α∈(-2π,2π),则f(x)=αcos 3-26tan α-1=26ααcos sin 2--1,取单位圆上的点P(cos α,sin α),A(0,2),-k PA =ααcos sin 2-,k PA ≤-1⇒-k PA ≥1⇒f(x)≥26-1.4.(2002年全国高中数学联赛上海初赛试题)已知函数f(x)=x21(1-x+2221x x +-),x ∈[2,4],则该函数的值域是_____. 解:f(x)=x 21(1-x+2221x x +-)=21(x1-1+2212+-xx)=21[x 1-1+1)11(2+-x ],令1-x 1=tan α∈[21,43],则y=f(x)=21(-tan α+αcos 1)=21ααcos sin 1-,取单位圆上的点P(cos α,sin α),A(0,1),-k PA =ααcos sin 1-,k OA 递增,ααcos sin 1-递减,当tan α=21时,sin α=55,cos α=552⇒f(x)max =415-;当tan α=43时,sin α=53,cos α=54⇒f(x)min =41.7.距离分析法[例7]:(2008年全国高中数学联赛江西初赛试题)设x ∈R,则函数f(x)=12+x +16)12(2+-x 的最小值为 .[解析]:[评注]:对于有些无理函数的值域问题,巧妙地应用平面上两点间的距离公式,可以起到化难为易,化繁为简的作用,同时借助几何直观,使问题得到顺利解答.[类题]:1.(2006年全国高中数学联赛四川初赛试题)函数f(x)=222++x x +222+-x x 的最小值是 . ⑵(2011年台湾高校(对澳门地区)试题)设f(x)=522+-x x +1342+-x x ,则f(x)的最小值为 . ⑶(2011年第二十二届“希望杯”全国数学邀请赛(高一)试题)522+-x x +2582+-x x 的最小值为______. ⑷(2010年第二十一届“希望杯”全国数学邀请赛(高二))函数f(x)=50102+-x x +252+x 的值域是 .2.(2011年全国高中数学联赛安徽初赛试题)设a 是正数,若f(x)=22106a ax x +-+2252a ax x ++(x ∈R)的最小值为10,则a= .3.⑴(2004年第十五届“希望杯”全国数学邀请赛(高二))函数y=222++x x -332+-x x 达到最大值时,x 的值是 . ⑵(2007年第十八届“希望杯”全国数学邀请赛(高二))当x ∈R 时,函数y=1022++x x -102+-x x ( ) (A)没有最大值和最小值 (B)有最大值,没有最小值 (C)没有最大值,有最小值 (D)有最大值和最小值4.⑴(1992年全国高中数学联赛试题)函数f(x)=136324+--x x x -124+-x x 的最大值是 .⑵(2011年全国高中数学联赛河南初赛试题)函数f(x)=106324+-+x x x -52324++-x x x 的最大值是 .8.曲线分析法[例8]:(2001年全国高中数学联赛试题)函数y=x+232+-x x 的值域为 .[解析]:取点P(x-23,232+-x x ),则点P 在x 2-y 2=41(y ≥0)上,u=x+y+23,直线x+y=u-23在x 轴上的截矩u-23满足-21≤u-23<0,u-23≥21⇔u ∈[1,23)∪[2,+∞). [评注]:利用函数解析式的几何意义,把求函数值域的问题转化为距离或截距的范围问题.数形结合是解决求值域和最值问题的重要方法,运用图形的直观性,通过数形结合使抽象问题直观化,复杂问题简单化,综合问题浅显化,充分训练发散思维.[类题]:1.(2005年第十六届“希望杯”全国数学邀请赛(高二)试题)函数y=2-x +x -5的最大值是 ,最小值是 . 解:取点P(2-x ,x -5),点P 在四分之一圆弧C:x 2+y 2=3(x ≥0,y ≥0)上,u=x+y,直线x+y=u 在x 轴上的截矩u 满足:3≤u ≤6.2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值是 .解:取点P(5-x ,x -8),点P 在四分之一圆弧C:x 2+y 2=3(x ≥0,y ≥0)上,u=x+3y,直线x+y=u 在x 轴上的截矩u 满足:3≤u ≤23.3.(典型题)函数y=4x+223x x -+的值域为 .解:取点P(x,223x x -+),点P 在半圆圆弧C:(x-1)2+y 2=4(0≤y ≤2)上,u=4x+y,直线4x+y=u 在x 轴上的截矩u 满足:-1≤41u ≤217+1⇒-4≤u ≤4+217. 4.(数学奥林匹克高中训练题(73))函数y=212x x -+-2215x x --的值域为 . 解:f(x)的定义域为[-3,3],设y 1=212x x -+(y 1≥0),y 2=2215x x --(y 2≥0),则(x-21)2+y 12=(27)2,(x+1)2+y 22=42, 作此两圆,如图: B y 设直线x=t 与半圆C 1,C 2分别相交于A,B 两点,则有向线段BA 的数量, A即为x=t 时的函数值. C 2 C 1 显然,当x=-3时,y 取得最小值-23;当x=3时,y 取得最大值6. -5 -3 x=t O 3 4 x9.向量分析法[例9]:(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.[解析]:设a =(31,21,1),b =()13(3x -,x 2,27+x ),则|a |=666,|b |=66,ab =27+x +x -13+x ,其中0≤x ≤13,由(ab )2≤|a |2|b |2得y ≤66666=11,当且仅当a ∥b ,即x=9时,等号成立;又因()13(3x -)2+(x 2)2+(27+x )2=66⇒当且仅当b =(39,0,33),即x=0时,cos<a ,b >≥113313+⇒27+x +x -13+x =ab =|a ||b |cos<a ,b >≥13+33.[评注]:根据向量的数量积的定义ab =|a ||b |cos<a,b>⇒(ab )2=|a |2|b |2cos 2<a,b>⇒(ab )2≤|a |2|b |2,等号当且仅当a ∥b 时成立.如求函数f(x)=m x a -+n b x -的最值,可令a =(m,n),b =(x a -,b x -),由(x a -)2+(b x -)2=a-b,f 2(x) =(ab )2=|a |2|b |2cos 2<a,b>⇒<a,b>∈[0,θ],tan θ=n/m,或cot θ=n/m ⇒cos<a,b>∈[t,1],其中t=min{22nm n +,22nm m +}⇒f 2(x)∈[(m 2+n 2)t,(m 2+n 2)(a-b)].[类题]:Y.P.M 数学竞赛讲座 71.(2005年全国高中数学联赛试题)使关于x 的不等式3-x +x -6≥k 有解的实数k 的最大值是 .2.(2011年全国高中数学联赛四川初赛试题)函数f(x)=5-x +x 324-的最大值为 .3.(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219. 解:设a =(2,1,1),b =(1+x ,32-x ,x 315-),则|a |=6,|b |=13,ab =21+x +32-x +x 315-=|a ||b | cos<a ,b >=613cos<a ,b >.当b =(25,0,221),即x=23时,cos<a ,b >取得最大值⇒21+x +32-x +x 315-最大值=225+221<219. 10.不等式法[例10]:(2003年全国高中数学联赛试题)设23≤x ≤5,证明不等式21+x +32-x +x 315-<219.[解析]:由(x 1+x 2+…+x n )2=x 12+x 22+…+x n 2+2x 1x 2+2x 1x 3+…+2x n-1x n ≤x 12+x 22+…+x n 2+(n-1)(x 12+x 22+…+x n 2)=n(x 12+x 22+…+x n 2)⇒x 1+x 2+…+x n ≤n22221n x x x +⋅⋅⋅++,当且仅当x 1=x 2=…=x n 时取等号.21+x +32-x +x 315-=1+x +1+x +32-x +x 315-≤214+x ≤219,而等号不能成立.柯西不等式:(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2),当且仅当a 1:x 1=a 2:x 2=…=a n :x n 时等号成立; (21+x +32-x +x 315-)2=(m1m mx 44++n1n nx 32-+k1kx k 315-)2≤(m 1+n 1+k1)[(4mx+4m)+(2nx-3n)+ (15k-3kx)],令4m+2n=3k,y 5≤(m 1+n 1+k1)(4m-3n+15k),取[评注]: [类题]:1.(数学奥林匹克高中训练题(147))设0≤x ≤8则函数f(x)=1)8)(8(2+-+x x x x 的值域为 .解:f(x)=1)8)(8(2+-+x x x x =1)8)(8(22+-+x x x x ≤)1(2)8()8(22+-++x x x x =4,当且仅当x=2时等号成立,值域为[0,4].2.(《中等数学》2006年笫6期.数学奥林匹克高中训练题(1))设x ∈R +,则函数y=211x++2xx+1的最大值为 . 解:设t=x1(t>0),y=21t t ++t+12≤2)1(2t t ++t+12=t t +12+t +12=2-t +12+t +12=2-2(t+11-22)2+22≤ 2+22=223,当且仅当t+11=22,即t=1时等号成立. 3.(数学奥林匹克高中训练题(126))函数f(x)=x(x +1+x -1)的值域为 .解:函数f(x)的定义域为[-1,1],且为奇函数,设21x -=t,0≤t ≤1,f 2(x)=x 2(2+221x -)=2(1-t 2)(1+t)=(1+t)(1+t)(2-2t)≤[3)22()1()1(t t t -++++]3=2764,当且仅当1+t=2-2t,t=31时等号成立⇒f max (x)=938⇒值域为[-938,938]. 4.(2009年全国高中数学联赛试题)求函数y=27+x +x -13+x 的最大和最小值.解:函数的定义域为[0,13],y=27+x +x -13+x =27+x +)13(213x x -+≥27+13=33+13,当且仅当x=0时等号成立;又由柯西不等式:(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2),当且仅当a 1:x 1=a 2:x 2=…=a n :x n 时等号成立;y 2= (27+x +x -13+x )2=(m1m mx 27++n1nx n -13+k1kx )2≤(m 1+n 1+k1)[(mx+27m)+(13n-nx)+kx],令m+k=n,且m1:m mx 27+=n 1:nx n -13=k 1:kx ⇒m 2x+27m 2=13n 2-n 2x=k 2x ⇒x=22222713m n m n +-=22213k n n +∈[0,13],取m=1⇒k=2,n=3,则y 5≤(m 1+n 1+k1)(27m+13n)=112.x=9时等号成立;Ⅱ.类型分析1.函数f(x)=ax+b+m dcx +2.函数f(x)=3.函数f(x)=nbax ++mdcx +4.函数f(x)=ax+b+m t qx px ++25.函数f(x)=6.函数f(x)=7.函数f(x)=8.函数f(x)=9.函数f(x)= 10.函数f(x)=3.函数f(x)=n b ax ++m d cx ++k q px +4.f(x)=ax+b+m t qx px ++25.f(x)=ax 2+bx+c+m t qx px ++26.f(x)=n c bx ax ++2+m t qx px ++27.f(x)=qpx cbx ax +++4.(原创题)函数f(x)=5422+-x x -12+x 的值域为 . 解:设y 1=5422+-x x ,y 2=12+x ⇒。
无理函数最值探求的四个策略
函数是中学阶段的一个核心内容,值域在函数的应用中具有重要地位,它贯穿于整个高中数学的始终。
而无理函数是一类特殊的函数,通常是自变量包含在根式(通常是最简根式)中的函数。
无理函数的最值问题中学数学中常见的问题之一,那么如何快速准确地求出此类问题呢?是什么让同学们感到棘手的呢?本文给出以下四个策略来处理无理函数的最值问题.
1 有理化策略处理
无理函数的特殊之处在于含有根号,如果能够进行等价变形,把根号去掉,问题便会迎刃而解.对无理函数进行去根号化处理是一个基本的策略.
例1 已知函数232+-+
=x x x y ,求该函数的最小值. 解:由232+-+
=x x x y 得:0232≥+-=-x x x y ,两边同时平方得:23)(22+-=-x x x y ,即2)32(2-=-y x y ,从而3222--=y y x ,又x y ≥,所以3222--≥y y y ,得:2
31<≤y 或y ≤2,故232+-+=x x x y 的最小值为1 评析:两边平方是对无理函数进行有理化处理最常见的手段,但要注意等价性.注意本题中x y ≥的隐含条件的使用.
2 换元法策略处理
例2 求函数1412--+=x x y 的最小值. 解:令01≥-=x t ,则12+=t x ,从而3422+-=t t y )0(≥t ,所以1)1(22+-=t y ,故1=t 时,y 的最小值为1
例3 求函数x x y 312+-=的最大值.
解:因为11≤≤-x ,令],0[,cos πθθ∈=x ,从而θsin 12=-x ,故θθcos 3sin +=y ,即)3sin(2π
θ+=y ],0[πθ∈,所以y 的最大值为2.
评析:对无理函数进行适当的换元,可以转化为常见函数的最值问题,其中三角换元尤其重要,如含有21x -、21x +、12-x 可分别令θsin =x 、θtan =x 、θsec =x ,从而能够快速解决问题.
3 柯西不等式策略处理
例4 求函数x x y -+-=521的最大值.
解:因为51≤≤x ,由柯西不等式得5251215212
2=-+-+≤-+-x x x x (当且仅当5
9=x 时取等号)
评注:利用柯西不等式:2222y x b a by ax +⋅+≤
+能够快速求得这类无理函数的最大值 4 数形结合的策略处理
例5 求函数12--
=x x y 的最大值. 解:令01,2≥-==x v x u ,则122=-v u ,这样:点),(v u
在双曲线122=-v u 的上半部分上,如图:而v u y -=,从而当直线v u y -=过点)0,1(时,y 有最大值1,即原函数的最大值为1.
例6 求函数842222+-++-=
x x x x y 的最小值. 解:842222+-++-=x x x x y 22222)2(1)1(+-++-=x x ,
故几何意义为:在直角坐标系下,函数值为x 轴上的点)0,(x 与)2,2(),1,1(-B A 的 距离之和,如图所示,从而可知10||=≥AB y ,即三点共线时,函数最小值为10.
评析:根据函数的特征,对其适当变形,寻求其几何意义,运用图形的直观性或利用线性规划来处理,这也是一种快速而重要的策略.
根据无理函数解析式的特征,选择合适的策略,可以迅速地解决问题,达到事半功倍的效果. 链接训练题:
(1). 求函数x x y ++-=11的最大值和最小值。
(2). 求函数242x x y -+-=的最大值和最小值。
(3). 求函数y x x =-+-23134的值域
(4).求函数261013422+-++-=x x x x y 的最小值
答案:(1)最大值为2,最小值为2;(2)222max -=y ,4min -=y ;
(3)函数值域为(]-∞,4; (4)最小值为5。